Comparison Functions
(Lyapunov Stability)

Feng-Li Lian
NTU-EE
Sep05 – Jan06

Outline

- Introduction (L9)
- Autonomous Systems (4.1 L9)
 - Basic stability definitions
 - Lyapunov’s stability theorems
 - Variable gradient method
 - Region of attraction
 - Instability
- The Invariance Principle (4.2, L10)
 - LaSalle’s theorem
- Linear Systems and Linearization (4.3, L11)
- Comparison Functions (4.4, L12)
- Non-autonomous Systems (4.5, L13)
- Linear Time-Varying Systems & Linearization (4.6, L14)
- Converse Theorems (4.7, L15)
- Boundedness & Ultimate Boundedness (4.8, L16)
- Input-to-State Stability (4.9, L17)
Comparison Functions

- From autonomous to non-autonomous

- The sol of the nonautonomous syst
 \[\dot{x} = f(t, x) \]
 starting at \(x(t_0) = x_0 \),
 depends on both \(t \) and \(t_0 \).

- Should refine the definitions
 to let stability hold
 uniformly in the initial time \(t_0 \).

- Need some special comparison functions.

Definition 4.2: Class K Functions

- \(\alpha : [0, a) \to [0, \infty) \) is a continuous function.

- **IF** \(\alpha(\cdot) \) is strictly increasing and \(\alpha(0) = 0 \),
 THEN it is said to belong to class \(\mathcal{K} \)

- **IF** \(a = \infty \) and \(\alpha(r) \to \infty \) as \(r \to \infty \),
 THEN it is said to belong to class \(\mathcal{K}_\infty \)
Definition 4.3: Class KL Functions

- $\beta : [0, a) \times [0, \infty) \rightarrow [0, \infty)$ is a **continuous** function.

- **IF**
 1. For each fixed s, the mapping $\beta(r, s)$ belongs to class \mathcal{K} w.r.t. r and,
 2. For each fixed r, the mapping $\beta(r, s)$ is decreasing w.r.t. s and $\beta(r, s) \rightarrow 0$ as $s \rightarrow \infty$

- **THEN** it is said to belong to class \mathcal{KL}

Example 4.16

- $\alpha(r) = \tan^{-1}(r)$

- $\alpha(r) = r^c, \quad c > 0$

- $\alpha(r) = \min\{r, r^2\}$
Example 4.16

- $\beta(r, s) = re^{-s}$, $c > 0$

- $\beta(r, s) = r/(ksr + 1)$, $k > 0$

Lemma 4.2

- α_1 and α_2 be class \mathcal{K} functions on $[0, a)$,
 α_3 and α_4 be class \mathcal{K}_∞ functions
 and β be a class \mathcal{KL} function.

- Denote the inverse of α_i by α_i^{-1}.

- THEN
 - α_1^{-1} is defined on $[0, \alpha_1(a))$ and belongs to class \mathcal{K}
 - α_3^{-1} is defined on $[0, \infty)$ and belongs to class \mathcal{K}_∞.
 - $\alpha_1 \circ \alpha_2$ belongs to class \mathcal{K}
 - $\alpha_3 \circ \alpha_4$ belongs to class \mathcal{K}_∞
 - $\sigma(r, s) = \alpha_1(\beta(\alpha_2(r), s))$ belongs to class \mathcal{KL}.
Lemma 4.3

- Let $V : D \to R$ be a continuous P.D. function defined on a domain $D \subset \mathbb{R}^n$ that contains the origin.

- Let $B_r \subset D$ for some $r > 0$.

- Then, there exist class \mathcal{K} functions α_1, α_2, defined on $[0, r]$, such that

$$\alpha_1(||x||) \leq V(x) \leq \alpha_2(||x||)$$

for all $x \in B_r$.

Lemma 4.3

- If $D = \mathbb{R}^n$,

 α_1, α_2 will be defined on $[0, \infty)$ and the foregoing inequality will hold $\forall x \in \mathbb{R}^n$.

- Moreover, if $V(x)$ is radially unbounded, then α_1, α_2 can be chosen to belong to class \mathcal{K}_∞.

- If $V(x) = x^T P x$,

 $$\lambda_{\min}(P)||x||_2^2 \leq x^T P x \leq \lambda_{\max}(P)||x||_2^2$$
Lemma 4.4

- Consider the scalar autonomous D.E.
 \[\dot{y} = -\alpha(y), \quad y(t_0) = y_0 \]
 where \(\alpha(\cdot)\) is a local Lipschitz class \(K\) function defined on \([0, a)\).

- For all \(0 \leq y_0 < a\),
 it has a unique solution \(y(t) \forall t \geq t_0\).

- Moreover, \(y(t) = \sigma(y_0, t - t_0)\)
 where \(\sigma\) is a class \(KL\) function defined on \([0, a) \times [0, \infty)\).

Lemma 4.4: Examples

- If \(\dot{y} = -ky\), \(k > 0\),

- If \(\dot{y} = -ky^2\), \(k > 0\),
Comparison Funs & Lyapunov Analysis

- For the proof of Thm 4.1:
 - Want to choose β, δ
 such that $B_\delta \subset \Omega_\beta \subset B_r$
 - So, for a P.D. function $V(x)$,
 - Because

- Then

Also, want to show that

when $\dot{V}(x)$ is N.D., $x(t) \to 0$ as $t \to \infty$.

- Using Lemma 4.3,
 - there is a class \mathcal{K} function α_3
 such that $\dot{V}(x) \leq -\alpha_3(||x||)$
 - Hence, $\dot{V} \leq -\alpha_3(\alpha_2^{-1}(V))$

- Comparison lemma (Lemma 3.4) shows that
 - $V(x(t))$ is bounded by the solution of
 $\dot{y} = -\alpha_3(\alpha_2^{-1}(y)), \quad y(0) = V(x(0))$
Comparison Funs & Lyapunov Analysis

- **Lemma 4.2** shows that
 \(\alpha_3 \circ \alpha_2^{-1} \) is a class \(\mathcal{K} \) function.

- **Lemma 4.4** shows that
 the solution is \(y(t) = \beta(y(0), t) \),
 where \(\beta \) is a class \(\mathcal{KL} \) function.

- Consequently, \(V(x(t)) \) satisfies
 \[V(x(t)) \leq \beta(V(x(0)), t), \]
 which shows that \(V(x(t)) \to 0 \) as \(t \to \infty \).

Estimates of \(x(t) \)

- \(V(x(t)) \leq V(x(0)) \) implies
 \[\alpha_1(||x(t)||) \leq V(x(t)) \leq V(x(0)) \leq \alpha_2(||x(0)||) \]

- Hence, \(||x(t)|| \leq \alpha_1^{-1}(\alpha_2(||x(0)||)) \),
 where \(\alpha_1^{-1} \circ \alpha_2 \) is a class \(\mathcal{K} \) function.

- Similarly, \(V(x(t)) \leq \beta(V(x(0)), t) \) implies
 \[\alpha_1(||x(t)||) \leq V(x(t)) \leq \beta(V(x(0)), t) \leq \beta(\alpha_2(||x(0)||), t) \]

- Therefore, \(||x(t)|| \leq \alpha_1^{-1}(\beta(\alpha_2(||x(0)||), t))) \),
 where \(\alpha_1^{-1}(\beta(\alpha_2(r), t)) \) is a class \(\mathcal{KL} \) func.