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An Example:
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Infeasible schedule

Feasible schedule
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The Question:
• Will my real-time application 

really meet its timing constraints or requirements?

The Problem:
• Given a set of tasks, precedence constraints, 

resource requirements, their execution times, 
release times, and deadlines, and 
one or more processing systems

• Assign tasks to different processing systems
• Design a feasible/optimal allocation/scheduling

on the processing system

Krishna & Shin 97
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Definitions:
• Tasks:

– Consume resources
(e.g., processor time, memory, input data), and

– Put out one or more results

• Precedence Constraints:
– Specify if any task(s) needs to precede other tasks
– Represented by the means of a precedence graph

• Resource Requirements:
– All tasks require 

> some execution time on a processor,
> a certain amount of memory or 
> access to a bus (network)

– Exclusive or non-exclusive

Krishna & Shin 97
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Definitions:
• Release Time:

– The time at which 
all the data that are required to begin executing the task 
are available

• Deadline:
– The time by which the task must complete its execution

– Hard or soft, 
depending on the nature of the corresponding task

• Relative Deadline:
– The absolute deadline minus the release time

Krishna & Shin 97
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Definitions:
• Periodic:

– The task is released periodically

– Only to run exactly once every period; 
not required for being run exactly one period apart 

• Sporadic:
– Not periodic, but at irregular intervals

– Characterized by an upper bound on the rate 
at which the tasks may be invoked

• Aperiodic:
– Same as sporadic, OR

– For not periodic and w/o upper bound on the invocation time

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-8
Feng-Li Lian © 2010Task Assignment & Scheduling

04/08/03

Definitions:
• Feasible:

– A task assignment/schedule is said to be feasible
if all tasks start after their release times 
and complete before their deadlines

• A-Feasible:
– If an assignment/schedule algorithm A

results in a feasible schedule

• Offline or Online Scheduling:
– Schedule in advance

– Schedule as the tasks arrive

Krishna & Shin 97
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Definitions:
• Priority:

– A function of the nature of the tasks themselves and 
the current state of the controlled process

• Static- & Dynamic-Priority Algorithms:
– Task priority does not change within a mode

– Task priority can change with time

• Preemptive & Non-preemptive Schedule:
– Tasks can be interrupted by other tasks (and then resumed)

> Flexibility

– Task schedule must be run to completion
or until it gets blocked over a resource

> Causing anomalies

Krishna & Shin 97
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Objective in Scheduling:

• For non-real-time applications
– Minimize the total time required 

to execute all the tasks in the application

• For real-time applications
– Meet the timing constraints of the individual tasks

Shin & Ramanathan 94
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Characteristics in RT Scheduling Algorithms:
• Uniprocessor or multiprocessor

– For multi-processors, 
shared memory or message-passing system

• Periodic or aperiodic

• Preemptible or non-preemptible

• Criticality

• Independence

• Resource

• Placement constraints

• Strictness of deadlines

Shin & Ramanathan 94
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Terminologies:

• Feasibility

• Optimality

• Lateness

• Absolute/relative/effective deadlines

• Absolute/effective release times

• Periodic, sporadic, aperiodic

Krishna & Shin 97
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Components of Task Model:
• Precedence relation:

– Set of tasks that must be completed 
before task T can begin its execution

• Resource requirements:
– Processor, memory, bus, disk, etc. 
– Exclusive
– Shared (read-only, read-write)

• Schedule S:
– { set of processors } X { time } → { set of tasks }
– Off-line or online
– Static or dynamic priority algorithm
– Preemptive or non-preemptive
– Uniprocessor or multiprocessor

Krishna & Shin 97
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Commonly Used RT Scheduling Approaches:
• Time-driven:

– Determines when to execute which job
– All parameters of hard RT jobs are fixed and known
– A schedule is computed off-line and stored for use at runtime

• Weighted round-robin:
– For high-speed networks, 

where length of a round = sum of all weights

• Priority-driven:
– Assigns priorities to jobs and executes jobs in priority order
– Static priority assignment:

> Rate or Deadline Monotonic (RM or DM)
– Dynamic priority assignment:

> Earliest Deadline First (EDF), Minimum Laxity First (MLF)

Krishna & Shin 97
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Four Paradigms of Scheduling Approaches:
• Static table-driven scheduling:

• Static priority preemptive scheduling:

• Dynamic planning-based scheduling:

• Dynamic best effort scheduling:

• Impact of:
– Quality-timeliness tradeoffs

– Fault-tolerance constraints

– Resource reclaiming on scheduling

Ramamritham & Stankovic 94
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RTOS should have:
• CPU scheduling

• Resource allocation

• Predictability, requiring bounded OS primitives

RT Scheduling involves
the allocation of resources and time to tasks

Ramamritham & Stankovic 94
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Analyzing Scheduling Algorithms:

• Performance metrics

• Scheduling paradigms

• Scheduling algorithms

• Other important scheduling issues

Ramamritham & Stankovic 94
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Performance metrics

• Static non-real-time systems
– Minimize schedule length

• Dynamic non-real-time systems
– Minimize response time

– Increase throughput

• Both static & dynamic real-time systems
– Achieve timeliness

05/08/03Ramamritham & Stankovic 94
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Performance metrics
• Task characteristics:

– Computation times

– Resource requirements

– Importance levels (or priorities, criticalness)

– Precedence relationships

– Communication requirements

– Timing constraints

05/08/03Ramamritham & Stankovic 94
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Performance metrics
• In static scheduling:

– Since schedule off-line

– So, meet all deadlines

– If exists, 
> Maximize average earliness

– If not,
> Minimize average tardiness

• In dynamic scheduling:
– Since information is not known a priori

– So, maximize number of arrivals meeting deadlines

05/08/03Ramamritham & Stankovic 94
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Performance metrics
• Levels of predictability:

– Using a particular approach
how well can we predict that 
the tasks will meet their deadlines?

• Schedulability analysis or feasibility checking
– Statically or dynamically

05/08/03Ramamritham & Stankovic 94
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Four Paradigms of Scheduling Approaches:
• Static table-driven scheduling:

– Static schedulability analysis
– Resulting schedule (or table) used at run time

• Static priority-based preemptive scheduling:
– Static schedulability analysis
– No explicit schedule
– Highest priority task first

• Dynamic planning-based scheduling:
– Feasibility checked at run time

> Dynamically accept arriving task if feasible schedule found

• Dynamic best effort scheduling
– No feasibility check
– Try its best to meet deadlines & may be aborted

05/08/03Ramamritham & Stankovic 94
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Static table-driven scheduling:
• For periodic tasks

• Given task characteristics, 
– Table is constructed by using , e.g., search heuristics

– With Identifying start & completion times

– Tasks dispatched according to table

• Highly predictable, but highly inflexible

05/08/03Ramamritham & Stankovic 94
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Static priority-based preemptive scheduling:
• Traditionally used for non-real-time systems

• Tasks have priorities
– Assigned maybe statically or dynamically or at any time

– Execute highest-priority task

– Preemption:
> Arrival of higher-priority tasks preempt

the execution of low-priority task

– If priorities are assigned systematically in such a way that 
timing constraints can be taken into account, 
then the resulting scheduler can also be used for real-time systems

05/08/03Ramamritham & Stankovic 94
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Dynamic planning-based scheduling:
• With flexibility and predictability

• For new arrival,
– Try to create a schedule 

containing previously guaranteed tasks as well as the new arrival

– If fail, take other actions

05/08/03Ramamritham & Stankovic 94
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Dynamic best effort scheduling 
– A priority-driven preemptive approach

> e.g., use deadlines as priorities & without any planning

– Priority is computed based on task’s characteristics

– Schedule based on priority

– Confidence via extensive simulations

– Lack of predictability and sub-optimality

– Try its best to meet deadlines

– But, do NOT know whether a timing constraint will be met

05/08/03Ramamritham & Stankovic 94
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Uniprocessor Scheduling Algorithms:
• When to execute (scheduling)

Multiprocessor Scheduling Algorithms:
• Where to execute (assignment), and 

• When to execute (scheduling) 

• They are NP-hard; 
so, need heuristics to find suboptimal solutions

Krishna & Shin 97; Shin & Ramanathan 94
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Notations:
• n: Number of tasks in the task set

• ei: Execution time of task Ti

• Pi: Period of task Ti, if it is periodic

• Ii: kth period of (periodic) task Ti begins at time
Ii + (k-1)Pi, where Ii is call the phasing of task Ti

• di: Relative deadline of task Ti

• Di: Absolute deadline of task Ti

• ri: Release time of task Ti

• hT(t): Sum of the execution times of task iterations 
in task set T that have their absolute deadlines <= t

Krishna & Shin 97



NTUEE-RTCS13-Scheduling-29
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

04/08/03

Assumptions:

• A1: Fully preemptible with negligible costs

– Can preempt any task at any time and 
resume it later without penalty

• A2: CPU is the only resource to deal with

– i.e., don’t care with memory, I/O, etc.

• A3: Independent task

– i.e., no precedence constraints between tasks

• A4: All periodic tasks

• A5: Relative deadline = period

Krishna & Shin 97
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Example: (a two-task system)

69Deadline
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Rate Monotonic (RM) Algorithm:

• Assign higher priorities to tasks with lower periods
(or higher rates)

– The priority of a task is inversely related to its period

– Higher-priority tasks can preempt lower-priority tasks

• Optimal fixed priority scheduling algorithm

• Sufficient schedulability condition:

Krishna & Shin 97
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Example: (a 3-task system)

2

6

1

T2

102P

1.750.5e

30I

T3T1Time\Task

1_1 2_1 1_2 2_1 3_1 1_3 3_1 1_4 2_2

Since P1 < P2 < P3, priority: T1 > T2 > T3

Krishna & Shin 97
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Example: (a 3-task system)

Check sufficient schedulability condition

Krishna & Shin 97
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Necessary (& Sufficient) Schedulability Conditions

Krishna & Shin 97
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Necessary (& Sufficient) Schedulability Conditions

Krishna & Shin 97
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Necessary (& Sufficient) Schedulability Conditions

Krishna & Shin 97
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Necessary (& Sufficient) Schedulability Conditions

Krishna & Shin 97
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Necessary (& Sufficient) Schedulability Conditions

Krishna & Shin 97
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Theorem:

Krishna & Shin 97
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Example: (a 4-task system)

80

210

T3

30

150

T2

400100P

10020e

T4T1Time\Task

Set of points of interest:

Krishna & Shin 97
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Example: (a 4-task system)

Schedulability Conditions:

Krishna & Shin 97
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Example: (a 4-task system)

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-43
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

03/13/04

With Sporadic Tasks:
• Define fictitious highest-periodic task & execution time

• RM with Deferred Server (DS):

Krishna & Shin 97
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Earliest Deadline First (EDF) Algorithm:

• Assign higher priorities to tasks 
whose absolute deadline is the earliest

• Optimal dynamic-priority scheduling algorithm

• Tasks: periodic or aperiodic

• Schedulable on a uniprocessor by the EDF iff:

Krishna & Shin 97
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Example: (a 3-task system)
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Allowing for Precedence & Exclusion Conditions:
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Multiple Task Versions: Primary & Alternative
• Better-quality service v.s. just-acceptable service
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5

Alternative

7Average run time

15Period
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PrimaryTime\Task

Primary Alternative
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Multiple Task Versions: 5-task system

Uniprocessor Scheduling Algorithms
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Increased Reward with Increased Service (IRIS):
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Mandatory Optional Identical Linear Reward Function

By EDF
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Rate Monotonic (RM, static priority):
– Task set: periodic, preemptible, deadline = period

– Statically assign higher priorities to task with lower periods

– It is schedulable under RM
if its total processor utilization <= n(21/n – 1) 

– RM is an optimal static-priority uniprocessor scheduling algorithm

Rate Monotonic Deferred Server (DS):
– Similar to RM

– Handle both periodic and aperiodic tasks

– Allot some time slots for aperiodic tasks

Krishna & Shin 97; Liu & Layland 73
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Earliest Deadline First (EDF, dynamic priority):
– Tasks: preemptible

– The earliest the deadline, the higher the priority

– Optimal if preemption is allowed and 
jobs do not contend for resources

– If a task set is not schedulable on a single processor by EDF,
no other processor can successfully schedule that task set

Precedence and Exclusion Conditions:
– Take precedence conditions into account

– Algorithm might be with exclusion conditions
such as some tasks are not allowed to interrupt some,
irrespective of priority

Krishna & Shin 97
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Multiple Task Versions:
– In some cases, 

the system has primary and alternative versions of some tasks

– Varying in execution time or quality of output they provide

– Primary version for top-quality output, 
alternative for lower-quality

Increased Reward with Increased Service (IRIS):
– Algorithm can be stopped early and output still useful

– Quality of output: 
a monotonically nondecreasing function of the execution time

Krishna & Shin 97
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Rate Monotonic (RM, static priority):

Earliest Deadline First (EDF, dynamic priority):
• C.L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-

real-time environment,” Journal of ACM, 20(1):46-61, 1973

Rate Monotonic Deferred Server (DS):

Multiple Task Versions:
• J.P. Lehoczky, L. Sha, and J.K. Strosnider, “Enhanced aperiodic responsiveness in 

hard real-time environments,” Proc. IEEE Real-Time Systems Symposium, pp. 261-
270, Los Alamitos, CA, 1987

Precedence and Exclusion Conditions:
• J. Xu and D.L. Parnas, “Scheduling processes with release times, deadlines, 

precedence, and exclusion properties,” IEEE Trans. Software Engineering, 16(3): 
360-369, Mar. 1990

Increased Reward with Increased Service (IRIS):
• J.W.S. Liu, K.J. Lin, W.-K. Shih, A.C. Yu, J.Y. Chung, and W. Zhao, “Imprecise 

computations,” Proc. IEEE, 82(1): 83-94, Jan. 1994 

Krishna & Shin 97; Liu & Layland 73
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Task Assignment:
• The optimal assignment of tasks to processors is, 

in almost all practical cases, an NP-complete problem

• Do with heuristic procedures:
– Allocate the tasks

– Check their feasibility

– If not feasible, modify the allocation

• CANNOT guarantee that 
a feasibly scheduled allocation can be found

• Need to account for communication costs

Shin & Ramanathan 94 03/14/04
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Utilization Balancing Algorithm:

Next-Fit Algorithm for RM Scheduling:

Bin-Packing Algorithm for EDF:

Myopic Offline Scheduling (MOS) Algorithm:

Focused Addressing & Bidding (FAB) Algorithm:

Buddy Strategy:

Assignment with Precedence Constraints:

Krishna & Shin 97 03/14/04

NTUEE-RTCS13-Scheduling-56
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

Utilization Balancing Algorithm:
– Tasks: preemptible

– Assign tasks to processors one by one
such that at the end of each step 
utilizations of various processors nearly balanced

Krishna & Shin 97

Utilization by using minimizing the sum 
of squares of process utilization 

Utilization under the best-fit algorithm

Copies of the same tasks

03/14/04
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Next-Fit Algorithm for RM Scheduling:
– Tasks: preemptible

– With RM uniprocessor scheduling algorithm
– Set of tasks → Various classes

– Set of processors → Each task class

Krishna & Shin 97
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Example: 4-Class & 11-Task

Krishna & Shin 97
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Bin-Packing Algorithm for EDF:
– Tasks: preemptible

– Total utilizations <= a given threshold

– Threshold: the uniprocessor scheduling algorithm is able 
to schedule the tasks assigned to each processor

– Minimize the number of processors needed
> Many algorithms exist for solving it

> The First Fit Decreasing (FFD) algorithm

Krishna & Shin 97
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Example: 4-Class & 11-Task

L  =  ( T1, T6, T2, T5, T11, T10, T3, T9, T8, T4, T7 )

U  =  ( U1, U2, U3, U4, …), 
containing the total utilizations of processor pi in Ui

Krishna & Shin 97
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(0.90, 0.88)p20.22T115

(0.90, 0.66)p20.33T54

(0.90, 0.33)p20.33T23

(0.90)P10.40T62

(0.50)p10.50T11

(1.00, 0.90, 0.45)p20.02T711

(1.00, 0.88, 0.45)p10.04T410

(0.96, 0.88, 0.45)p10.06T89

(0.90, 0.88, 0.45)p30.13T98

(0.90, 0.88, 0.32)p30.14T37

(0.90, 0.88, 0.18)p30.18T106

U = (U1, U2, U3)Piu(i)TiStep

L  =  ( T1, T6, T2, T5, T11, T10, T3, T9, T8, T4, T7 )
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Myopic Offline Scheduling (MOS) Algorithm:
– Can deal with  nonpreemptible tasks

– Build up a schedule tree and 
based on a search process 
to find feasible schedule minimizing a heuristic function H
such as execution time, deadline, start time, laxity, etc.

– For n tasks, 
the schedule tree has n+1 levels (including the root)

Krishna & Shin 97
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Example: 5-(nonpreemptive)-Task & 2-Processor

H(i) = ri
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Focused Addressing & Bidding Algorithm:
– Tasks arrive at the individual processors

– If one processor finds itself unable to meet the deadline
or other constraints, 

– Then it tries to offload some of its workload 
onto other processors 

– By announcing which task(s) it would like to offload and waiting for 
other processors to offer to take them up

Buddy Strategy:
– Roughly the same as the focused addressing algorithm

– Processor load: under-loaded, fully loaded, overloaded

– Overloaded ask under-loaded to take over some
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Assignment with Precedence Constraints:
– Take precedence into account

– Use a trial-and-error process to assign tasks
that communicate heavily with one another 

– So that communication costs are minimized
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Example: 1-Task & 8-Subtask, 2-Processor
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LFT: Latest finishing time
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Static algorithms:
– Periodic tasks with hard deadlines

– Not applicable to aperodic tasks b/c timing info unknown

Dynamic algorithms:
– Centralized

> All tasks distributed by one central processor into others

> So, processors’ load is known and deadlines are guaranteed

– Distributed
> Tasks arrive independently at each processor

> Transfer policy: guarantee constraints of incoming tasks

> Location policy: find other processors if not schedulable

> Information policy: collect & maintain state info of others

Shin & Ramanathan 94
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Utilization Balancing Algorithm:
– Tasks: preemptible

– Assign tasks to processors one by one
such that at the end of each step 
utilizations of various processors nearly balanced

Next-Fit Algorithm for RM Scheduling:
– Tasks: preemptible

– With RM uniprocessor scheduling algorithm
– Set of tasks → Various classes

– Set of processors → Each task class

Krishna & Shin 97
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Bin-Packing Algorithm for EDF:
– Tasks: preemptible

– Total utilizations <= a given threshold

– Threshold: the uniprocessor scheduling algorithm 
is able to schedule the tasks assigned to each processor

Myopic Offline Scheduling (MOS) Algorithm:
– Can deal with  nonpreemptible tasks

– Build up a schedule tree and based on a search process
to find feasible schedule minimizing a heuristic function 
such as execution time, deadline, start time, laxity, etc.
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Focused Addressing & Bidding (FAB) Algorithm:
– Tasks arrive at the individual processors

– If one processor finds itself unable to meet the deadline
or other constraints, 

> Then it tries to offload some of its workload 
onto other processors

– By announcing which task(s) it would like to offload and 
waiting for other processors to offer to take them up

Buddy Strategy:
– Roughly the same as the focused addressing algorithm

– Processor load: under-loaded, fully loaded, overloaded

– Overloaded ask under-loaded to take over some
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Assignment with Precedence Constraints:
– Take precedence into account

– Use a trial-and-error process to assign tasks
that communicate heavily with one another 

– So that communication costs are minimized
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Utilization Balancing Algorithm:
• J.A. Bannister and K.S. Trivedi, “Task allocation in fault-tolerant distributed systems,”

Acta Informatica, 20(3): 261-281, Sep. 1983

Next-Fit Algorithm for RM Scheduling:
• S. Davari and S.K. Dhall, “An on line algorithm for real-time tasks allocation,” Proc. 

IEEE Real-Time Systems Symposium, pp. 194-200, Los Alamitos, CA, 1986

Bin-Packing Algorithm for EDF:
• E.G. Coffman, Computer and Job-Shop Scheduling Theory, Wiley, New York, 1976

Myopic Offline Scheduling (MOS) Algorithm:
• K.J. Ramamritham, A. Stankovic, and P.-F. Shiah, “Efficient scheduling algorithms 

for real-time multiprocessor systems,” IEEE Trans. on Parallel and Distributed 
Systems, 1(2): 184-194, Apr. 1990
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• K.J. Ramamritham, A. Stankovic, and W. Zhao, “Distributed scheduling of tasks with 
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Buddy Strategy:
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