從信號與系統到控制

單元：摺積操作性質 - 5
摺積操作性質之結合律 - 離散

授課老師：連豊力
單元學習目標與大綱

• 瞭解 摺積計算操作 所具備的 結合律原理

• 針對 離散時間信號 的摺積計算操作
摺積計算操作 之 結合律

• 結合律 (Associative)

\[
a[n] \ast (b[n] \ast c[n]) = (a[n] \ast b[n]) \ast c[n]
\]

\[
a(t) \ast (b(t) \ast c(t)) = (a(t) \ast b(t)) \ast c(t)
\]

\[
x[n] \ast h[n] = \sum_{k=-\infty}^{+\infty} x[k] h[n-k]
\]

\[
x(t) \ast h(t) = \int_{-\infty}^{+\infty} x(\tau) h(t-\tau)d\tau
\]
離散摺積計算操作之結合律

\[a[n] \ast (b[n] \ast c[n]) = a[n] \ast (c[n] \ast b[n]) \]

\[x[n] \ast h[n] = \sum_{k=-\infty}^{+\infty} x[k] h[n-k] \]
離散摺積計算操作之結合律

\[x[n] \ast h[n] = \sum_{k=-\infty}^{+\infty} x[k] \cdot h[n-k] \]

\[a[n] = \left(\sum_{k=-\infty}^{+\infty} c[k] \cdot b[n-k] \right) \]

n \rightarrow k

n \rightarrow m

n \rightarrow n - k

n \rightarrow n - m

\[\sum_{m=-\infty}^{+\infty} a[m] \left(\sum_{k=-\infty}^{+\infty} c[k] \cdot b[n - m - k] \right) \]
離散摺積計算操作之結合律

\[
x[n] \ast h[n] = \sum_{k=-\infty}^{+\infty} x[k] h[n-k]
\]

\[
= \sum_{m=-\infty}^{+\infty} a[m] \left(\sum_{k=-\infty}^{+\infty} c[k] b[n-m-k] \right)
\]

\[
= \sum_{m=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} a[m] c[k] b[n-m-k]
\]

\[
= \sum_{k=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} a[m] c[k] b[n-m-k]
\]
離散摺積計算操作之結合律

\[x[n] \ast h[n] = \sum_{k=-\infty}^{+\infty} x[k] h[n-k] \]

\[= \sum_{k=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} a[m] c[k] b[n-m-k] \]

\[= \sum_{k=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} c[k] a[m] b[n-m-k] \]

\[= \sum_{k=-\infty}^{+\infty} c[k] \sum_{m=-\infty}^{+\infty} a[m] b[(n-k) - m] \]
離散摺積計算操作之結合律

\[
\sum_{k=-\infty}^{+\infty} c[k] = \sum_{m=-\infty}^{+\infty} a[m] b[(n-k)-m] + \sum_{m=-\infty}^{+\infty} a[m] b[n - m] = c[n] \sum_{m=-\infty}^{+\infty} a[m] b[n - m]
\]
離散摺積計算操作之結合律

\[a[n] \ast (b[n] \ast c[n]) \]

\[= c[n] \ast (a[n] \ast b[n]) \]

\[= (a[n] \ast b[n]) \ast c[n] \]
摺積計算操作之結合律

- 結合律 (Associative)

\[a[n] \ast (b[n] \ast c[n]) = (a[n] \ast b[n]) \ast c[n] \]

\[a(t) \ast (b(t) \ast c(t)) = (a(t) \ast b(t)) \ast c(t) \]
参考文献

- SciLab: Open source software for numerical computation
 http://www.scilab.org/