1 (A RLRC circuit)

The characteristic polynomial of A is as follows:

$$
\left(-\lambda-\frac{R_{1}}{L}\right)\left(-\lambda-\frac{1}{C R_{2}}\right)+\frac{1}{L C}=0
$$

That is,

$$
\lambda^{2}+\lambda\left(\frac{R_{1}}{L}+\frac{1}{C R_{2}}\right)+\left(\frac{R_{1}}{L C R_{2}}+\frac{1}{L C}\right)=0
$$

If R_{1}, R_{2}, L, C are positive (practical assumption), the coefficients of this equation are all postive. Hence, if the roots of this equation are λ_{1}, λ_{2}, then,

$$
\left(\frac{R_{1}}{L}+\frac{1}{C R_{2}}\right)=-\left(\lambda_{1}+\lambda_{2}\right)>0, \quad\left(\frac{R_{1}}{L C R_{2}}+\frac{1}{L C}\right)=\lambda_{1} \lambda_{2}>0
$$

If λ_{1}, λ_{2} are real, then these relations hold if and only if both eigenvalues are negative. The other combinations are impossible.

If λ_{1}, λ_{2} are complex, that is, $\lambda_{1,2}=a \pm i b, \quad a, b \in R$, then $\lambda_{1}+\lambda_{2}=2 a$ and $\lambda_{1} \lambda_{2}=a^{2}+b^{2}$. Hence, $\lambda_{1}+\lambda_{2}<0$ implies $a<0$.

In summary, the system is asymptotically stable, since in both the real and complex cases the eigenvalues have negative values and negative real parts, respectively.

$\underline{2}$ (A transistor circuit)

The characteristic polynomial of \mathbf{A} is as follows:

$$
\lambda^{2}+\lambda \frac{h_{i e}}{L}=0
$$

The roots of this equation are $\lambda_{1}=0, \lambda_{2}=-\frac{h_{i e}}{L}$.
Therefore, the system is stable, but NOT asymptotically stable.

4 (A 2-tank system)
Let $a=\frac{1}{R_{1} A_{1}}, b=\frac{1}{R_{1} A_{2}}, c=\frac{1}{R_{2} A_{2}}$.
The characteristic polynomial of \mathbf{A} is as follows:

$$
\lambda^{2}+\lambda(a+b+c)+a c=0
$$

Note that a, b, c are all positive, therefore
$\lambda_{1}+\lambda_{2}<0$ and $\lambda_{1} \lambda_{2}>0$.

Hence, both roots are negative or they are complex conjugate numbers with negative real parts. In either case, the roots are in the left half of the λ-plane, and the system is asymptotically stable.

6 (A bicycle-rider system)
The characteristic polynomial of \mathbf{A} is as follows:

$$
\operatorname{det}\left[\begin{array}{cccc}
-\lambda & 0 & 0 & 0 \\
-V & -\lambda & 0 & 0 \\
0 & 0 & -\lambda & 1 \\
0 & -w^{2} & w^{2} & -\lambda
\end{array}\right]=0
$$

The roots of this equation are $\lambda_{1,2}=0, \lambda_{3,4}= \pm w$.
The positive eigenvalues in the right half-plane indicates instability.

