Appendix B: Contraction Mapping

Outline

- Appendix B: Contraction Mapping
 - Vector space
 - Normed linear space
 - Banach space
 - Contraction mapping theorem
B: Linear Vector Spaces – 1 (Appendix B; page 653)

- A **linear vector space** \mathbf{X} over the field \mathbb{R}
 is a set of elements x, y, z, \ldots, called **vectors**, such that for **any two vectors** $x, y \in \mathbf{X}$

- the **sum** $x + y$ is defined, and

 -
 -
 -
 -

- and there is **zero vector** $0 \in \mathbf{X}$

 - such that

B: Linear Vector Spaces – 2

- For any numbers $\alpha, \beta \in \mathbb{R}$, the **scalar multiplication** αx is defined, and

 -
 -
 -
 -

 - and
B: Normed Linear Spaces – 1

- A **linear space** \mathcal{X} is a **normed linear space** if, to each vector $x \in \mathcal{X}$, there is a **real-valued norm** $\|x\|$ that satisfies:

 - $
 \quad$

- **Convergence:**

 - Assume that \mathcal{X} is a **normed linear space**.

 - A sequence $\{x_k\} \in \mathcal{X}$ **converges to** $x \in \mathcal{X}$ if

- **Closed Set:**

 - A set $S \subset \mathcal{X}$ is **closed** iff
Cauchy Sequence:

A sequence \(\{x_k\} \in \chi \) is said to be a Cauchy sequence if

Banach Space:

A normed linear space \(\chi \) is complete if

A complete normed linear space is a space.

Theorem B.1 (Contraction Mapping):

Let \(S \) be a closed subset of a Banach space \(\chi \) and let \(T \) be a mapping that maps \(S \) into \(S \).

Suppose that
• **THEN**

 − there exists a **unique** vector $x^* \in S$ satisfying

 − x^* can be obtained by the method of **successive approximation**, starting from any **arbitrary** initial vector in S.

• **Proof:**

• Select an arbitrary $x_1 \in S$ and define the sequence $\{x_k\}$

• Since T maps S into S,

• Show that $\{x_k\}$ is Cauchy;

• Show that $x^* = T(x^*)$;

• Show that x^* is the unique fixed point of T in S.
• Show that \(\{x_k\} \) is Cauchy.
• Show that $x^* = T(x^*)$.

• Show that x^* is the unique fixed point of T in S.

• T maps S into S.

• T is a contraction mapping over S.