SPRING 2010

即時控制系統設計 Design of Real-Time Control Systems

Lecture 11
Real-Time Operating Systems

Feng-Li Lian NTU-EE Feb10 – Jun10 ■ Real-Time Control Systems

• Controlled by one Computer Processor

- Centralized control systems

- Real-time operating systems

• Controlled by one Communication Medium

- Distributed control systems

- Real-time communications

Centralized Control System

Distributed Control System

04/12/03

Outline

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-3

- Structure of Real-Time Control System
- Operating Systems
- Computer Control Systems
- Real-Time Computing
- Real-Time Operating Systems
- Task/Message/Packet Classification
- Hardware Requirements for Real-Time Applications

Outline

Feng-Li Lian © 2010
NTUEE-RTCS11-RTOS-10

Structure of Real-Time Control System

Operating Systems

- Operating Systems
- Computer Control Systems
- Real-Time Computing
- Real-Time Operating Systems
- Task/Message/Packet Classification
- Hardware Requirements for Real-Time Applications

04/07/03

Operating Systems

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-11

04/11/03

- Operating Systems (OS)
 - An operating system for a given computer converts the hardware of the system into a virtual machine with characteristics defined by the operating system
 - Operating systems are developed to support both real-time systems and multi-access on-line systems
 - General purpose OS
 - > A monolithic monitor
 - Minimal OS
 - > With a minimal kernel or nucleus
 - > For small, embedded applications

Bennett 94

Operating Systems

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-17

Real-Time Multi-Tasking Operating Systems

- Support resource sharing & timing requirements
- Functions:
 - Task management:
 - > Allocation of memory & processor time (scheduling) to tasks
 - Memory management:
 - > Control of memory allocation
 - Resource control:
 - > Control of all shared resources other than memory & CPU time
 - Inter-task communication & synchronization:
 - > Provide safe communication between tasks
 - > Enable tasks to synchronize their tasks
- Standard Features:
 - For disk files, basic input/output device drivers, utility programs

Bennett 94 04/09/03

Outline

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-19

- Structure of Real-Time Control System
- Operating Systems
- Computer Control Systems
- Real-Time Computing
- Real-Time Operating Systems
- Task/Message/Packet Classification
- Hardware Requirements for Real-Time Applications

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-25

- Structure of Real-Time Control System
- Operating Systems
- Computer Control Systems
- Real-Time Computing
- Real-Time Operating Systems
- Task/Message/Packet Classification
- Hardware Requirements for Real-Time Applications

04/07/03

Real-Time Computing

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-26

Three major components:

- Time:
 - Tasks must be assigned, scheduled, & completed before the deadline
 - Messages are required to be sent & received in a timely manner
 - The correctness of a computation depends not only on the logical correctness but also on the time at which the results are produced
- Reliability:
 - Failure of a real-time system could cause an economical disaster or loss of human lives
- Environment:
 - Where a computer operates

Shin & Ramanathan 94 05/07/03

Real-Time Computing

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-27

- Key features:
 - A real-time application:
 - Is usually comprised of a set of cooperating tasks
 - · The tasks:
 - Invoked/activated at regular intervals
 - Have deadlines
 - In each invocation, a task
 - Senses the state of the system,
 - Performs certain computation
 - Sends command to change and/or display the state of system
 - · e.g., an automobile application

Real-Time Computing

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-28

- For example:
 - ABS: an automobile application:
 - A task may sense the pressure from the brake pedal and the speed of the individual wheels,
 - Perform computation to determine if a wheel is locked, and
 - Activate antilock braking actions
 by changing the position of the valves
 - Engine control: An aircraft-control application:
 - A task may monitor the current position of the throttle,
 - Perform computation based on the sensed position, and
 - Change thrust of engine by altering the fuel injected to it

Shin & Ramanathan 94 05/07/03

Shin & Ramanathan 94

Real-Time Computing: Hard, Firm & Soft Real-Time Systems Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-29

- Hard Real-Time Systems:
 - Consequences of not meeting deadline is catastrophic
 - e.g., aircraft, nuclear reactors, chemical power plants, etc.
- Firm Real-Time Systems:
 - Result cease to useful as soon as deadline expires, but consequences of not meeting deadline not sever
 - e.g., transactions in a database system
- Soft Real-Time Systems:
 - Utility of results decreases over time after deadline expires
 - e.g., multimedia, temperature control, etc.

Shin & Ramanathan 94, Krishna & Shin 97

05/07/03

Real-Time Computing: Deadlines

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-30

- Where do the deadlines come from?
- How does one know whether a deadline is hard, firm or soft?
- The deadlines come from applications
 - Automobile
 - Air-defense system
 - ATM, multimedia, temperature control, etc.

Shin & Ramanathan 94 05/07/03

Real-Time Computing: Deadlines

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-31

Predictability:

- 100% guarantee
 - Need to know exact characteristics of all task a priori
 - Periodic tasks with hard deadlines
- Probabilistic guarantee
 - A certain fraction of tasks guaranteed to meet constraints
 - A given task has a certain probability of meeting constraints
- Run-time deterministic guarantee
 - When a task is activated, the system determines whether or not the task's constraints can be satisfied without jeopardizing the guarantees provided to other tasks
 - If YES, provide 100% guarantee
 - If NO, reject the task
 - Dynamical arriving aperiodic tasks or dynamic load sharing

Outline

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-32

- Structure of Real-Time Control System
- Operating Systems
- Computer Control Systems
- Real-Time Computing
- Real-Time Operating Systems
- Task/Message/Packet Classification
- Hardware Requirements for Real-Time Applications

Shin & Ramanathan 94 05/07/03

Real-Time Operating Systems

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-33

■ Real-Time Operating Systems

- 4 main functions:
 - Process management and synchronization
 - Memory management
 - Inter-process communication (IPC)
 - Input and Output (I/O)
- Must stress predictability and support real-time constraints
- 3 general categories of RTOS:
 - Small proprietary (homegrown & commercial) kernels
 - RT extensions to UNIX and others
 - Research kernels

Ramanritham & Stankovic 94. Shin & Ramanathan 94

04/09/03

Real-Time Operating Systems

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-34

Proprietary Kernels:

- Small & fast commercial RTOSs:
 - Such as QNX, PDOS, pSOS, VxWorks, Nulceus, ERCOS, EMERALDS, Windows CE
 - Fast context switch & fast interrupt response
 - Small size
 - No virtual memory & can lock code & data in memory
 - Multitasking & IPC via standard, well-known primitives such as mailboxes, events, signals, & semaphores

Ramanritham & Stankovic 94

05/08/03

Real-Time Operating Systems

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-35

Proprietary Kernels:

- How to support real-time constraints
 - Bounded primitive execution time
 - Real-time clock
 - Priority scheduling
 - Special alarms and timeouts
 - Support RT queuing disciplines
 - Provide primitives to delay processing or suspend/resume execution

Real-Time Operating Systems

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-36

RT Extensions:

- RT-UNIX, RT-LINUX, RT-MACH, RT-POSIX
 - Slower, less predictable,
 but more functions & better development environments
 - Based on a set of familiar interfaces (standards)
 - RT-POSIX (Portable Operating System Interface):
 - > 11 RT-related functions:
 - » Timers, priority scheduling, RT files, semaphore, IPC, asynchronous event notification, process memory locking, threads, asynchronous and sync I/O

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-37

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-38

RT Extensions:

- RT-UNIX, RT-LINUX, RT-MACH, RT-POSIX
 - Inappropriate assumptions:
 - > Optimize for the average case (not worst case)
 - > Assign resources on demand
 - > Ignore most of information about application
 - Schedule CPU and allocate resource independently that might cause unbounded blocking

Ramanritham & Stankovic 94 05/08/03

Research Operating Systems:

Real-Time Operating Systems

- Support RT scheduling algorithms and timing analysis
- Develop RT sync primitives, e.g., priority ceiling
- Emphasize predictability over average performance
- Support for fault-tolerance and I/O
- Example:
 - Spring, MARS, HARTOS, MARUTI, ARTS, CHAOS, DARK

Ramanritham & Stankovic 94

Real-Time Operating Systems

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-39

- RT Languages and Some Experimental Ones:
 - Ada, Modula-2,
 - Flex: (Univ. of Illinois)
 - Euclid: (Univ. of Toronto)

Outline

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-40

05/08/03

- Structure of Real-Time Control System
- Operating Systems
- Computer Control Systems
- Real-Time Computing
- Real-Time Operating Systems
- Task/Message/Packet Classification
- Hardware Requirements for Real-Time Applications

Ramanritham & Stankovic 94

05/08/03

Task/Message/Packet Classification

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-41

Need:

- Specification languages and
- Performance measures:
 - Capable of expressing timing requirements
- Means:
 - To predict the execution times of programs
 - To model the reliability of software and of hardware
 - To assign tasks to processors, and
 - To schedule them so that deadlines are met
- Mechanisms:
 - System can quickly recover from the failure of an individual component

Krishna & Shin 97 04/07/03

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-42

Critical or non-critical:

Task/Message/Packet Classification

- · Depending on its function and system state
- Based on invocation behavior:
 - periodic
 - aperiodic
 - sporadic
- How do we derive message/packet deadlines?

Krishna & Shin 97 04/08/03

Task/Message/Packet Classification

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-43

- Clock-based tasks:
 - Cyclic, periodic
 - Process time constant (characteristics)
 - Sampling time (rate)
- Event-based tasks:
 - Aperiodic, sporadic
 - In response to some event
- Interactive systems:
 - ATM, hotel reservation, car rental
 - In response to some state

Outline

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-44

- Structure of Real-Time Control System
- Operating Systems
- Computer Control Systems
- Real-Time Computing
- Real-Time Operating Systems
- Task/Message/Packet Classification
- Hardware Requirements for Real-Time **Applications**

Bennett 94

04/08/03

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-47

Computers:

- Microprocessors:
 - Intel XX86, Motorola 680XX, National 32XXX, Zilog Z80 & Z8000, etc.
- Microcontrollers:
 - Motorola MPC 555/556, etc.
- Specialized digital signal processors
 - Fast DSP, parallel computers, etc.

Hardware Requirements for Real-Time Applications

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-48

- Key Components in a Computer:
 - Central Processing Unit (CPU)
 - Storage/Memory
 - Input/Output Device

Bennett 94 04/08/03

Bennett 94

04/08/03

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-49

Central Processing Unit (CPU):

- Arithmetic and logic unit (ALU)
 - > Arithmetic and logic operations:
 - » Add, subtract and compare numbers
 - > Multiplication and division is provided by other hardware units
 - > Floating point arithmetic unit
- General purpose registers
 - > Store data temporarily
- Control unit
 - > Supervise operations within CPU
 - > Fetch program instructions from main memory
 - > Decode instructions
 - > Set up data paths and timing cycles for execution of instructions

Bennett 94

04/08/03

Hardware Requirements for Real-Time Applications

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-50

Central Processing Unit (CPU):

- Features:
 - > Wordlength
 - » For precision in calculation and direct access to main storage within one instruction word
 - > Instruction set
 - » Features to reduce the number of instructions required to perform "housekeeping" operations, reduce storage requirements, and improve operation speed
 - > Addressing methods
 - > Number of registers
 - > Information transfer rates
 - » Within CPU and between backing store & CPU, with I/O devices
 - > Interrupt structure

Bennett 94

Hardware Requirements for Real-Time Applications

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-51

Storage/Memory:

- Fast access storage:
 - > RAM (random access memory read/write)
 - > ROM (read-only memory)
 - » Prevent loss due to power failure or malfunctioning
 - > PROM (programmable ROM) by ROM burners
 - » Factory-programmed ROM (mask-programmed ROM)
 - » Field-programmable ROM
 - > EPROM (electronically or erasable programmable ROM)
 - » UV-EPROM: Erased by ultraviolet light
 - » Flash PROM: Erased by standard system voltage
- Auxiliary storage:
 - > Disk
 - > Magnetic tape

Hardware Requirements for Real-Time Applications

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-52

04/08/03

Input & Output (I/O):

- Sections:
 - > Process I/O
 - > Operation I/O
 - > Computer I/O

– Features:

Bennett 94

- > Parallel or serial data transfers
- > Analog-to-digital or digital-to-analog conversion (ADC/DAC)
- > Conversion to pulse rates

Bennett 94 (p57), Wolf 01 (p201)

04/08/03

04/08/03

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-53

Single-Chip Microprocessors & Microcontrollers:

- Microprocessors:
 - + EPROM + RAM + Oscillator
 - + Hardware Timers + Interrupt Controller
 - + Serial Communication Controller + I/O Ports
 - (+ external memory chip)
- Microcontrollers:
 - Microprocessor
 - + multiplexed ADC + process output (e.g., PWM)
 - + real-time clock generator + watch-dog timer

Bennett 94 04/08/03

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-58

Specialized Processors:

- Safety-critical applications
 - To simplify the instruction set
 - > RISC (reduced instruction set computer)
- Increased computation speed
 - Parallel computer architecture
 - Digital signal processors
- RISC:
 - For formal verification of processing logic
 - Easier to write assemblers & compilers
 - VIPER:
 - > Formal math description of processor logic
 - > Integer arithmetic (32 bit) and no floating point operations
 - > No interrupts using polling
 - > No dynamic memory allocation

Bennett 94 04/08/03

Hardware Requirements for Real-Time Applications

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-59

Process-Related Interfaces:

- Digital quantities
 - Binary, generalized digital quantity (binary coded decimal)
- Analog quantities
 - e.g., Thermocouple, strain gauge, voltage, current
- Pulses & pulse rates
 - A series of pulse of fixed duration
 - A single pulse of variable length
 - Pulse width modulation (PWM)
- Telemetry
 - Remote stations

Hardware Requirements for Real-Time Applications

Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-60

Data Transfer Techniques:

- Polling
 - Busy wait
 - Periodic check
- Interrupts

Bennett 94

- Saving & restoring registers
- Interrupt input mechanisms
- Interrupt response mechanisms
- Multi-level interrupts
- Direct Memory Access

Burst mode: Full control over the data highways

– Distributed mode: Occasional control

- Cycle stealing : When CPU is not using the data bus

Bennett 94 04/08/03

04/08/03

Hardware Requirements for Real-Time Applications Feng-Li Lian © 2010 NTUEE-RTCS11-RTOS-61 Communications: Asynchronous & synchronous transmission techniques Local- & wide-area networks Information/System Network Discrete-Event/Cell Network

Bennett 94 04/08/03

Handling

. . .

Line

Continuous-Variable/Device Network

Tool

