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2.3: Linearization at E.P. -1

e Consider the state model:

z1 = f1(z1,22)

o = fo(x1,22)

e f1, fo are continuously differentiable.

e E.P.: p=(p1,p2).
That is,
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2.3: Linearization at E.P. - 2

e Expand the RHS
into its Taylor series about p:
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2.3: Linearization at E.P. — 3 NTGSEE.'NéT.ChZB.s

o Letyy =x1 —p1,Y2 =22 —p2
analyze the trajectory near (p1,p2).

e New state equation:

Y1 =
Yo =
2.3: Linearization at E.P. — 4 N'fl'eSg-EL-iNLé?-thZ(I)B?g

e New state equation:

y = Ay
where
of1 Of
) a1l aip 35% 55%
a21 a g—ﬁ 2—3{3
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2.3: Jacobian Matrix — 1 NTUEE-NSA-Ch2B-7
of . : .
° % is called the Jacobian matrix of f(x)

A is the Jacobian matrix
evaluated at the E.P. p.

e If the origion of the linearized state egn is

(1) astable/unstable node with distinct eigen-

values,

(2) a stable/unstable focus, or

(3) a saddle point,
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e Then in a small neighborhood of the E.P.,
the trajectories of the nonlinear state egn
will behave like

(1) a stable/unstable node,

(2) a stable/unstable focus, or

(3) a saddle point.




2.1: Perturbed Linear System — Nonlinear System — 1

e How conclusive the linearization approach

is depends to a great extent on

how the various qualitative phase portraits

of a linear system persis
under perturbations.

e For example,
suppose A has distinct eigenvalues and
consider A + AA
AA: 2 x 2 real matrix

its elememts have arbitrarily small magni-

tudes.
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2.1: Perturbed Linear System — Nonlinear System — 2

e From the purterbation theory of matrices,

the eigenvalues of a matrix
depend continuously on its parameters.

e That is,
given an ¢ > 0,
exist a corresponding 6 > 0
the magnitude of the perturbation
in each element of A is less than 9,

the eigenvalues of ( A+ AA ) will lie in B,
Be = open discs of radius € centered at the

the eigenvalues of A.
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2.1: Perturbed Linear System — Nonlinear System — 3 o San 20

e Hence, after arbitrarily small perturbations,
eigenvalues of A
in open RHP remain in open RHP
in open LHP remain in open LHP

e However, when perturbated,
eigenvalues on the imaginary axis might
go into either the RHP or LHP.

2.1: Perturbed Linear System — Nonlinear System — 4 T a0 200

o Ifthe EP x =0 of z = Ax is
a node, focus, or saddle point,
then the EP = 0 of
r = (A+ AA)z will be of the same type
for sufficiently small perturbations.

e It is quite different
if the EP is a center.

e The node, focus, and saddle EPs are said
to be structurally stable,
while the center EP is not.
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2.1: Qualitative Behavior of Nonlinear Systems NTUEE-NSA.Ch2B.13
, o Change of Coordinate
Linearization — as—1
z=M "x
at the E.P. Jn = ﬂf—lAﬂ[
e Nonlinear Systems: — e Linear Systems: — e In z-coordinate:
z = f(x) T = Az z = Jrz
o <2
» L1 * 21
2 z2(v2)

A

z1(v1)
L
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e For linear systems,
— det A#0
(A has no zero eigenvalues),
x = Ax has an isolated equilibrium point
at x = 0.

— det A = 0, the system has a continuum
of equilibrium points.

— There are the only possible patterns.




2.2: Multiple Equilibria — 2
e For nonlinear systems,
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— it can have multiple isolated equilibrium

points.

e the tunnel-diode circuit

e the pendulum euqation

2.2: Tunnel-Diode Circuit— 1
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Figure 1.2: (a) Tunnel-diode circuit; (b) Tunnel-diode vg—ig characteristic.

Kirchhoff’'s current/voltage law:

0 (KCL)
0 (KVL)

ic+ir —if
vo—FE+ Rij, +v;, =

State model:
- state: 1 = v,z = 47, and

- input: v=F,
. dv di
- o = CO%f, v = Ligh

. 1
Ty = 5[—?‘b($1)+ﬂ?2]

%[—:r:l — Rap + u]

)
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Figure 1.3: Equilibrium points of the tunnel-diode circuit.

Equilibrium points:

0 =
0 =

—h(z1) + 22
—x1 — Rxp 4+ u

That is, the roots of:
1

h(z1) = 1

x| &

—
R




2.2: Tunnel-Diode Circuit — 2
e Example 2.1:

State Model:
1
i1 = _[-h(z1) + 2]
_ 1
Ty = Z[—xl — Rxo + u]

e Assume that the circuit parameters are:

u=12V,R =15k, C =2pF, L = 5uH

e time t in nanoseconds
xg,h(:cl) in MA
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2.2: Tunnel-Diode Circuit— 3
e State Model:

1 = 0.5[-h(z1) + 2]

2y = 0.2[-z1 — 1.525 4+ 1.2]
and
h(z1) = 17.76z1 — 103.7927 + 229.62z%

—226.3127 + 83.72x%

e Equilibrium Points: (let 1 = zo = 0)

0.285 ]

0.063 B
Q2 = [ 0.61

@1= [ 0.758

Q3 =
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2.2: Tunnel-Diode Circuit—4
¢ Example 2.3:

The Jacobian matrix:

or -0.2

of _ [ —0.5h (1)

0.5
-0.3

e Evaluated at E.P. @1,Q2, Q3:

A = { ~3.598 0.5

-02 -0.3

A {1.82 0.5
27 -02 -03 |

—-1.427 0.5
-02 -0.3

. (—3.57,—-0.33) V1=[_O_06
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—~.99 -0.15 ]

—0.99

v — | 099 —0.23
27| -0.09 0.97

—0.98

V3 = [ —0.19

—0.43
—0.89

2.2: Tunnel-Diode Circuit—5

e ()1 is a stable node
@o is a saddle
@3 is a stable node

iy,
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2.2: Tunnel-Diode Circuit — 6 o a2 2008
e T he two special trajectories,

which approach @»,

are the stable trajectories of the saddle.

They form a curve that divides the plane

into two halves.

Which is called a separatrix.

e T he separatrix partitions

the plane into two regions o~ <

of different qualitative i L >\ |
-2 separatrix: - i bl
behavior. T e Y @
2.2: Tunnel-Diode Circuit — 7 A iadinaes

e In an experimental setup,
we shall observe one of the two
steady-state operating points ?1 or @3,
depending on the initial capacitor voltage
and inductor current.

e The equilibrium point at Q> is
never observed in practice
because the ever-present physical noise
would cause the trajectories
to diverge from Q>
even if it were possible to set up the

exact initial conditions corresponding to Q).
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e T he tunnel-diode circuit is refered as
a bistable circuit,

because it has two steady-state operating
i
R

points.
1.2
-
: 0.8
e Used in computer memory, 06
Q1 o 0.4

Q3 —"1" 0.2
0

e Triggering from @1 to Q3 or vice versa
is achieved by a triggering signal of
sufficiently amplitude and duration
that allows the trajectory
to move to the other side of the separatrix.
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Using Newton's Second Law,
Write the equation of motion
/ in the tangential direction:

\ 6 mlf = —mgsin6 — klo

State model (let z1 = 0,25 = 0):

mg .
T = o
Figure 1.1: Pendulum. By = —Esinml B £T2
l m
Equilibrium points (let &7 = 25 = 0):
(m,0)
0 = x»
k
0 = —gSinﬂ?l——.’L‘Q
l m
Equilibrium points are (nw,0),n = 0,+1,+2, ...,
or, physically, (0,0) and (,0).
(0,0)

Question? Which one is stable or unstable?




2.2: Pendulum Equation w/ Friction — 2

Example 2.2:
State model:

r1 = X

rp = —10sinx1 — o

(0,0): or (0,0),(2m,0),(—2m,0), etc.

a stable focus.

(mw,0): or (w,0),(—m,0), etc.
a saddle.

This picture is repeated periodically.

Trajectories approach different E.P.,
corresponding to # of full swings.
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2.2: Pendulum Equation w/ Friction — 3

e Evaluated at E.P. Q1 = (0,0), Q> = (m,0):

Example 2.4:
The Jacobian matrix:

8f_[ 0 1

9z | —10cosz; -1

Alz[_cl’o _11 . (—0.5+33.12)
0 1|
Ay = [ 10 —1 | (2.7,-3.7)
v | 0.30 — j0.05 0.30 + j0.05
I = 10014098 0.01-;0.98
[ 0.37 —0.27
Vo = 1 1 ],
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2.2: Pendulum Equation w/ Friction — 4
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2.3: Qualitative Behavior Near E.P. — 1

e Phase portraits of Tunnel-Diode Circuit and
Pendulum Equation show that
the qualitative behavior
in the vicinity of each E.P.
looks just like those for linear systems.

e Tunnel-Diode circuit:
The trajectories near QQ1,Q2, Q3
are similar to
those associated with
a stable node, saddle, and stable node,
respectively.

Feng-Li Lian © 2005
NTUEE-NSA-Ch2B-28




. . . F -Li Lian © 2005
2.3: Qualitative Behavior Near E.P. — 2 R

e Pendulum:
The trajectories near (0,0), (m,0)
are similar to those associated with
a stable focus and saddle, respectively.
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e Example 2.5:

i1 = —xo — pxy (x5 + x3)
io = x1 — pxo(x? + x3)
0
A = —f —
0x10,0

e It has an E.P. at the origin.
The linearized state equation at the origin
has eigenvalues +j.
= A center E.P.
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e T he qualitative behavior of
the nonlinear system

can be examinated by the new variables

- a stable focus when p >0

- an unstable focus when p < 0




