SPRING 2010

即時控制系統設計 Design of Real-Time Control Systems

Lecture 01 Syllabus

Feng-Li Lian NTU-EE Feb10 – Jun10

Syllabus

Lecture Information:

- Num: 921 U6200
- Lecture Time: Tue 9:10-12:00noon
- Discussion Time:
- Room: MD-303
- · Office Hours: by e-mail appointment
- http://cc.ee.ntu.edu.tw/~fengli/Teaching/RTCS

Instructor:

- 連豊力(Feng-Li Lian)
- Office: MD717
- Email: fengli@ntu.edu.tw
- Phone: 02-3366-3606

Grading:

- Homework
 - wom.
- Exam
- Project
- (30%) (30%)
- (40%)

References:

- Feedback Control of Dynamic Systems, (Chap 8)
- 4th Ed., by Franklin, Powell, Emami-Naeini
- Computer-Controlled Systems: Theory & Design, 3rd. Ed., by Amstron & Wittenmark (1997)
- Digital Control using Digital Signal Processing, by Nekoogar & Moriarty (1999)
- Real-Time Systems, by Krishna & Shin (1997)
- Real-Time Systems, by Liu (2000)
- Real-Time Computer Control:
 An Introduction, 2nd Ed.,
 by Bennett (1994)
- Digital Control Using DSP, by Nekoogar & Moriarty (1998)
- Control in an Information Rich World, Report of the Panel on Future Directions in Control, Dynamics, and Systems. http://www.cds.caltech.edu/~murray/cdspanel/ report/cdspanel-15auq02.pdf

2/20/10

Course Topics

- Introduction + Project (2 wks)
 - 01. Svllabus
 - 02. A Brief Introduction to RTCS
 - 03. A Tutorial Paper on RTCS
- Computer Control Systems: Single Centralized Control (5~6 wks)
 - 11. Real-Time Operating Systems
 - 12. Characterizing Real-Time Systems
 - 13. Task Assignment & Scheduling
- Digital Control Systems (4 wks)
 - 21. Fundamentals of Digital Control
 - Sampling
 - 23. Dynamic Analysis of Digital Control Systems
 - 24. Controller Design of Digital Control Systems
 - 25. Techniques for Enhancing the Performance of Discretized Controllers
 - 26. Timing Analysis for Control Applications
- Networked Control Systems: Multiple Distributed Control (6~7 wks)
 - 31. Real-Time Communications for Control Applications
 - 32. Industrial Networks for Control & Automation
 - 33. Introduction to Networked Control Systems
 - 34. Networked Control Methodology
 - 35. Scheduling Sampling Times of Networked Control Systems
 - 36. Design Consideration for a Networked Robot Arm

Course Schedule

- 2/28 (Sun): HW1: Research plan (.doc)
 - About your current research, including title, your information, date, description, and a list of papers you just read
- 3/07 (Sun): HW 2: Paper survey (.doc)
- 3/14 (Sun): HW 3: Define "real-time" (.doc)
- 4/06 (Tue): HW 4: Task Scheduling
- 4/18 (Sun): One-page proposal (.doc)
 - Including title, team members, affiliation, etc., and several paragraphs describing your ideas, as many references as possible
- 4/27 (Tue): HW 5: Digital control (hand writing)
- 5/19 (Sun): HW 6: Discretized controller (Matlab)
- 5/16 (Sun): Progress report (.doc) & presentation (.ppt)
 - More than 3 PPT pages including preliminary results and current status
- 5/18 (Tue): Midterm Exam (task scheduling + digital control)
- 6/15 (Tue): Project presentation (.ppt)
- 6/25 (Fri): Project report (.doc) by 5pm
 - Related electronic files including documentation and presentation files, etc.
 - Please submit one zip file of all the electronic files by e-mail or put the zip file at some network directory such as at www.miroko.tw and e-mail the link.

2/20/10

Project + Report

Project and Report

Project + Report

Feng-Li Lian © 2010 NTUEE-RTCS01-Intro-6

- Team members:
 - About 2-4 students
 - Auditing/Visiting students are encouraged to join a team
- Topic/Title:
 - Theoretical study
 - Study any real-time control theory and derive possible new results
 - Simulation study
 - Detailed and thorough simulation study of control applications
 - Software package development of real-time control systems
 - Develop toolkits similar to CCSDemo and Control Tutorial

Project + Report

Feng-Li Lian © 2010 NTUEE-RTCS01-Intro-7

- "Economy" Class:
 - 1 student
 - Simulation study of one typical control application
 - Such as flight, DVD/HD, motor, robot, etc.
 - Should include modeling, (timing) analysis, design, and simulation validation
- "Business" Class:
 - 1 or 2-4 students
 - >= 10 real-time-control-related technical papers
 - · Could only focus on one or two of the following areas:
 - Modeling, (system or timing) analysis, design, etc.
 - Strongly suggest to re-do the simulation results in the survey papers
- "First" Class:
 - (Possibly good/nice) theoretical results
 - Software package development

Project + Report

Feng-Li Lian © 2010 NTUEE-RTCS01-Intro-8

- Grading (40%):
 - Report (30% from group performance):
 - Writing style & contents (10%)
 - > Title
 - » Does "title" actually and precisely reflect the content of this report?
 - > Introduction
 - » Does it provide enough background information about this study?
 - » Are references properly cited?
 - > Main results, including theoretical derivation or simulation study
 - » Do it explicitly and concisely describe the results?
 - » Are they good or solid enough to give readers any useful information?
 - > Discussions, summary/conclusions
 - » Does it conclude anything and provide good suggestion for the future?
 - > References
 - » Does it list enough cited papers?
 - Technical content (20%)
 - > The contents on main result and discussions

06/02/03

Project + Report Feng-Li Lian © 2010 NTUEE-RTCS01-Intro-9

- Grading (40%):
 - Presentation (10% from individual performance):
 - Evaluation by instructor (5%)
 - Evaluation by other students (5%)
 - Suggested Format:
 - > Each group should use PowerPoint to give a formal presentation.
 - > Every group member should provide at least 7-min talk.
 - > After everyone's presentation, we will have Question-&-Answer session!

06/02/03

05/06/04

Thesis/Report/Paper

Feng-Li Lian © 2010 NTUEE-RTCS01-Intro-10

- Thesis:
 - Introduction:
 - > Motivation
 - > Literature Survey of Related Researches
 - > Contribution of the Thesis/Report/Paper
 - > Organization/Outline of the Thesis/Report/Paper
 - Mathematical Preliminary, Background, or Fundamental
 - » Discuss the background or fundamental information/materials related the research topics discussed in the Thesis/Report/Paper
 - Problem Formulation
 - » Formulate the problem discussed in the Thesis/Report/Paper mathematically, theoretically, academically, etc.
 - Analysis Results
 - Design Results
 - Simulation Study & Experimental Study
 - Conclusions/Summary and Future Works
 - Bibliography/References

05/06/04

Directory and File

Feng-Li Lian © 2010 NTUEE-RTCS01-Intro-11

- /R92921001/Lecture/
 - *.pdf, *.html, *.doc, *.m, etc.
- /R92921001/Lecture/Referecne/
 - *.pdf, *.html, *.doc, *.m, etc.
- /R92921001/Homework/HW1/*.doc, *.m, *.pdf, etc.
 - /R92921001/Homework/HW2/, .../HW3/, .../HW4/, etc.
- /R92921001/Project/
 - 0225Prelim.doc
 - 0414Proposal.doc
 - 0519SlideMiterm.ppt
 - 0616SlideFinal.ppt
 - 0623FinalReport.doc
- /R92921001/Project/Reference/
 - 01ShinChou94RealTiime.pdf,
 - 02Sastry95TimeDelay.pdf, etc.
- /R92921001/Network/
 - 0512Slide.ppt
 - *.pdf, *.html, *.doc, etc.

Homeworks

Homeworks

Homework 1

- By 11pm, 2/28/10 (Sunday) by e-mail to fengli@ntu.edu.tw
- Use MS-Word to edit your Research Plan
- Content:
 - Homework 1: Research Plan
 - Title of your research topics
 - Name:
 - Registration Number:
 - Department, University, etc.
 - Date
 - A brief description about your research with several paragraphs
 - Describe why you want/need to know real-time control systems
 - Describe what your expectation from taking this course is
 - Write down any further suggestions, ideas, thoughts for the instructor

Homework 2

Feng-Li Lian © 2010 NTUEE-RTCS01-Intro-14

- By 11pm, 3/7/09 (Sunday) by e-mail to fengli@ntu.edu.tw
- Use MS-Word to edit your paper survey
- Content:
 - Homework 2: Paper Survey
 - Name:
 - Registration Number:
 - Department, University, etc.
 - Date
 - Go to some searchable database such as IEE/IEEE, EI etc. to search for related research papers.
 - Use keywords such as "real time control" + "your research topics" etc.
 - List 10 of them which interest you most.
 - Read the abstracts of the first 3 papers.
 - Summarize their ideas
 - Also, please estimate the time (in minute) you spend on each of the following:
 - 1. keyword searching; 2. abstract reading; 3. homework writing

Homework 3 NTUEE-RTCS01-Intro-15

- By 11pm, 3/21/09 (Sunday) by e-mail to fengli@ntu.edu.tw
- Use MS-Word to edit your document
- Content:
 - Homework 3: Define "real-time"
 - Name:
 - Registration Number:
 - Department, University, etc.
 - Date
 - Re-read the three or more papers you just obtained.
 - Look for the definition of "real-time".
 - Identify how the authors define "real-time" or "real-time control" in the paper
 - Re-think again if the title or content without "real-time".
 - Are the papers classified as real-time-related papers?

Homework 4

Feng-Li Lian © 2010

Feng-Li Lian © 2010 NTUEE-RTCS01-Intro-16

- Due on 4/6/09 (Tuesday) in class
- Content:
 - Homework 4: Task scheduling
 - Name:
 - Registration Number:
 - Department, University, etc.
 - Date:

- Due on 4/20/08 (Tuesday) in class
- Content:
 - Homework 5: Analysis and Design of Digital Control Systems
 - Name:
 - Registration Number:
 - · Department, University, etc.
 - Date:

Homework 6

Feng-Li Lian © 2010 NTUEE-RTCS01-Intro-18

- By 11pm, 5/2/09 (Sunday) by e-mail to fengli@ntu.edu.tw
- Content
 - Homework 6 (Discretized Controller)
 - Perform your simulation study of the four examples discussed in the paper by Raviv & Djaja, 1999
 - Submit R93921XXX.m of Matlab program
 - Name, Registration Number, Department, University, etc.
 - Date
 - Submit R93921XXX.doc of Word file
 - Name, Registration Number, Department, University, etc.
 - Date:
 - From Matlab/Figure, use Edit/Copy Figure to copy every figure generated by the Matlab program
 - When copying figures, set up the following options:
 - > Edit/Copy Options
 - » Clipboard format
- -> Preserve information
- » Figure background color
- -> Transparent background

» Size

- -> Match figure screen size
- Discuss in detail how do you set up your simulation
- Provide any possible description or explanation for each figure
- Further discussions if possible

Ongoing Projects

Ongoing Projects

Ongoing Project: Smart Driving

2/20/10

Roadside Unit (RSU)

Ongoing Project: Car Following

- 跟車控制模型
 - 相對距離運動方程
 - 驅動器動態方程
 - 行車阻力、摩擦力
- 驅動器控制
 - 方向盤
 - 油門開度

■ 目標

- 跟車速度: 120Km/Hr
- 速度誤差: ±5Km/Hr
- 縱向跟車距離: 80m
- 横向跟車誤差: ±0.5m

2/20/10

Ongoing Project: Wireless Sensing and Control

Computer Aided Software Tools

具有生理回饋駕駛模擬平台

Computer-Aided Software Tools

Books on Real-Time Control Systems

Books on Real-Time Control Systems

Real-Time Systems

Feng-Li Lian © 2010 NTUEE-RTCS01-Intro-29

- Real-Time Systems, 1997
- Krishna and Shin, McGraw-Hill
- 1. Introduction
 - 2. Characterizing Real-Time Systems and **Tasks**
 - 3. Task Assignment and Scheduling
 - 4. Programming Languages and Tools
 - Real-Time Databases
 - 6. Real-Time Communication
 - 7. Fault-Tolerance Techniques
 - Reliability Evaluation Techniques
 - 9. Clock Synchronization

Real-Time Systems

Real-Time Systems, 2000

Jane W. S. Liu. Prentice Hall

1. Typical Real-Time Applications.

- 2. Hard Versus Soft Real-Time Systems.
- 3. A Reference Model of Real-Time Systems.
- Commonly Used Approaches to Hard Real-Time Scheduling.
- 5. Clock-Driven Scheduling.
- 6. Priority-Driven Scheduling of Periodic
- 7. Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems.
- 8. Resources and Resource Access Control.
- 9. Multiprocessor Scheduling and Resource Access Control.
- 10. Scheduling Flexible Computations and Tasks with Temporal Distance Constraints.
- 11. Real-Time Communications.
- 12. Operating Systems.

Real-Time Computer Control: An Introduction

Feng-Li Lian © 2010 NTUEE-RTCS01-Intro-31

- Real-Time Computer Control: An Introduction, 2nd, 1994
- S. Bennett, Prentice Hall

- 1. Introduction to Real-time Systems
- 2. Concepts of Computer Control
- 3. Computer Hardware Requirements for Real-time Applications
- 4. DDC Algorithms and Their Implementation
- 5. Languages for Real-time Applications
- 6. Operating Systems
- 7. Design of Real-time Systems General Introduction
- 8. Real-time System Development Methodologies - 1
- 9. Real-time System Development Methodologies - 2
- 10. Design Analysis
- 11. Dependability, Fault Detection and Fault **Tolerance**

Digital Control Using Digital Signal Processing

Feng-Li Lian © 2010 NTUEE-RTCS01-Intro-32

Feng-Li Lian © 2010

NTUEE-RTCS01-Intro-30

- Digital Control Using Digital Signal Processing, 1998
- Nekoogar & Moriarty, Prentice Hall
- 1. Introduction to Digital Control Using digital signal processing
- 2. Mathematical models of discrete systems
- 3. Analysis of discrete systems
- 4. Design of digital control systems
- 5. DSPs in control systems
- 6. Modern design techniques and their applications

- A. The MATRIX[subscript x] and MATLAB Design and Analysis Software
- B. dSPACE
- C. C Tables of Transforms
- D. D Partial-Fraction Expansion Method
- E. Matrix Analysis
- F. Motion Controller Boards
- G. Sample DSP Programs
- H. Computer Architecture

