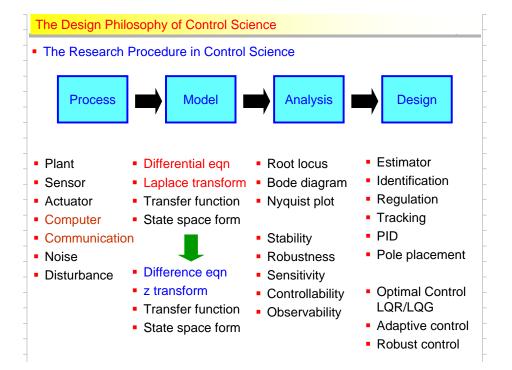
SPRING 2010


即時控制系統設計 Design of Real-Time Control Systems

Lecture 21 Fundamentals of Digital Control

Feng-Li Lian NTU-EE Feb10 – Jun10

Digital Control Systems

- Study in Digital Control Systems
 - Introduction
 - Mathematical model of digital control systems
 - Dynamic analysis of digital control systems
 - Controller design of digital control systems
- Digitalization
 - · Control system block diagram
 - Sampling rate
 - Time delay

Digital Control Systems

Feng-Li Lian © 2010 NTUEE-RTCS21-DigiCtrl-4

- Study in Digital Control Systems
 - Introduction:
 - -Systems:
 - > continuous-time systems
 - > discrete-time systems
 - > sampled-data systems
 - > digital systems
 - Controls:
 - > analog/continuous control
 - > digital/discrete control
 - > classical control
 - > modern control
 - Design Issues:
 - > hardware
 - > software

Study in Digital Control Systems

- Characteristics of DT Control Systems
 - > open-loop systems
 - > A/D converters
 - > D/A converters
 - > Resolver/synchror-to-digital converters
 - > closed-loop systems
 - > computer
 - > microcontroller
 - > DSP
 - > microprocessor

Study in Digital Control Systems

- Mathematical Model of Digital Control Systems
 - Discrete-time systems

Digital Control Systems

- Linear difference equations
 - > Derivative approximation:
 - » With a forward difference (Euler's method)
 - » With a backward difference
 - With a trapezoidal method (Tustin's approximation)
- Unit pulse function, unit step function, etc.,
 - > discrete convolution
 - > the z-transform
 - » Definition
 - » Properties
 - » Convergence

Digital Control Systems

Feng-Li Lian © 2010 NTUEE-RTCS21-DigiCtrl-7

Study in Digital Control Systems

- Mathematical Model of Digital Control Systems
 - From analog to digital
 - > sampling/sampling times
 - > time & frequency characteristics
 - DT transfer functions
 - > via Numerical Integration
 - » Forward rule (Euler's method)
 - » Backward rule
 - » Trapezoidal rule (Tustin's method, bilinear transformation)
 - » Bilinear transformation with pre-warping
 - > via Zero-Pole Matching
 - > via Hold equivalents
 - DT frequency response
 - Relationship between s and z domains

Digital Control Systems

Feng-Li Lian © 2010 NTUEE-RTCS21-DigiCtrl-8

Study in Digital Control Systems

- Dynamic Analysis of Digital Control Systems
 - By Transform methods (by transfer function)
 - > poles, zeros
 - > stability
 - > transient response
 - > steady-state response
 - > impulse/step response
 - > root locus
 - > Bode plot
 - By State-Variable methods (by state-space model)
 - > CT -> DT
 - > linear
 - > nonlinear
 - > stability analysis
 - > sensitivity analysis
 - > controllability
 - observability

Feng-Li Lian © 2010 NTUEE-RTCS21-DigiCtrl-9

Study in Digital Control Systems

- Controller Design of Digital Control Systems
 - Design Process
 - > Emulation:
 - » CT plant -> CT controller -> DT controller
 - > Discrete Design:
 - » CT plant -> DT plant -> DT controller
 - > Direct Design: (B.D.O. Anderson, 1992 Bode Prize Lecture)
 - » CT plant -> DT controller

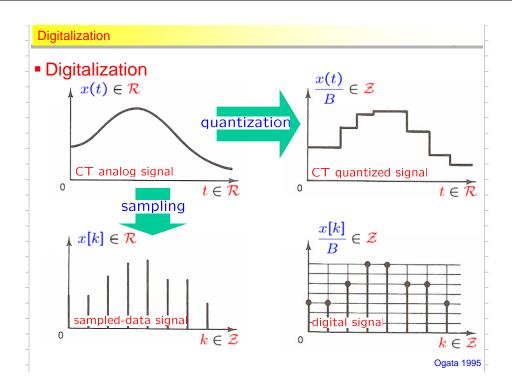
Digital Control Systems

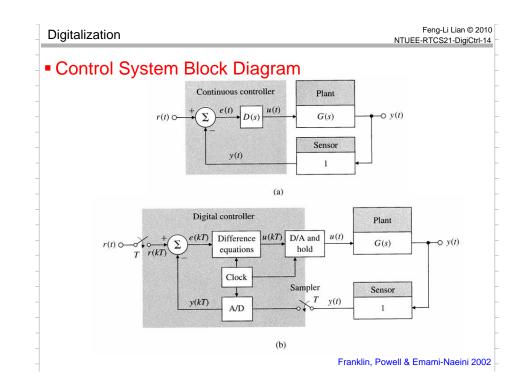
Feng-Li Lian © 2010 NTUEE-RTCS21-DigiCtrl-10

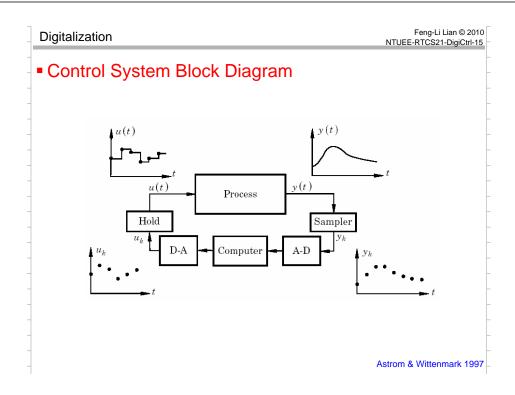
- Study in Digital Control Systems
 - Controller Design of Digital Control Systems
 - Transfer Function Design Methods
 - > Dynamic parameters
 - » peak time
 - » overshoot
 - » settle time
 - » rise time
 - > Steady-state parameters
 - » steady-state error
 - > Design tools
 - » root-locus in z-domain design specifications
 - » frequency response methods design specifications gain & phase margins tracking error, stability robustness in terms of sensitivity function Bode plots, Nyquist stability criterion compensator design

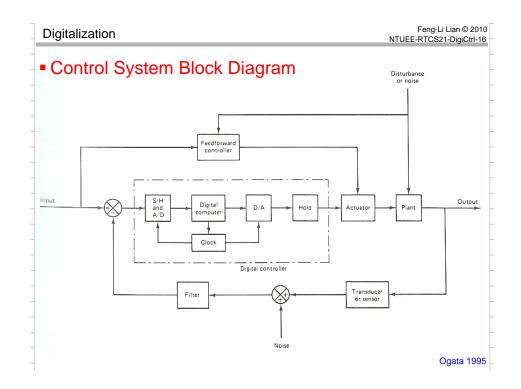
Digital Control Systems

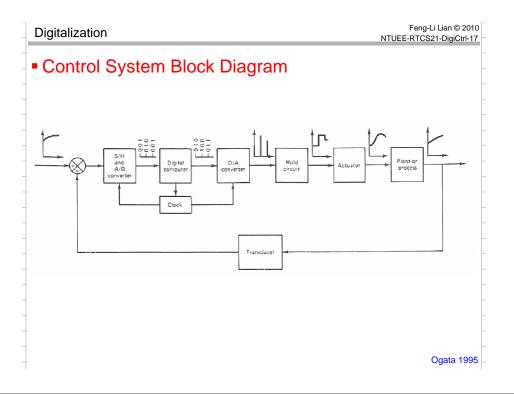
Feng-Li Lian © 2010 NTUEE-RTCS21-DigiCtrl-11

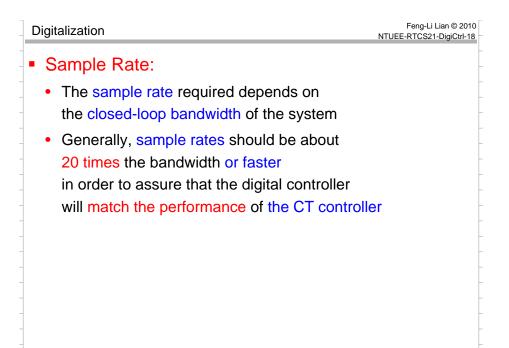

Study in Digital Control Systems

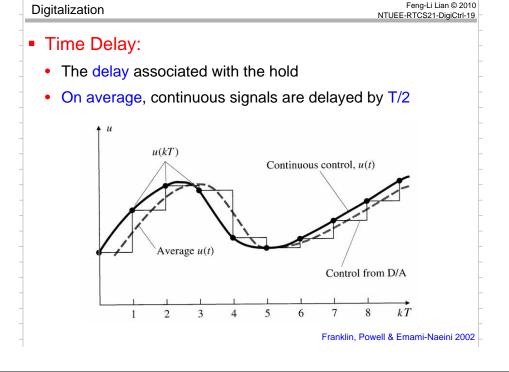

- Controller Design of Digital Control Systems
 - Transfer Function Design Methods
 - > Design techniques:
 - » Tustin's Method or bilinear approximation
 - » Matched Pole-Zero method (MPZ)
 - » Modified Matched Pole-Zero method (MMPZ)
 - > Compensator/controller
 - » pole placement & model matching
 - » phase-lead & phase lag compensators
 - » PID controller
 - » deadbeat controller


Digital Control Systems


Feng-Li Lian © 2010 NTUEE-RTCS21-DigiCtrl-12


- Study in Digital Control Systems
 - Controller Design of Digital Control Systems
 - State-Space Design Methods
 - > Analysis
 - > Design
 - » state feedback (controllability)
 - » state estimation (observability)
 - » regulator: controller + estimator
 - » linear quadratic optimal control (LQR, LQG)
 - » nonlinear control





Franklin, Powell & Emami-Naeini 2002

Feng-Li Lian © 2010