1 (A RLRC circuit)
$\mathbf{A}=\left[\begin{array}{cc}-\frac{R_{1}}{L} & -\frac{1}{L} \\ \frac{1}{C} & -\frac{1}{C R_{2}}\end{array}\right]$,
$\mathbf{B}=\left[\begin{array}{c}\frac{1}{L} \\ 0\end{array}\right]$,
$\mathrm{C}=\left[\begin{array}{ll}0 & 1\end{array}\right]$,
$\mathrm{D}=0$
$\underline{2}$ (A transistor circuit)
$\mathbf{A}=\left[\begin{array}{cc}-\frac{h_{i e}}{L} & 0 \\ \frac{h_{f e}}{C} & 0\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{c}\frac{1}{L} \\ 0\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{ll}0 & 1\end{array}\right], \quad \mathbf{D}=0$
3 (A parallel electrical circuit)
$\mathbf{A}=\left[\begin{array}{cccc}0 & \frac{-1}{L_{1}} & 0 & 0 \\ \frac{1}{C_{1}} & \frac{-1}{C_{1} R_{1}} & 0 & 0 \\ 0 & 0 & 0 & \frac{-1}{L_{2}} \\ 0 & 0 & \frac{1}{C_{2}} & \frac{-1}{C_{2} R_{2}}\end{array}\right], \mathbf{B}=\left[\begin{array}{c}\frac{1}{L_{1}} \\ \frac{1}{C_{1} R_{1}} \\ \frac{1}{L_{2}} \\ \frac{1}{C_{2} R_{2}}\end{array}\right], \begin{aligned} & \mathbf{C}=\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right], \\ & \mathbf{D}=0 \\ & \end{aligned}$
4 (A 2-tank system)
$\mathbf{A}=\left[\begin{array}{cc}-\frac{1}{R_{1} A_{1}} & \frac{1}{R_{1} A_{1}} \\ \frac{1}{R_{1} A_{2}} & -\left(\frac{1}{R_{1} A_{2}}+\frac{1}{R_{2} A_{2}}\right)\end{array}\right], \mathbf{B}=\left[\begin{array}{c}\frac{1}{A_{1}} \\ 0\end{array}\right], \begin{aligned} & \mathbf{C}=\left[\begin{array}{ll}\frac{1}{R_{1}} & -\frac{1}{R_{1}}\end{array}\right], \\ & \mathbf{D}=0\end{aligned}$
5 (A 3-tank system)

$$
\mathbf{A}=\left[\begin{array}{ccc}
-3 & 3 & 0 \\
2 & -4 & 2 \\
0 & 3 & -3
\end{array}\right], \mathbf{B}=\left[\begin{array}{ccc}
\frac{3}{2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{3}{2}
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right],
$$

6 (A bicycle-rider system)
$\mathbf{A}=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ -V & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -w^{2} & w^{2} & 0\end{array}\right], \mathbf{B}=\left[\begin{array}{cc}B_{1} V & 0 \\ -B_{2} V & 0 \\ 0 & 0 \\ 0 & F\end{array}\right], \quad \begin{aligned} & \mathbf{C}=\left[\begin{array}{cccc}-l & 1 & 0 & 0 \\ 0 & -\frac{w^{2}}{g} & \frac{w^{2}}{g} & 0\end{array}\right], \\ & \mathbf{D}=\left[\begin{array}{cc}0 & 0 \\ 0 & -f_{u}\end{array}\right],\end{aligned}$

