- (State Feedback and State Estimation )

1 (A RLRC circuit)

After applying feedback, we have the new coefficient matrix

$$
\mathbf{A}+\mathbf{l c}=\left[\begin{array}{ll}
a & b+l_{1} \\
c & d+l_{2}
\end{array}\right]
$$

Next we want to make sure the observer is stable. The characteristic polynomial is

$$
\Delta(s)=s^{2}-s\left(d+l_{2}+a\right)+\left(a d+a l_{2}-c b-c l_{1}\right)
$$

Therefore the feedback system will be stable if

$$
l_{2}<-(a+d)
$$

and, because $a<0$,

$$
l_{2}<\frac{c}{a} l_{1}+\frac{c b-a d}{a} .
$$

The feasible region is shown in the following.


