Introduction to Networked Control Systems

Feng-Li Lian
NTU-EE
Feb10 – Jun10

Real-Time Control Systems

• Controlled by one Computer Processor
 – Centralized control systems
 – Real-time operating systems

• Controlled by one Communication Medium
 – Distributed control systems
 – Real-time communications

Networks:
 – Enable remote data transfers & data exchange among users
 – Reduce the complexity in wiring connections and the costs of media
 – Provide ease in maintenance

• Data Networks:
 > Slotted ALOHA & ARPANET around 1960-70
 > Ethernet around 1980

• Control Networks:
 > CAN (Controller Area Network) in 1983:
 » By Robert Bosch, Germany, for car industries
 > PROFIBUS (PROcess FIeld BUS) in 1987:
 » By six German companies & five German institutes
 > DeviceNet in 1994 (?):
 » By Allen-Bradley/Rockwell Automation, for manufacturing-related industries

Networked Control Systems:
 • Control systems with physically distributed processing power and network communication of control signals
Introduction

Motivations:
- The overall NCS performance is always affected by network delays.
- Delays are widely known to degrade the performance of a control system.
- Existing constant time-delay control methodologies may not be directly suitable for controlling a system over the network since network delays are usually time-varying, especially in the Internet.
- Therefore, to handle network delays in a closed-loop control system over a network, an advanced methodology is required.

Overview of NCS Research Issues

Research Overview:
- NCS Configuration
 - Direct structure
 - Hierarchical structure
- Delays in-the-loop
- Delay Characteristics
 - Cyclic service network
 - Random access network
- Effect of Delays in-the-loop
 - Performance degradation
 - Destabilization

NCS Configuration:
- Direct structure:
- Hierarchical structure:

Fig. 1. NCS in the direct structure.

Fig. 2. NCS in the hierarchical structure.
Overview of NCS Research Issues

- NCS Configuration:
 - Direct structure:

![Diagram showing NCS configuration with direct structure]

- Hierarchical structure:

![Diagram showing NCS configuration with hierarchical structure]

- Delays in-the-loop:

![Diagram showing delays in-the-loop in NCS configuration]

Reference:
- Overstreet & Tzes 99
- Tipsuwan & Chow 02
- Tipsuwan & Chow 03
Overview of NCS Research Issues

• Delays in-the-loop:

\[\tau_{SC} \]: sensor-to-controller delay

\[\tau_{CA} \]: controller-to-actuator delay

Fig. 4. Timing diagram of network delay propagations.

Tipsuwan & Chow 03
04/01/04

• Total end-to-end delay is the sum of
 – Pre-processing time: microprocessor
 – Waiting time: network protocol - MAC
 – Transmission time: data rate & length
 – Post-processing time: microprocessor

Tipsuwan & Chow 03
04/01/04

Overview of NCS Research Issues

• Delay Characteristics:

 • Cyclic Service Networks:
 – IEEE 802.4, SAE token bus, PROFIBUS,
 IEEE 802.5, SAE token ring, MIL-STD-1553B, FIP
 – Control and sensory signals are transmitted in a cyclic order
 with deterministic behaviors
 – Delays are periodic & can be simply modeled as a periodic function
 such as \(\tau_{k}^{SC} = \tau_{k+N}^{SC} \) and \(\tau_{k}^{CA} = \tau_{k+M}^{CA} \), \(N, M \) are constants
 – In practice, NCS may experience small variations on periodic delays
 due to several reasons such as discrepancies in clock generators

Tipsuwan & Chow 03
04/01/04

• Random Access Networks:
 – Ethernet, CAN (?)
 – Significant parts of random network delays are waiting time delay
 due to queuing and frame collision on the networks
 – Sources of randomness:
 > the queuing time delay at a switch or a router
 > The propagation time delays from different network paths
 – Delay models:
 > Constant delay
 > Poisson process such as Markov chain
 > Fluid flow model, ARMA model etc.

Tipsuwan & Chow 03
04/01/04
Overview of NCS Research Issues

- Delay Models:

\[f_T(\tau^{ca}_k) = \delta(\tau_k^{ca} - a) \cdot (1 - p_{ca}) + \delta(\tau_k^{ca} - b) \cdot p_{ca} \]

\[f_T(\tau^{sc}_k) = \begin{cases} \delta(\tau_k^{sc} - a) \cdot (1 - p_{sc}), & \tau_k^{sc} = a, \\ p_{sc}/(b - a^+), & \tau_k^{sc} \in (a, b), a < b, \\ 0, & \tau_k^{sc} \notin (a, b). \end{cases} \]
Overview of NCS Research Issues

- **Experimental Data of Network Delays:**
 - Low load network traffic

- **Add two additional low-load nodes with different priorities**

- **Nine-node network**

 \[U = \frac{0.0128}{0.05} + \frac{0.0128}{0.05} = 0.51 \]

 Figure 4.3 Measured delays for sensor to controller, \(T_{s1c} \), and from controller to actuator, \(T_{c1a} \). The experiment was the only load on the bus. The messages were 8 bytes long, the delay is almost constant.

 \[U = \frac{0.0128}{0.05} + \frac{0.0128}{0.05} = 0.51 \]

 Figure 4.3 Measured delays for sensor to controller, \(T_{s1c} \), and from controller to actuator, \(T_{c1a} \). The experiment was the only load on the bus. The messages were 8 bytes long, the delay is almost constant.
Effects of Delays in-the-loop:

- Performance degradation:

\[G_C(s) = \frac{\beta K_P (s + (K_I / K_P))}{s}, \quad G_P(s) = \frac{2029.826}{(s + 26.29)(s + 2.296)} \]

\[K_P = 0.1701, \quad K_I = 0.378, \]

Tipsuwan & Chow 03

- Destabilization: Root locus approach

\[\beta = 1 \]
\[\tau^{ca} = \tau^y = \tau / 2 \]

Tipsuwan & Chow 03

- Destabilization: Bode plot approach

\[\beta \]
\[M(w) \]
\[\phi(w) \]

Malek-Zavarei & Jamshidi 87
Overview of NCS Research Issue

- Effects of Delays in-the-loop:
 - Destabilization: Bode plot approach

Networked Control Methodology

- Networked Control Methodology:
 - Assumptions
 1. Augmented Deterministic Discrete-Time Model Methodology
 2. Queuing Methodology
 3. Optimal Stochastic Control Methodology
 4. Perturbation Methodology
 5. Sampling Time Scheduling Methodology
 6. Robust Control Methodology
 7. Fuzzy Logic Modulation Methodology
 8. Event-Based Methodology
 9. End-User Control Adaptation Methodology