MQS Solution with PEC Cylinder Sphere


Editors:楊子毅、呂以德

Adviser:江簡富教授

Fig.1 shows a cylindrical conductor exposed to an external magnetic field which approaches \(\hat{x}H_0\) at infinity.

                                                                                                                                                                                        









Fig.1 Cylindrical PEC Exposted to An External Magnetic Field

(1)Potential

\[\Phi_{tot\ }=\ -H_0\rho \sin\phi-H_0 a^2\frac{\sin\phi}{\rho}\ \ \ \ \ ({\rm A/m^2})\]

                                              Potential

(2)Intensity

\[H_{tot}=\hat{\rho}H_0 \left( 1- \Bigl({\frac{a}{\rho} \Bigr) }^2 \right) \sin\phi+\hat{\phi}H_0 \left(1+\Bigl({\frac{a}{\rho}\Bigr)}^2 \right)\cos\phi \ \ \ \ \ ({\rm A/m})\]                                                 Intensity

(3)Current Density:

\[J_s=\hat{\rho}\times \left(\bar{H}-0 \right)=H_\phi\hat{z}=2H_0\cos\phi\hat{z}\ \ \ \ \ ({\rm A/m^2})\]                                     Current Density