Nonlinear Systems Analysis

Lecture 4

2.3: Qualitative Behavior Near EP2.2: Multiple Equilibria

Feng-Li Lian NTU-EE Sep05 – Jan06

Outline

- 2.3: Qualitative Behavior Near Equilibrium Points
 - · Linearization, Jacobian Matrix
- 2.2: Multiple Equilibria
 - Tunnel-diode circuit, Pendulum
- 2.1: Perturbed Linear Systems

• Consider the state model:

$$\dot{x}_1 = f_1(x_1, x_2)$$

$$\dot{x}_2 = f_2(x_1, x_2)$$

- f_1, f_2 are continuously differentiable.
- E.P.: $p = (p_1, p_2)$. That is,

2.3: Linearization at E.P. - 2

Feng-Li Lian © 2005 NTUEE-NSA-Ch2B-4

 Expand the RHS into its Taylor series about p:

$$\dot{x}_1 =$$

$$\dot{x}_2 =$$

- Let $y_1 = x_1 p_1$, $y_2 = x_2 p_2$ analyze the trajectory near (p_1, p_2) .
- New state equation:

$$\dot{y}_1 =$$

$$\dot{y}_2 =$$

2.3: Linearization at E.P. - 4

Feng-Li Lian © 2005 NTUEE-NSA-Ch2B-6

• New state equation:

$$\dot{y} = A y$$

where

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} \Big|_{x=p}$$

$$= \left. \frac{\partial f}{\partial x} \right|_{x=p}$$

2.3: Jacobian Matrix – 2

(3) a saddle point,

- Then in a small neighborhood of the E.P., the trajectories of the nonlinear state eqn will behave like
 - (1) a stable/unstable node,
 - (2) a stable/unstable focus, or
 - (3) a saddle point.

2.1: Perturbed Linear System → Nonlinear System – 1

- How conclusive the linearization approach is depends to a great extent on how the various qualitative phase portraits of a linear system persis under perturbations.
- For example,
 suppose A has distinct eigenvalues and consider A + ΔA
 ΔA: 2 × 2 real matrix
 its elements have arbitrarily small magnitudes.

2.1: Perturbed Linear System → Nonlinear System – 2

- From the purterbation theory of matrices, the eigenvalues of a matrix depend continuously on its parameters.
- That is, given an $\epsilon > 0$, exist a corresponding $\delta > 0$ the magnitude of the perturbation in each element of A is less than δ , the eigenvalues of $(A + \Delta A)$ will lie in B_{ϵ} , $B_{\epsilon} =$ open discs of radius ϵ centered at the the eigenvalues of A.

- ullet Hence, after arbitrarily small perturbations, eigenvalues of A in open RHP remain in open RHP in open LHP remain in open LHP
- However, when perturbated, eigenvalues on the imaginary axis might go into either the RHP or LHP.

2.1: Perturbed Linear System \rightarrow Nonlinear System -4

- If the EP x=0 of $\dot{x}=Ax$ is a node, focus, or saddle point, then the EP x=0 of $\dot{x}=(A+\Delta A)x$ will be of the same type for sufficiently small perturbations.
- It is quite different if the EP is a center.
- The node, focus, and saddle EPs are said to be structurally stable, while the center EP is not.

Linearization at the E.P.

Change of Coordinate $z = M^{-1}x$

- Nonlinear Systems: \Rightarrow $\dot{x} = f(x)$
- Linear Systems: $\dot{x} = Ax$
- \Longrightarrow

 $J_r = M^{-1}AM$

• In z-coordinate: $\dot{z} = J_r z$

 z_2

2.2: Multiple Equilibria – 1

Feng-Li Lian © 2005 NTUEE-NSA-Ch2B-14

- For linear systems,
 - $-\det A \neq 0$

(A has no zero eigenvalues),

 $\dot{x} = Ax$ has an isolated equilibrium point at x = 0.

- $\det A = 0$, the system has a continuum of equilibrium points.
- There are the only possible patterns.

- For nonlinear systems,
 - it can have multiple isolated equilibrium points.
- the tunnel-diode circuit
- the pendulum eugation

2.2: Tunnel-Diode Circuit - 1

Feng-Li Lian © 2005 NTUEE-NSA-Ch2B-16

Figure 1.2: (a) Tunnel-diode circuit; (b) Tunnel-diode v_R - i_R characteristic.

Kirchhoff's current/voltage law:

$$i_C + i_R - i_L = 0$$
 (KCL) $v_C - E + Ri_L + v_L = 0$ (KVL)

State model:

- state: $x_1 = v_C, x_2 = i_L$, and

- input:
$$u=E$$
,
- $i_C=C\frac{dv_C}{dt}$, $v_L=L\frac{di_L}{dt}$
 $\dot{x}_1=\frac{1}{C}[-h(x_1)$

$$\dot{x}_1 = \frac{1}{C}[-h(x_1) + x_2]$$

$$\dot{x}_2 = \frac{1}{L}[-x_1 - Rx_2 + u]$$

Figure 1.3: Equilibrium points of the tunnel-diode circuit.

Equilibrium points:

$$0 = -h(x_1) + x_2$$

0 = -x_1 - Rx_2 + u

That is, the roots of:

$$h(x_1) = \frac{E}{R} - \frac{1}{R}x_1$$

• Example 2.1:

State Model:

$$\dot{x}_1 = \frac{1}{C}[-h(x_1) + x_2]$$

$$\dot{x}_2 = \frac{1}{L}[-x_1 - Rx_2 + u]$$

• Assume that the circuit parameters are:

$$u = 1.2V, R = 1.5k\Omega, C = 2pF, L = 5\mu H$$

• time t in nanoseconds $x_2, h(x_1)$ in mA

2.2: Tunnel-Diode Circuit - 3

Feng-Li Lian © 2005 NTUEE-NSA-Ch2B-18

• State Model:

$$\dot{x}_1 = 0.5[-h(x_1) + x_2]$$

$$\dot{x}_2 = 0.2[-x_1 - 1.5x_2 + 1.2]$$

and

$$h(x_1) = 17.76x_1 - 103.79x_1^2 + 229.62x_1^3$$
$$-226.31x_1^4 + 83.72x_1^5$$

• Equilibrium Points: (let $\dot{x}_1 = \dot{x}_2 = 0$)

$$Q_1 = \begin{bmatrix} 0.063 \\ 0.758 \end{bmatrix}$$
 $Q_2 = \begin{bmatrix} 0.285 \\ 0.61 \end{bmatrix}$ $Q_3 = \begin{bmatrix} 0.884 \\ 0.21 \end{bmatrix}$

2.2: Tunnel-Diode Circuit - 4

Feng-Li Lian © 2005 NTUEE-NSA-Ch2B-19

• Example 2.3:

The Jacobian matrix:

$$\frac{\partial f}{\partial x} = \begin{bmatrix} -0.5h'(x_1) & 0.5\\ -0.2 & -0.3 \end{bmatrix}$$

• Evaluated at E.P. Q_1, Q_2, Q_3 :

$$A_1 = \begin{bmatrix} -3.598 & 0.5 \\ -0.2 & -0.3 \end{bmatrix}, \quad (-3.57, -0.33) \quad V_1 = \begin{bmatrix} -.99 & -0.15 \\ -0.06 & -0.99 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 1.82 & 0.5 \\ -0.2 & -0.3 \end{bmatrix}, \quad (1.77, -0.25) \qquad V_2 = \begin{bmatrix} 0.99 & -0.23 \\ -0.09 & 0.97 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} -1.427 & 0.5 \\ -0.2 & -0.3 \end{bmatrix}$$
, $(-1.33, -0.4)$ $V_3 = \begin{bmatrix} -0.98 & -0.43 \\ -0.19 & -0.89 \end{bmatrix}$

2.2: Tunnel-Diode Circuit - 5

Feng-Li Lian © 2005 NTUEE-NSA-Ch2B-20

ullet Q_1 is a stable node

 Q_2 is a saddle

 Q_3 is a stable node

 The two special trajectories, which approach Q₂, are the stable trajectories of the saddle. They form a curve that divides the plane into two halves.
 Which is called a separatrix.

 The separatrix partitions the plane into two regions of different qualitative behavior.

2.2: Tunnel-Diode Circuit - 7

- In an experimental setup, we shall observe one of the two steady-state operating points Q₁ or Q₃, depending on the initial capacitor voltage and inductor current.
- The equilibrium point at Q₂ is
 never observed in practice
 because the ever-present physical noise
 would cause the trajectories
 to diverge from Q₂
 even if it were possible to set up the
 exact initial conditions corresponding to Q₂.

points.

- The tunnel-diode circuit is referred as

 a bistable circuit,
 because it has two steady-state operating
- Used in computer memory, $Q_1 \rightarrow'' 0''$ $Q_3 \rightarrow'' 1''$
- 1.2 1 0.8 0.6 0.4 0.2 0 0 0 0.5 1 v_R
- Triggering from Q₁ to Q₃ or vice versa
 is achieved by a triggering signal of
 sufficiently amplitude and duration
 that allows the trajectory
 to move to the other side of the separatrix.

2.2: Pendulum Equation w/ Friction – 1

Feng-Li Lian © 2005 NTUEE-NSA-Ch2B-24

Figure 1.1: Pendulum.

Using Newton's Second Law, Write the equation of motion in the tangential direction:

$$ml\ddot{\theta} = -mq\sin\theta - kl\dot{\theta}$$

State model (let $x_1 = \theta, x_2 = \dot{\theta}$):

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\frac{g}{l}\sin x_1 - \frac{k}{m}x_2$$

Equilibrium points (let $\dot{x}_1 = \dot{x}_2 = 0$):

$$0 = x_2$$

$$0 = -\frac{g}{l}\sin x_1 - \frac{k}{m}x_2$$

Equilibrium points are $(n\pi,0), n=0,\pm 1,\pm 2,...$, or, physically, (0,0) and $(\pi,0)$.

Question? Which one is stable or unstable?

• Example 2.2:

State model:

$$\dot{x}_1 = x_2$$
 $\dot{x}_2 = -10\sin x_1 - x_2$

- (0,0): or $(0,0), (2\pi,0), (-2\pi,0)$, etc. a stable focus.
- $(\pi,0)$: or $(\pi,0),(-\pi,0)$, etc. a saddle.
- This picture is repeated periodically.
 Trajectories approach different E.P.,
 corresponding to # of full swings.

2.2: Pendulum Equation w/ Friction - 3

Feng-Li Lian © 2005 NTUEE-NSA-Ch2B-26

• Example 2.4:

The Jacobian matrix:

$$\frac{\partial f}{\partial x} = \begin{bmatrix} 0 & 1\\ -10\cos x_1 & -1 \end{bmatrix}$$

• Evaluated at E.P. $Q_1 = (0,0), Q_2 = (\pi,0)$:

$$A_1 = \begin{bmatrix} 0 & 1 \\ -10 & -1 \end{bmatrix}, \quad (-0.5 \pm j3.12)$$
 $A_2 = \begin{bmatrix} 0 & 1 \\ 10 & -1 \end{bmatrix}, \quad (2.7, -3.7)$

$$V_1 = \begin{bmatrix} 0.30 - j0.05 & 0.30 + j0.05 \\ 0.01 + j0.98 & 0.01 - j0.98 \end{bmatrix},$$

$$V_2 = \begin{bmatrix} 0.37 & -0.27 \\ 1 & 1 \end{bmatrix},$$

2.3: Qualitative Behavior Near E.P. - 1

Feng-Li Lian © 2005 NTUEE-NSA-Ch2B-28

- Phase portraits of Tunnel-Diode Circuit and Pendulum Equation show that the qualitative behavior in the vicinity of each E.P. looks just like those for linear systems.
- Tunnel-Diode circuit:

The trajectories near Q_1,Q_2,Q_3 are similar to those associated with a stable node, saddle, and stable node, respectively.

• Pendulum:

The trajectories near $(0,0),(\pi,0)$ are similar to those associated with a stable focus and saddle, respectively.

2.3: A Center

Feng-Li Lian © 2005 NTUEE-NSA-Ch2B-30

• Example 2.5:

$$\dot{x}_1 = -x_2 - \mu x_1 (x_1^2 + x_2^2)$$

$$\dot{x}_2 = x_1 - \mu x_2 (x_1^2 + x_2^2)$$

$$A = \left. \frac{\partial f}{\partial x} \right|_{0,0} = \left[\right.$$

- It has an E.P. at the origin.
 The linearized state equation at the origin
 - has eigenvalues $\pm j$.
 - \Rightarrow A center E.P.

 The qualitative behavior of the nonlinear system can be examinated by the new variables

- a stable focus when $\mu > 0$
- an unstable focus when $\mu < 0$