Selected Publications

Jean-Fu Kiang received the BS degree in Electrical Engineering from National Taiwan University in 1979 and the Ph.D. degree in Electrical Engineering from Massachusetts Institute of Technology in 1989. He has been a professor of the Department of Electrical Engineering and the Graduate Institute of Communication Engineering, National Taiwan University since 1999.

He has been guiding his students to apply different ideas, theories and methods in exploration of various electromagnetic phenomena and possible applications, including merge multiple modes in a dielectric resonator antenna to increase its bandwidth (2007- 2009); simulate how a tsunami wave perturbs the ionosphere and affects the GPS signals, leading to a method to detect a tsunami within 15 minutes of occurrence (2009); design 3D miniaturized broadband antennas with size of f/10 (2010, 2011); improve the accuracy of a differential GPS system to within a few cm at a distance of 100 km from the reference station, leading to one possible application to measure the real-time wind field within a typhoon (2011); optimize a large phased array with tens of thousands of antenna elements by using evolutionary algorithms (2013-2015); reconstruct a better image of a celestial object 60 million light-years from the Earth, based on very-long baseline interferometry (2014); design super-lenses with meta-materials to achieve a resolution of f/30 (2014); simulate wave propagation in the lower atmosphere, considering the effects of refractivity profile inversion and turbulence, under different weather conditions (2014); model the synchronization among an array of coupled oscillators originally operating at different frequencies (2014, 2015); reconstruct high-fidelity microwave images of multiple underground objects (2014, 2015); simulate wave scattering by a very large rough surface (2015); compensate for the coupling among antennas in an array to improve the direction-of-arrival estimation to within 0.1 degree, even from directions far away from normal incidence (2015); evaluate the impact on ground objects from a high-altitude electromagnetic pulse (2016); estimate the parameters of an evolving sand-and-dust storm using improved radar equations (2016); apply LEO-ground infrared laser occultation technique and a harmony search algorithm to retrieve major greenhouse gas profiles around a specific receiver site in real time (2017); apply synthetic-aperture radar (SAR) imaging on ground objects at high squint angles (2017); compensate motion errors in SAR imaging (2017); simulate microwave hyperthermia to treat cancers (2018, 2019); process radar signals to estimate direction-of-arrival (DOA) and carrier frequency of multiple signal sources with co-primed array and triply-primed array technique (2018, 2019); compute the brightness temperatures from very lossy medium by using finite-difference time-domain (FDTD) method to obtain near-field bistatic transmission coefficients and by extending the Planck's law to lossy medium (2019); estimate range-dependent sound-speed profile with dictionary learning method (2020); compare different planetary magnetospheres in the solar system (2020); implement dispersive FDTD scheme and surface impedance boundary condition for modeling pulse propagation in very lossy medium (2020); apply CNN algorithms on hyperspectral image classification in agricultural lands (2020).

You are welcome to view the documents of these works and other interesting explorations by clicking the "Selected Publications" button on the left-bar or visiting the website:


Copyright © . All rights reserved.