
SPRING 2010

即時控制系統設計
Design of Real-Time Control Systems

Lecture 13
Task Assignment & Scheduling

Feng-Li Lian
NTU-EE

Feb10 – Jun10

NTUEE-RTCS13-Scheduling-2
Feng-Li Lian © 2010Outline

04/07/03

Introduction

Characterizing Real-Time Systems & Tasks

Task Assignment & Scheduling

Real-Time Programming Languages and Tools

Real-Time Database

Real-Time Communications

Fault-Tolerance Techniques

Reliability Evaluation Techniques

Clock Synchronization

NTUEE-RTCS13-Scheduling-3
Feng-Li Lian © 2010Task Assignment & Scheduling

05/07/03

An Example:

Shin & Ramanathan 94

Infeasible schedule

Feasible schedule

NTUEE-RTCS13-Scheduling-4
Feng-Li Lian © 2010Task Assignment & Scheduling

04/08/03

The Question:
• Will my real-time application

really meet its timing constraints or requirements?

The Problem:
• Given a set of tasks, precedence constraints,

resource requirements, their execution times,
release times, and deadlines, and
one or more processing systems

• Assign tasks to different processing systems
• Design a feasible/optimal allocation/scheduling

on the processing system

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-5
Feng-Li Lian © 2010Task Assignment & Scheduling

03/13/04

Definitions:
• Tasks:

– Consume resources
(e.g., processor time, memory, input data), and

– Put out one or more results

• Precedence Constraints:
– Specify if any task(s) needs to precede other tasks
– Represented by the means of a precedence graph

• Resource Requirements:
– All tasks require

> some execution time on a processor,
> a certain amount of memory or
> access to a bus (network)

– Exclusive or non-exclusive

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-6
Feng-Li Lian © 2010Task Assignment & Scheduling

04/08/03

Definitions:
• Release Time:

– The time at which
all the data that are required to begin executing the task
are available

• Deadline:
– The time by which the task must complete its execution

– Hard or soft,
depending on the nature of the corresponding task

• Relative Deadline:
– The absolute deadline minus the release time

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-7
Feng-Li Lian © 2010Task Assignment & Scheduling

04/08/03

Definitions:
• Periodic:

– The task is released periodically

– Only to run exactly once every period;
not required for being run exactly one period apart

• Sporadic:
– Not periodic, but at irregular intervals

– Characterized by an upper bound on the rate
at which the tasks may be invoked

• Aperiodic:
– Same as sporadic, OR

– For not periodic and w/o upper bound on the invocation time

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-8
Feng-Li Lian © 2010Task Assignment & Scheduling

04/08/03

Definitions:
• Feasible:

– A task assignment/schedule is said to be feasible
if all tasks start after their release times
and complete before their deadlines

• A-Feasible:
– If an assignment/schedule algorithm A

results in a feasible schedule

• Offline or Online Scheduling:
– Schedule in advance

– Schedule as the tasks arrive

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-9
Feng-Li Lian © 2010Task Assignment & Scheduling

04/08/03

Definitions:
• Priority:

– A function of the nature of the tasks themselves and
the current state of the controlled process

• Static- & Dynamic-Priority Algorithms:
– Task priority does not change within a mode

– Task priority can change with time

• Preemptive & Non-preemptive Schedule:
– Tasks can be interrupted by other tasks (and then resumed)

> Flexibility

– Task schedule must be run to completion
or until it gets blocked over a resource

> Causing anomalies

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-10
Feng-Li Lian © 2010Task Assignment & Scheduling

04/08/03

Objective in Scheduling:

• For non-real-time applications
– Minimize the total time required

to execute all the tasks in the application

• For real-time applications
– Meet the timing constraints of the individual tasks

Shin & Ramanathan 94

NTUEE-RTCS13-Scheduling-11
Feng-Li Lian © 2010Task Assignment & Scheduling

04/08/03

Characteristics in RT Scheduling Algorithms:
• Uniprocessor or multiprocessor

– For multi-processors,
shared memory or message-passing system

• Periodic or aperiodic

• Preemptible or non-preemptible

• Criticality

• Independence

• Resource

• Placement constraints

• Strictness of deadlines

Shin & Ramanathan 94

NTUEE-RTCS13-Scheduling-12
Feng-Li Lian © 2010Task Assignment & Scheduling

04/08/03

Terminologies:

• Feasibility

• Optimality

• Lateness

• Absolute/relative/effective deadlines

• Absolute/effective release times

• Periodic, sporadic, aperiodic

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-13
Feng-Li Lian © 2010Task Assignment & Scheduling

04/08/03

Components of Task Model:
• Precedence relation:

– Set of tasks that must be completed
before task T can begin its execution

• Resource requirements:
– Processor, memory, bus, disk, etc.
– Exclusive
– Shared (read-only, read-write)

• Schedule S:
– { set of processors } X { time } → { set of tasks }
– Off-line or online
– Static or dynamic priority algorithm
– Preemptive or non-preemptive
– Uniprocessor or multiprocessor

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-14
Feng-Li Lian © 2010Task Assignment & Scheduling

04/08/03

Commonly Used RT Scheduling Approaches:
• Time-driven:

– Determines when to execute which job
– All parameters of hard RT jobs are fixed and known
– A schedule is computed off-line and stored for use at runtime

• Weighted round-robin:
– For high-speed networks,

where length of a round = sum of all weights

• Priority-driven:
– Assigns priorities to jobs and executes jobs in priority order
– Static priority assignment:

> Rate or Deadline Monotonic (RM or DM)
– Dynamic priority assignment:

> Earliest Deadline First (EDF), Minimum Laxity First (MLF)

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-15
Feng-Li Lian © 2010Task Assignment & Scheduling

04/08/03

Four Paradigms of Scheduling Approaches:
• Static table-driven scheduling:

• Static priority preemptive scheduling:

• Dynamic planning-based scheduling:

• Dynamic best effort scheduling:

• Impact of:
– Quality-timeliness tradeoffs

– Fault-tolerance constraints

– Resource reclaiming on scheduling

Ramamritham & Stankovic 94

NTUEE-RTCS13-Scheduling-16
Feng-Li Lian © 2010Task Assignment & Scheduling

04/08/03

RTOS should have:
• CPU scheduling

• Resource allocation

• Predictability, requiring bounded OS primitives

RT Scheduling involves
the allocation of resources and time to tasks

Ramamritham & Stankovic 94

NTUEE-RTCS13-Scheduling-17
Feng-Li Lian © 2010Task Assignment & Scheduling

05/08/03

Analyzing Scheduling Algorithms:

• Performance metrics

• Scheduling paradigms

• Scheduling algorithms

• Other important scheduling issues

Ramamritham & Stankovic 94

NTUEE-RTCS13-Scheduling-18
Feng-Li Lian © 2010Task Assignment & Scheduling

Performance metrics

• Static non-real-time systems
– Minimize schedule length

• Dynamic non-real-time systems
– Minimize response time

– Increase throughput

• Both static & dynamic real-time systems
– Achieve timeliness

05/08/03Ramamritham & Stankovic 94

NTUEE-RTCS13-Scheduling-19
Feng-Li Lian © 2010Task Assignment & Scheduling

Performance metrics
• Task characteristics:

– Computation times

– Resource requirements

– Importance levels (or priorities, criticalness)

– Precedence relationships

– Communication requirements

– Timing constraints

05/08/03Ramamritham & Stankovic 94

NTUEE-RTCS13-Scheduling-20
Feng-Li Lian © 2010Task Assignment & Scheduling

Performance metrics
• In static scheduling:

– Since schedule off-line

– So, meet all deadlines

– If exists,
> Maximize average earliness

– If not,
> Minimize average tardiness

• In dynamic scheduling:
– Since information is not known a priori

– So, maximize number of arrivals meeting deadlines

05/08/03Ramamritham & Stankovic 94

NTUEE-RTCS13-Scheduling-21
Feng-Li Lian © 2010Task Assignment & Scheduling

Performance metrics
• Levels of predictability:

– Using a particular approach
how well can we predict that
the tasks will meet their deadlines?

• Schedulability analysis or feasibility checking
– Statically or dynamically

05/08/03Ramamritham & Stankovic 94

NTUEE-RTCS13-Scheduling-22
Feng-Li Lian © 2010Task Assignment & Scheduling

Four Paradigms of Scheduling Approaches:
• Static table-driven scheduling:

– Static schedulability analysis
– Resulting schedule (or table) used at run time

• Static priority-based preemptive scheduling:
– Static schedulability analysis
– No explicit schedule
– Highest priority task first

• Dynamic planning-based scheduling:
– Feasibility checked at run time

> Dynamically accept arriving task if feasible schedule found

• Dynamic best effort scheduling
– No feasibility check
– Try its best to meet deadlines & may be aborted

05/08/03Ramamritham & Stankovic 94

NTUEE-RTCS13-Scheduling-23
Feng-Li Lian © 2010Task Assignment & Scheduling

Static table-driven scheduling:
• For periodic tasks

• Given task characteristics,
– Table is constructed by using , e.g., search heuristics

– With Identifying start & completion times

– Tasks dispatched according to table

• Highly predictable, but highly inflexible

05/08/03Ramamritham & Stankovic 94

NTUEE-RTCS13-Scheduling-24
Feng-Li Lian © 2010Task Assignment & Scheduling

Static priority-based preemptive scheduling:
• Traditionally used for non-real-time systems

• Tasks have priorities
– Assigned maybe statically or dynamically or at any time

– Execute highest-priority task

– Preemption:
> Arrival of higher-priority tasks preempt

the execution of low-priority task

– If priorities are assigned systematically in such a way that
timing constraints can be taken into account,
then the resulting scheduler can also be used for real-time systems

05/08/03Ramamritham & Stankovic 94

NTUEE-RTCS13-Scheduling-25
Feng-Li Lian © 2010Task Assignment & Scheduling

Dynamic planning-based scheduling:
• With flexibility and predictability

• For new arrival,
– Try to create a schedule

containing previously guaranteed tasks as well as the new arrival

– If fail, take other actions

05/08/03Ramamritham & Stankovic 94

NTUEE-RTCS13-Scheduling-26
Feng-Li Lian © 2010Task Assignment & Scheduling

Dynamic best effort scheduling
– A priority-driven preemptive approach

> e.g., use deadlines as priorities & without any planning

– Priority is computed based on task’s characteristics

– Schedule based on priority

– Confidence via extensive simulations

– Lack of predictability and sub-optimality

– Try its best to meet deadlines

– But, do NOT know whether a timing constraint will be met

05/08/03Ramamritham & Stankovic 94

NTUEE-RTCS13-Scheduling-27
Feng-Li Lian © 2010Task Assignment & Scheduling

05/17/03

Uniprocessor Scheduling Algorithms:
• When to execute (scheduling)

Multiprocessor Scheduling Algorithms:
• Where to execute (assignment), and

• When to execute (scheduling)

• They are NP-hard;
so, need heuristics to find suboptimal solutions

Krishna & Shin 97; Shin & Ramanathan 94

NTUEE-RTCS13-Scheduling-28
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

04/08/03

Notations:
• n: Number of tasks in the task set

• ei: Execution time of task Ti

• Pi: Period of task Ti, if it is periodic

• Ii: kth period of (periodic) task Ti begins at time
Ii + (k-1)Pi, where Ii is call the phasing of task Ti

• di: Relative deadline of task Ti

• Di: Absolute deadline of task Ti

• ri: Release time of task Ti

• hT(t): Sum of the execution times of task iterations
in task set T that have their absolute deadlines <= t

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-29
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

04/08/03

Assumptions:

• A1: Fully preemptible with negligible costs

– Can preempt any task at any time and
resume it later without penalty

• A2: CPU is the only resource to deal with

– i.e., don’t care with memory, I/O, etc.

• A3: Independent task

– i.e., no precedence constraints between tasks

• A4: All periodic tasks

• A5: Relative deadline = period

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-30
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

04/08/03

Example: (a two-task system)

69Deadline

23.25Execution Time

21Release Time

T2T1Time\Task

T2 T1

S1 T2T1

S2 T2T1

S3

T1

Krishna & Shin 97

0 1 2 3 4 5 6 7 8 9

NTUEE-RTCS13-Scheduling-31
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

04/08/03

Rate Monotonic (RM) Algorithm:

• Assign higher priorities to tasks with lower periods
(or higher rates)

– The priority of a task is inversely related to its period

– Higher-priority tasks can preempt lower-priority tasks

• Optimal fixed priority scheduling algorithm

• Sufficient schedulability condition:

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-32
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

04/08/03

Example: (a 3-task system)

2

6

1

T2

102P

1.750.5e

30I

T3T1Time\Task

1_1 2_1 1_2 2_1 3_1 1_3 3_1 1_4 2_2

Since P1 < P2 < P3, priority: T1 > T2 > T3

Krishna & Shin 97

0 1 2 3 4 5 6 7 8 9

NTUEE-RTCS13-Scheduling-33
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

04/08/03

Example: (a 3-task system)

Check sufficient schedulability condition

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-34
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

03/13/04

Necessary (& Sufficient) Schedulability Conditions

Krishna & Shin 97

1

0 P1
e1

NTUEE-RTCS13-Scheduling-35
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

03/13/04

Necessary (& Sufficient) Schedulability Conditions

Krishna & Shin 97

1

0 P1

e1

1

2P1

e1

P2

2 2

e2

t

NTUEE-RTCS13-Scheduling-36
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

03/13/04

Necessary (& Sufficient) Schedulability Conditions

Krishna & Shin 97

1

0

e3

P2

2 2

P1

P3

3

t
3

NTUEE-RTCS13-Scheduling-37
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

04/08/03

Necessary (& Sufficient) Schedulability Conditions

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-38
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

04/08/03

Necessary (& Sufficient) Schedulability Conditions

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-39
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

04/08/03

Theorem:

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-40
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

04/08/03

Example: (a 4-task system)

80

210

T3

30

150

T2

400100P

10020e

T4T1Time\Task

Set of points of interest:

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-41
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

04/08/03

Example: (a 4-task system)

Schedulability Conditions:

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-42
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

04/08/03

Example: (a 4-task system)

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-43
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

03/13/04

With Sporadic Tasks:
• Define fictitious highest-periodic task & execution time

• RM with Deferred Server (DS):

Krishna & Shin 97

0 5 10 15 20 25 30 35 40 45

0 5 10 15 20 25 30 35 40 45

NTUEE-RTCS13-Scheduling-44
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

04/08/03

Earliest Deadline First (EDF) Algorithm:

• Assign higher priorities to tasks
whose absolute deadline is the earliest

• Optimal dynamic-priority scheduling algorithm

• Tasks: periodic or aperiodic

• Schedulable on a uniprocessor by the EDF iff:

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-45
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

04/08/03

Example: (a 3-task system)

10310Execution Time

25

5

T3

10

4

T2

0Arrival Time

30Absolute Deadline

T1Time\Task

0 4 8 12 16 20 24 28

1 2 3 1

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-46
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

05/26/03

Allowing for Precedence & Exclusion Conditions:

7

3

2

6

3

1

21

5

4

27

6

5

28

6

6

20Di

2ei

3Task Ti

Krishna & Shin 97

T1

T4

T2

T5

T3

T6

T3 T4 T6

0 10 3020

T2 T5T1

T3 T4 T6T2 T5T1

All released at time 0

NTUEE-RTCS13-Scheduling-47
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

05/26/03

Multiple Task Versions: Primary & Alternative
• Better-quality service v.s. just-acceptable service

15

4

5

Alternative

7Average run time

15Period

20Worst-case run time

PrimaryTime\Task

Primary Alternative

0 2 4 6 8 10 12 14 16

Krishna & Shin 97

Run-time limit

NTUEE-RTCS13-Scheduling-48
Feng-Li Lian © 2010

Multiple Task Versions: 5-task system

Uniprocessor Scheduling Algorithms

03/13/04Krishna & Shin 97

47123α(i)

20

10

2

20

10

1

40

10

4

40

5

5

20P(i)

15l(i)

3Task Ti

Run-time limit of primary version

Worst-case run-time of alternative version

3

0 10 3020

A2A(1)

A(4) Pr(5)

40

Pr(1)
A(3)

3A2A(1)Pr(1)
A(3)

3A2A(1)Pr(1)
A(3)

3A2A(1)Pr(1) 3A2A(1)
A(3)A(3)

A5A5

Period

NTUEE-RTCS13-Scheduling-49
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

05/26/03

Increased Reward with Increased Service (IRIS):

6

3

1

1

mi

2

3

2

4

oi

1513

19

12

10

Di

12

24

01

riTask

T2T1

0 2 4 6 8 10 12 14 16 18 20

T3 T4

M2M1 M3 M4

T2T1 T3 T4T4

Krishna & Shin 97

Mandatory Optional Identical Linear Reward Function

By EDF

NTUEE-RTCS13-Scheduling-50
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

04/08/03

Rate Monotonic (RM, static priority):
– Task set: periodic, preemptible, deadline = period

– Statically assign higher priorities to task with lower periods

– It is schedulable under RM
if its total processor utilization <= n(21/n – 1)

– RM is an optimal static-priority uniprocessor scheduling algorithm

Rate Monotonic Deferred Server (DS):
– Similar to RM

– Handle both periodic and aperiodic tasks

– Allot some time slots for aperiodic tasks

Krishna & Shin 97; Liu & Layland 73

NTUEE-RTCS13-Scheduling-51
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

04/08/03

Earliest Deadline First (EDF, dynamic priority):
– Tasks: preemptible

– The earliest the deadline, the higher the priority

– Optimal if preemption is allowed and
jobs do not contend for resources

– If a task set is not schedulable on a single processor by EDF,
no other processor can successfully schedule that task set

Precedence and Exclusion Conditions:
– Take precedence conditions into account

– Algorithm might be with exclusion conditions
such as some tasks are not allowed to interrupt some,
irrespective of priority

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-52
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

04/08/03

Multiple Task Versions:
– In some cases,

the system has primary and alternative versions of some tasks

– Varying in execution time or quality of output they provide

– Primary version for top-quality output,
alternative for lower-quality

Increased Reward with Increased Service (IRIS):
– Algorithm can be stopped early and output still useful

– Quality of output:
a monotonically nondecreasing function of the execution time

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-53
Feng-Li Lian © 2010Uniprocessor Scheduling Algorithms

04/08/03

Rate Monotonic (RM, static priority):

Earliest Deadline First (EDF, dynamic priority):
• C.L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-

real-time environment,” Journal of ACM, 20(1):46-61, 1973

Rate Monotonic Deferred Server (DS):

Multiple Task Versions:
• J.P. Lehoczky, L. Sha, and J.K. Strosnider, “Enhanced aperiodic responsiveness in

hard real-time environments,” Proc. IEEE Real-Time Systems Symposium, pp. 261-
270, Los Alamitos, CA, 1987

Precedence and Exclusion Conditions:
• J. Xu and D.L. Parnas, “Scheduling processes with release times, deadlines,

precedence, and exclusion properties,” IEEE Trans. Software Engineering, 16(3):
360-369, Mar. 1990

Increased Reward with Increased Service (IRIS):
• J.W.S. Liu, K.J. Lin, W.-K. Shih, A.C. Yu, J.Y. Chung, and W. Zhao, “Imprecise

computations,” Proc. IEEE, 82(1): 83-94, Jan. 1994

Krishna & Shin 97; Liu & Layland 73

NTUEE-RTCS13-Scheduling-54
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

Task Assignment:
• The optimal assignment of tasks to processors is,

in almost all practical cases, an NP-complete problem

• Do with heuristic procedures:
– Allocate the tasks

– Check their feasibility

– If not feasible, modify the allocation

• CANNOT guarantee that
a feasibly scheduled allocation can be found

• Need to account for communication costs

Shin & Ramanathan 94 03/14/04

NTUEE-RTCS13-Scheduling-55
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

Utilization Balancing Algorithm:

Next-Fit Algorithm for RM Scheduling:

Bin-Packing Algorithm for EDF:

Myopic Offline Scheduling (MOS) Algorithm:

Focused Addressing & Bidding (FAB) Algorithm:

Buddy Strategy:

Assignment with Precedence Constraints:

Krishna & Shin 97 03/14/04

NTUEE-RTCS13-Scheduling-56
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

Utilization Balancing Algorithm:
– Tasks: preemptible

– Assign tasks to processors one by one
such that at the end of each step
utilizations of various processors nearly balanced

Krishna & Shin 97

Utilization by using minimizing the sum
of squares of process utilization

Utilization under the best-fit algorithm

Copies of the same tasks

03/14/04

NTUEE-RTCS13-Scheduling-57
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

03/14/04

Next-Fit Algorithm for RM Scheduling:
– Tasks: preemptible

– With RM uniprocessor scheduling algorithm
– Set of tasks → Various classes

– Set of processors → Each task class

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-58
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

03/14/04

Example: 4-Class & 11-Task

Krishna & Shin 97

(0.00, 0.19]
(0.19, 0.26]
(0.26,0.41]
(0.41,1.00]

Bound

C3
C2

C4

C1
Class

C2

0.40

40
16
T6

C2

0.33

30
10
T5

C4

0.04

24
1

T4

C4

0.14

22
3

T3

C4

0.05

55
3

T8

C4

0.02

50
1

T7

C4

0.13

70
9

T9

C2

0.33

21
7

T2

C1

0.50

10

5

T1

C4

0.19

90
17

T10

C3

0.22

95
21

T11

u(i)
Pi

Class

ei

Task

T4T3

T2

T1

Tasks

T6

T6

T11

T5

T7 T8,T9,T10p4

p3

p2

p5

p1

Processor

By RM on each processor

NTUEE-RTCS13-Scheduling-59
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

03/14/04

Bin-Packing Algorithm for EDF:
– Tasks: preemptible

– Total utilizations <= a given threshold

– Threshold: the uniprocessor scheduling algorithm is able
to schedule the tasks assigned to each processor

– Minimize the number of processors needed
> Many algorithms exist for solving it

> The First Fit Decreasing (FFD) algorithm

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-60
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

Example: 4-Class & 11-Task

L = (T1, T6, T2, T5, T11, T10, T3, T9, T8, T4, T7)

U = (U1, U2, U3, U4, …),
containing the total utilizations of processor pi in Ui

Krishna & Shin 97

0.40

40
16
T6

0.33

30
10
T5

0.04

24
1

T4

0.14

22
3

T3

0.05

55
3

T8

0.02

50
1

T7

0.13

70
9

T9

0.33

21
7

T2

0.50

10

5

T1

0.19

90
17

T10

0.22

95
21

T11

u(i)
Pi

ei

Task

03/14/04

NTUEE-RTCS13-Scheduling-61
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

03/14/04Krishna & Shin 97

(0.90, 0.88)p20.22T115

(0.90, 0.66)p20.33T54

(0.90, 0.33)p20.33T23

(0.90)P10.40T62

(0.50)p10.50T11

(1.00, 0.90, 0.45)p20.02T711

(1.00, 0.88, 0.45)p10.04T410

(0.96, 0.88, 0.45)p10.06T89

(0.90, 0.88, 0.45)p30.13T98

(0.90, 0.88, 0.32)p30.14T37

(0.90, 0.88, 0.18)p30.18T106

U = (U1, U2, U3)Piu(i)TiStep

L = (T1, T6, T2, T5, T11, T10, T3, T9, T8, T4, T7)

NTUEE-RTCS13-Scheduling-62
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

04/08/03

Myopic Offline Scheduling (MOS) Algorithm:
– Can deal with nonpreemptible tasks

– Build up a schedule tree and
based on a search process
to find feasible schedule minimizing a heuristic function H
such as execution time, deadline, start time, laxity, etc.

– For n tasks,
the schedule tree has n+1 levels (including the root)

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-63
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

Example: 5-(nonpreemptive)-Task & 2-Processor

H(i) = ri

Krishna & Shin 97

50

10
0

T5

25

9
15
T4

18

16
0

T3

20

5
10
T2

15

15

0

T1

Di

ei

ri

Task

03/14/04

0 10 20 30

T1

0 10 20 30

T1

0 10 20 30

T3

p1

p0

NTUEE-RTCS13-Scheduling-64
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

Krishna & Shin 97 03/14/04

0 10 20 30

0 10 20 30

0 10 20 30

0 10 20 30

0 10 20 30

T1

T3

T5 T1

T3

T2

T1

T3

T2

T5

T1

T3

T2

T4

T1

T3

T2

T4

T5

NTUEE-RTCS13-Scheduling-65
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

04/08/03

Focused Addressing & Bidding Algorithm:
– Tasks arrive at the individual processors

– If one processor finds itself unable to meet the deadline
or other constraints,

– Then it tries to offload some of its workload
onto other processors

– By announcing which task(s) it would like to offload and waiting for
other processors to offer to take them up

Buddy Strategy:
– Roughly the same as the focused addressing algorithm

– Processor load: under-loaded, fully loaded, overloaded

– Overloaded ask under-loaded to take over some

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-66
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

04/08/03

Assignment with Precedence Constraints:
– Take precedence into account

– Use a trial-and-error process to assign tasks
that communicate heavily with one another

– So that communication costs are minimized

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-67
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

Example: 1-Task & 8-Subtask, 2-Processor

Krishna & Shin 97

7-4s0
24-10s1
222215s2

42-3s5
42-18s4
26-4s3

40408s8
45453s7
32-6s6

LFTDieiSubtask

03/14/04

LFT: Latest finishing time

s0

s1

s4 s5

s7

s3

s6

s8

s2

10
22

8

1 3

6 8

12

16

NTUEE-RTCS13-Scheduling-68
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

Krishna & Shin 97

0.831210s3 s6
0.7586s5 s7

1.401014s0 s1

0.862219s0 s2

4.33313s1 s5
2.001428s1 s4
1.0088s0 s3

0.881614s6 s8

3.50621s4 s7

(ei+ej)/cijcijei+ejPair si,sj

03/14/040 10 20 30

0 2

40 50

1p0

p1

bus

NTUEE-RTCS13-Scheduling-69
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

Krishna & Shin 97 03/14/04

0 10 20 30

0 2 6

0 to 1

40 50

3 5

1 4

p0

p1

bus

0 10 20 30

0 2

0 to 1

40 50

3 5

1

4p0

p1

bus

0 10 20 30

0 2 6

0 to 1

40 50

3 5 8

1 4 7

5 to 7

p0

p1

bus

7

4 to 7

NTUEE-RTCS13-Scheduling-70
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

04/08/03

Static algorithms:
– Periodic tasks with hard deadlines

– Not applicable to aperodic tasks b/c timing info unknown

Dynamic algorithms:
– Centralized

> All tasks distributed by one central processor into others

> So, processors’ load is known and deadlines are guaranteed

– Distributed
> Tasks arrive independently at each processor

> Transfer policy: guarantee constraints of incoming tasks

> Location policy: find other processors if not schedulable

> Information policy: collect & maintain state info of others

Shin & Ramanathan 94

NTUEE-RTCS13-Scheduling-71
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

04/08/03

Utilization Balancing Algorithm:
– Tasks: preemptible

– Assign tasks to processors one by one
such that at the end of each step
utilizations of various processors nearly balanced

Next-Fit Algorithm for RM Scheduling:
– Tasks: preemptible

– With RM uniprocessor scheduling algorithm
– Set of tasks → Various classes

– Set of processors → Each task class

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-72
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

04/08/03

Bin-Packing Algorithm for EDF:
– Tasks: preemptible

– Total utilizations <= a given threshold

– Threshold: the uniprocessor scheduling algorithm
is able to schedule the tasks assigned to each processor

Myopic Offline Scheduling (MOS) Algorithm:
– Can deal with nonpreemptible tasks

– Build up a schedule tree and based on a search process
to find feasible schedule minimizing a heuristic function
such as execution time, deadline, start time, laxity, etc.

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-73
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

04/08/03

Focused Addressing & Bidding (FAB) Algorithm:
– Tasks arrive at the individual processors

– If one processor finds itself unable to meet the deadline
or other constraints,

> Then it tries to offload some of its workload
onto other processors

– By announcing which task(s) it would like to offload and
waiting for other processors to offer to take them up

Buddy Strategy:
– Roughly the same as the focused addressing algorithm

– Processor load: under-loaded, fully loaded, overloaded

– Overloaded ask under-loaded to take over some

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-74
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

04/08/03

Assignment with Precedence Constraints:
– Take precedence into account

– Use a trial-and-error process to assign tasks
that communicate heavily with one another

– So that communication costs are minimized

Krishna & Shin 97

NTUEE-RTCS13-Scheduling-75
Feng-Li Lian © 2010Multiprocessor Scheduling Algorithms

Utilization Balancing Algorithm:
• J.A. Bannister and K.S. Trivedi, “Task allocation in fault-tolerant distributed systems,”

Acta Informatica, 20(3): 261-281, Sep. 1983

Next-Fit Algorithm for RM Scheduling:
• S. Davari and S.K. Dhall, “An on line algorithm for real-time tasks allocation,” Proc.

IEEE Real-Time Systems Symposium, pp. 194-200, Los Alamitos, CA, 1986

Bin-Packing Algorithm for EDF:
• E.G. Coffman, Computer and Job-Shop Scheduling Theory, Wiley, New York, 1976

Myopic Offline Scheduling (MOS) Algorithm:
• K.J. Ramamritham, A. Stankovic, and P.-F. Shiah, “Efficient scheduling algorithms

for real-time multiprocessor systems,” IEEE Trans. on Parallel and Distributed
Systems, 1(2): 184-194, Apr. 1990

Focused Addressing & Bidding (FAB) Algorithm:
• K.J. Ramamritham, A. Stankovic, and W. Zhao, “Distributed scheduling of tasks with

deadlines and resource requirements,” IEEE Trans. on Computers, 38(8): 1110-
1123, Aug. 1989

Buddy Strategy:
• K.G. Shin and Y.-C. Chang, “Load sharing in distributed real-time systems with state-

change broadcasts,” IEEE Trans. on Computers, 38(8): 1124-1142, Aug. 1989
Krishna & Shin 97 03/14/04

