- (Minimal Realization)

3 (A parallel electrical circuit)
As disscused in HW 4, the system is neither controllable nor observable, Hence, it is NOT minimal.
If the input-output behavior is described by the last two states, that is,

$$
\begin{aligned}
{\left[\begin{array}{c}
i_{L_{2}} \\
v_{C_{2}}
\end{array}\right] } & =\left[\begin{array}{cc}
0 & -\frac{1}{L_{2}} \\
\frac{1}{C_{2}} & -\frac{1}{C_{2} R_{2}}
\end{array}\right]\left[\begin{array}{c}
i_{L_{2}} \\
v_{C_{2}}
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{L_{2}} \\
\frac{1}{C_{2} R_{2}}
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{c}
i_{L_{2}} \\
v_{C_{2}}
\end{array}\right]
\end{aligned}
$$

the reduced-order system is both controllable and observable. Hence, it is minimal.
It can be verified by check the rank of the controllability and observability matrices.

$$
\mathcal{C}=\left[\begin{array}{cc}
\frac{1}{L_{2}} & -\frac{1}{L_{2} C_{2} R_{2}} \\
\frac{1}{C_{2} R_{2}} & \frac{1}{L_{2} C_{2}}-\frac{1}{C_{2}^{2} R_{2}^{2}}
\end{array}\right], \quad \mathcal{O}=\left[\begin{array}{cc}
0 & 1 \\
\frac{1}{C_{2}} & -\frac{1}{C_{2} R_{2}}
\end{array}\right]
$$

Both matrices are full rank.

5 (A 3-tank system)
As disscused in HW 4, the system is neither controllable nor observable, Hence, it is minimal. Let us define

$$
x_{4}=x_{1}+x_{3}
$$

and then adding the first and third equations above we will get

$$
\begin{aligned}
\dot{x}_{4} & =-3 x_{4}+6 x_{2} \\
\dot{x}_{2} & =2 x_{4}-4 x_{2}+u \\
\text { and } \quad y & =x_{2}
\end{aligned}
$$

the reduced-order system is both controllable and observable. Hence, it is NOT minimal.
It can be verified by check the rank of the controllability and observability matrices.

$$
\mathcal{C}=\left[\begin{array}{cc}
0 & 6 \\
1 & -4
\end{array}\right], \quad \mathcal{O}=\left[\begin{array}{cc}
0 & 1 \\
2 & -4
\end{array}\right]
$$

Both matrices are full rank.

