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Abstract: An on-site InSAR imaging method carried out with unmanned aerial vehicles (UAVs)
is proposed to monitor terrain changes with high spatial resolution, short revisit time, and high
flexibility. To survey and explore a specific area of interest in real time, a combination of a least-square
phase unwrapping technique and a mean filter for removing speckles is effective in reconstructing
the terrain profile. The proposed method is validated by simulations on three scenarios scaled down
from the high-resolution digital elevation models of the US geological survey (USGS) 3D elevation
program (3DEP) datasets. The efficacy of the proposed method and the efficiency in CPU time are
validated by comparing with several state-of-the-art techniques.

Keywords: InSAR; unmanned aerial vehicle; digital elevation model (DEM); phase unwrapping;
mean filter

1. Introduction

Radars have been widely used for terrain surveillance under different weather condi-
tions [1], which is crucial for environmental protection and natural disaster evaluation [2].
Synthetical aperture radars (SARs), including ALOS (L-band, 2006–2011) [3], Sentinel-1
(C-band, 2014–) [3], and UAVSAR (airborne, L-band and P-band, 2008–) [3], have been used
for monitoring glaciers, volcanoes, earthquakes, and so on. TerraSAR-X, operating at X-band
with 300 MHz bandwidth, offers spatial resolution of 0.6 m × 1.1 m (slant range × azimuth)
in spotlight mode, 0.6 m × 0.24 m in staring spotlight mode, and 1.2 m × 3.3 m in stripmap
mode [4,5].

The InSAR technique has been used for measuring surface topography and altimetry
profile [6], mapping three-dimensional building shape [7], and detecting building edge [8].
InSAR and TomoSAR imaging techniques demand precise coregistration between master
image and slave images [9,10]. In [9], a two-step, scale-invariant feature transform (SIFT)
registration method was proposed. In [11], an outlier-detecting total least-squares (OD-TLS)
algorithm was proposed to enhance the precision and robustness of 3D point-set registration.
In [12], a sinc interpolation method was used to implement subpixel-to-subpixel match.

Faithful reconstruction of a terrain profile relies on accurate acquisition of interfero-
metric phase. Numerous filtering methods on interferometric phase have been developed
in the past few decades [13], including transform domain methods [14], nonlocal meth-
ods [15], and spatial domain methods [16]. The trade-off between noise reduction and
preservation of terrain-related signal with transform domain methods is typically adjusted
via a threshold [14].

In [17], a 3D space-time nonlocal mean filter (NLMF) was applied to detect terrain
changes by extracting nonlocal information from pixels in SAR images acquired in different
time windows. In [18], a nonlocal mean filter was applied to a few persistent scattering
points in a search area to improve the accuracy of 3D deformation profile. The nonlocal
filters performed well in preserving details of complex structures, but were less effective in
removing speckle noise [15].
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A spatial-domain Gaussian filter was used to reduce high-frequency noise while
preserving deformation information [19]. It could reduce impulse noise and preserve edges
by replacing each pixel with the mean value of its neighboring pixels [20], but the edges
might become blurred due to loss of fine details. On the other hand, nonlocal filters preserve
intricate details and adapt to local structures by considering pixel patch similarities, with
the downside of computational complexity and sensitivity to parameters.

Phase unwrapping (PU) is a critical step to derive a faithful terrain profile from the
interferometric phase of the acquired InSAR image, and the results are affected by the
number of baselines used in probing the target area [21]. A phase unwrapping problem could
be formulated as a wrap count classification task to invoke deep learning methods [22], as
used in processing optical images [23,24]. In [25], a quality-guided algorithm was developed
by unwrapping the phases along an optimal path in the interferometric phase image, based
on a quality map of all edges in the image. Although the result is insensitive to noise, its
performance relies on the quality map and the errors may propagate along the path.

A least-squares (LS) phase unwrapping method was formulated as a global optimiza-
tion task [26], which may be sensitive to outliers and takes long computational time to
process a large image. In [27], a phase unwrapping method was proposed by minimizing
the difference between the discrete partial derivative of the wrapped phase function and
that of the unwrapped phase function. The unwrapped phases were obtained by solving a
Hunt’s matrix and a discrete Poisson’s equation, accelerated by using FFT, and the result
was comparable to other methods.

InSAR imaging tasks have been operated on spaceborne [28], airborne [29], ground-
based [30], and UAV-borne platforms [31]. Spaceborne platforms are typically used to
survey wide areas or large-scale phenomena [4], airborne platforms are more flexible in
path planning [32], and ground-based platforms are used to monitor local environment [33].

UAV-borne platforms [34–36] are expedient for monitoring local area of contingency
and can achieve spatial resolution of 10 cm [37] in P and L bands [31]. For example, the
Antarctic ice sheet (AIS) is covered with rifts and crevasses off the map, endangering the
exploration personnel [38,39]. Satellite-borne sensors cannot provide updated images and
information for on-site tasks [38,40], but can be complemented with the InSAR images
acquired with UAVs. Typical satellite-borne platforms take days to revisit the same area,
with a baseline of a few hundred meters, while UAV-borne platforms can revisit the same
area immediately after the previous flight, with a baseline of a few meters.

The radar signals can be acquired in two separate flights with single-channel SAR or a
single flight with dual-channel SAR [41]. Typical position accuracy of UAVs derived from
GPS lies between 0.5 and 2 m [42], which can be enhanced to the centimeter level by using
differential GPS (DGPS) technique [43] or real-time kinematic GPS [44]. The downside of
deploying UAVs is the impact of airflow disturbance and platform perturbation [42], which
can be mitigated by applying motion compensation and autofocusing techniques [45–47].

In this work, an on-site InSAR imaging method is proposed to reconstruct a high-
resolution local terrain profile with UAV-borne SARs in L-band. A mean filter is used to
reduce artifact speckles, and a least-squares phase unwrapping method is used to acquire
2D interferometric phase in almost real time. Three high-quality digital elevation models
(DEMs) featuring volcano, glacier, and landslide, are retrieved from the US geological survey
(USGS) 3D elevation program (3DEP) [48] to validate the efficacy of the proposed method.
The performance is further evaluated by comparing the acquired InSAR images with their
counterparts acquired using other state-of-the-art techniques under the effects of noise.

The rest of this paper is organized as follows: the proposed InSAR method is presented
in Section 2, the simulation results are discussed in Section 3, and some conclusions are
drawn in Section 4.

2. Proposed InSAR Method

Figure 1 shows the schematic of InSAR operation with two parallel flight paths, where
the x, y, and z axes are aligned in the ground-range direction, azimuth direction, and height
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direction, respectively. A(x, y, z) denotes a point target, and the platform flies at height H
above ground, with the side-looking angle θℓ to A(x, y, z).

Figure 1. Schematic of InSAR operation.

The coordinates of radar P0(η) along the master track and radar P1(η) along the slave
track are given by

P0(η) = (0, ηvp, H)

P1(η) = (−b, ηvp, H) (1)

The slant ranges from P0(η) and P1(η) to A(x, y, z) are R0(η) and R1(η), respectively, with

R0(η) =
√
(x)2 + (y − ηvp)2 + (z − H)2

R1(η) =
√
(x + b)2 + (y − ηvp)2 + (z − H)2 (2)

2.1. Backscattered Signals

Figure 2 shows the flow-chart of the range-Doppler algorithm (RDA) used in this
work [49]. The signal backscattered from the point target A(x, y, z) and received at Pn(η)
(n = 0, 1) is demodulated to the baseband as

srn(τ, η) = A0we(τ − 2Rn(η)/c)e−j4π f0Rn(η)/c+jπKr [τ−2Rn(η)/c]2 (3)

where A0 is the amplitude, f0 is the carrier frequency, Kr is the chirp rate of the linear
frequency modulation (LFM) pulse, τ is the range (fast) time, η is the azimuth (slow) time,
and we(t) = rect(t) is a window function, which is equal to one when |t| ≤ 1/2 and zero
otherwise.

By taking the Fourier transform of srn(τ, η) with respect to τ and η sequentially, we
have

Sn( fτ , fη) ≃ AWe( fτ)ejϕn (4)

where A is a constant of integration, We( fτ) = we( fτ/Kr), and

ϕn ≃ −π
f 2
τ

Kr
− 2π fη

(
y
vp

)
− 4πRn(0)D

λ
− 4πRn(0)

λD
fτ

f0

+
4πRn(0)

λ

1 − D2

2D3

(
fτ

f0

)2
− 4πRn(0)

λ

1 − D2

2D5

(
fτ

f0

)3
(5)
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with D =

√√√√1 −
c2 f 2

η

4 f 2
0 v2

p
.

Figure 2. Flow-chart of range-Doppler algorithm (RDA) [49].

2.2. Range Compression

Let us define a range-compression filter Hrc( fτ , fη), a coupling-compensation filter
Hcc( fτ , fη), and a range cell migration correction (RCMC) filter Hrcmc( fτ , fη) as

Hrc( fτ , fη) = ejπ f 2
τ /Km (6)

Hcc( fτ , fη) = exp

{
j
πλRn(0) f 3

τ f 2
η

2D5 f 3
0 v2

p

}
(7)

Hrcmc( fτ , fη) = exp
{

j
4πRn(0) fτ

c

[
1
D

− 1
D( fdc)

]}
(8)

where fdc is the Doppler centroid and

1
Km

=
1

Kr
− 4Rn(0)

λ

1 − D2

2D3 f 2
0

(9)

Then, multiply these three filters with Sn( fτ , fη) to have

S(1)
n ( fτ , fη) = Sn( fτ , fη)Hrc( fτ , fη)Hcc( fτ , fη)Hrcmc( fτ , fη) = AWe( fτ)ejϕ(1)

n (10)

where

ϕ
(1)
n = −2π fη

(
y
vp

)
− 4πRn(0)D

λ
− 4πRn(0)

λD( fdc)

fτ

f0
(11)

By taking the inverse Fourier transform of S(1)
n ( fτ , fη) in the range, we obtain the range-

compressed signal
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S(2)
n (τ, fη) = Ae−j2π fηy/vp e−j4πRn(0)D/λKrTrsinc

{
KrTr

[
τ − 2Rn(0)

cD( fdc)

]}
(12)

where sinc(x) = sin(πx)/(πx).

2.3. Azimuth Compression

Let us define an azimuth compression filter

Hac(τ, fη) = ej4πRn(0)D/λ (13)

which is multiplied with S(2)
n (τ, fη) to have

S(3)
n (τ, fη) = S(2)

n (τ, fη)Hac(τ, fη)

= AKrTre−j2π fηy/vp sinc
{[

τ − 2Rn(0)
cD( fdc)

]}
(14)

By taking the inverse Fourier transform of S(3)
n (τ, fη) in azimuth, we obtain the azimuth-

compressed signal

s(4)n (τ, η) = F−1
η {S(3)

n (τ, fη)}

= AKrTrsinc
{

KrTr

[
τ − 2Rn(0)

cD( fdc)

]}
Fasinc

{
Fa(η − y/vp)

}
(15)

which is the SAR image stored in a matrix s(4)n [u, v] = s(4)n (τv, ηu) of size Na × Nr.

2.4. Coregistration

Figure 3 shows the flow-chart of InSAR imaging. In the master image, the τ-axis is
sampled at τa + nr∆τ, with τa = 2R0/c and −Nr/2 ≤ nr ≤ Nr/2 − 1. These sampling
values of τ are stored in a vector

ā = [τa, τa, · · · , τa]
t + ∆τ[−Nr/2,−Nr/2 + 1, · · · , Nr/2 − 1]t (16)

The slant ranges associated with all the range cells in the master image are r̄0 = cā/2, and
the side-looking angle of the vth range cell is θℓ[v] = cos−1(H/r0[v]), with 1 ≤ v ≤ Nr.

Figure 3. Flow-chart of InSAR imaging.



Sensors 2024, 24, 2287 6 of 29

Figure 4a shows that the point target A(x, y, h) appears at A0 in the master image
and A1 in the slave image. If the platforms fly high enough, the range difference between
the two tracks in Figure 4a can be approximated as that in Figure 4b, namely, ∆rA[v] =
r1A[v]− r0A[v] ≃ r1[v]− r0[v] = ∆r[v]. By the law of cosines, r1[v] can be represented as
r1[v] =

√
b2 + (r0[v])2 − 2br0[v] cos(θ0[v] + π/2). The range difference ∆r[v] is normalized

with respect to c/(2Fr) to have ∆rp[v] = ∆r[v](2Fr/c).

(a)

(b)
Figure 4. (a) Point target A(x, y, h) appears at A0 in the master image and A1 in the slave image.
(b) Point target Ag(x, y, 0) with known r0[v], r1[v], θℓ[v], and b.

Next, apply both sinc interpolation [12] and subpixel-to-subpixel match to coregister
the slave image to the master image. The original slave image ¯̄s(10)

1 of size Na × Nr is

interpolated in the range direction by a factor of 16 to obtain a finer slave image ¯̄s(13)
1 of size

Na × 16Nr, which is resampled to derive a coregistered slave image S1c[u, v] of size Na × Nr.

2.5. Interferometry and Flat-Earth Phase Removal

An interferogram is formed from the master image S0[u, v] and the coregistered slave
image S1c[u, v] as

I[u, v] = |S0[u, v]||S1c[u, v]|ejϕ[u,v] (17)

where ϕ[u, v] = ϕ0[u, v]− ϕ1c[u, v] is the interferometric phase.
The interferometric phase attributed to the flat-earth reference plane is ϕ f [v] =

4π(r1[v]− r0[v])/λ [50], which is subtracted from the phase of I[u, v] in (17) to obtain

I(1)[u, v] = I[u, v]e−jϕ f [v] = |S0[u, v]||S1c[u, v]|ejϕ(1) [u,v] (18)

where ϕ(1)[u, v] = ϕ[u, v]− ϕ f [v].
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2.6. Mean Filter

Since the master image and the slave image are not perfectly coregistered, the inter-
ferometric phase manifests some random noise, inflicting errors in the subsequent phase
unwrapping process. A mean filter is applied before phase unwrapping to reduce such
phase noise.

Consider a target area of (2La + 1) azimuth cells by (2Lr + 1) range cells, centered at
[Na/2, Nr/2]. The interferometric phase in the target area is mapped from ϕ(1)[u, v] as

¯̄ϕ(2) =

 ϕ(1)[Na/2 + La, Nr/2 − Lr] · · · ϕ(1)[Na/2 + La, Nr/2 + Lr]
...

. . .
...

ϕ(1)[Na/2 − La, Nr/2 − Lr] · · · ϕ(1)[Na/2 − La, Nr/2 + Lr]

 (19)

Next, apply a searching window of size (2wa + 1)× (2wr + 1) and centered at [u′, v′] on
¯̄ϕ(2) to have

¯̄ϕ(3)
u′v′ =

 ϕ(2)[u′ + wa, v′ − wr] · · · ϕ(2)[u′ + wa, v′ + wr]
...

. . .
...

ϕ(2)[u′ − wa, v′ − wr] · · · ϕ(2)[u′ − wa, v′ + wr]


An intermediate phase, ϕs[u′, v′], is derived from ¯̄ϕ(3)

u′v′ as [51]

Aϕs [u
′, v′]ejϕs [u′ ,v′ ] =

u′
max

∑
u′′=u′

min

v′max

∑
v′′=v′min

ejϕ(3)
u′v′ [u

′′ ,v′′ ] (20)

The interferometric phase after mean filtering is computed as [20]

ϕ(3′)[u′, v′] = ϕs[u′, v′] +
ϕ(3)[u′, v′]− ϕs[u′, v′]

u′
max

∑
u′′=u′

min

v′max

∑
v′′=v′min

{
ϕ(3)[u′′, v′′]− ϕs[u′, v′]

}

2.7. Poisson’s Equation of Unwrapped Phase

Let us define a wrapping operator as [25]

ϕ(4)[u′, v′] = W
{

ϕ(3′)[u′, v′]
}
= ϕ(3′)[u′, v′]− 2π

⌊
ϕ(3′)[u′, v′] + π

2π

⌋

which returns the principal value of ϕ(3′)[u′, v′] in (−π, π]. The residue of ϕ(3′)[u′, v′] is
determined as [25]

R
{

ϕ(3′)[u′, v′]
}
= W

{
ϕ(3′)[u′, v′]− ϕ(3′)[u′ + 1, v′]

}
+W

{
ϕ(3′)[u′ + 1, v′]− ϕ(3′)[u′ + 1, v′ + 1]

}
+W

{
ϕ(3′)[u′ + 1, v′ + 1]− ϕ(3′)[u′, v′ + 1]

}
+W

{
ϕ(3′)[u′, v′ + 1]− ϕ(3′)[u′, v′]

}
(21)

with possible outcomes of −2π, 0, or 2π.
Next, take the mirror reflections of the wrapped phase function to obtain an even

periodic function, which is continuous at the junction between two adjacent periods. Let
U = 2La + 1 and V = 2Lr + 1, an expanded phase function is defined in terms of ¯̄ϕ(4) and
its three versions of mirror reflection as
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¯̄ϕ(4′)
2U×2V =

 ¯̄ϕ(4b) ¯̄ϕ(4c)

¯̄ϕ(4) ¯̄ϕ(4a)

 (22)

where

¯̄ϕ(4a) =

 ϕ(4)[U, V] · · · ϕ(4)[U, 1]
...

. . .
...

ϕ(4)[1, V] · · · ϕ(4)[1, 1]


¯̄ϕ(4b) =

 ϕ(4)[1, 1] · · · ϕ(4)[1, V]
...

. . .
...

ϕ(4)[U, 1] · · · ϕ(4)[U, V]


¯̄ϕ(4c) =

 ϕ(4)[1, V] · · · ϕ(4)[1, 1]
...

. . .
...

ϕ(4)[U, V] · · · ϕ(4)[U, 1]

 (23)

The wrapped phase differences

∆ϕv′ [u
′, v′] = W

{
ϕ(4′)[u′, v′ + 1]− ϕ(4′)[u′, v′]

}
∆ϕu′ [u′, v′] = W

{
ϕ(4′)[u′ + 1, v′]− ϕ(4′)[u′, v′]

}
(24)

fall in (−π, π].
Given the wrapped phase ϕ(4′)[u′, v′], its unwrapped counterpart, ϕ̃[u′, v′] satisfies

ϕ̃[u′ + 1, v′]− ϕ̃[u′, v′] = ∆ϕu′ [u′, v′],

1 ≤ u′ ≤ 2U − 1, 1 ≤ v′ ≤ 2V (25)

ϕ̃[u′, v′ + 1]− ϕ̃[u′, v′] = ∆ϕv′ [u
′, v′],

1 ≤ u′ ≤ 2U, 1 ≤ v′ ≤ 2V − 1 (26)

The least-squares solution of (25) and (26) can be obtained by minimizing the cost func-
tion [27,52]

C =
2U−1

∑
u′=1

2V

∑
v′=1

{
ϕ̃[u′ + 1, v′]− ϕ̃[u′, v′]− ∆ϕu′ [u′, v′]

}2

+
2U

∑
u′=1

2V−1

∑
v′=1

{
ϕ̃[u′, v′ + 1]− ϕ̃[u′, v′]− ∆ϕv′ [u

′, v′]
}2 (27)

with the Hunt’s method to have [52]

ϕ̃[u′ + 1, v′] + ϕ̃[u′ − 1, v′] + ϕ̃[u′, v′ + 1] + ϕ̃[u′, v′ − 1]− 4ϕ̃[u′, v′]

= ∆ϕu′ [u′, v′]− ∆ϕu′ [u′ − 1, v′] + ∆ϕv′ [u
′, v′]− ∆ϕv′ [u

′, v′ − 1]

which is rearranged into a Poisson’s difference equation on a 2U × 2V grid as{
ϕ̃[u′ + 1, v′]− 2ϕ̃[u′, v′] + ϕ̃[u′ − 1, v′]

}
+
{

ϕ̃[u′, v′ + 1]− 2ϕ̃[u′, v′] + ϕ̃[u′, v′ − 1]
}
= ρ[u′, v′] (28)

where

ρ[u′, v′] =
(
∆ϕu′ [u′, v′]− ∆ϕu′ [u′ − 1, v′]

)
+
(
∆ϕv′ [u

′, v′]− ∆ϕv′ [u
′, v′ − 1]

)
(29)
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2.8. Solving Poisson’s Difference Equation with FFT

Define the 2D discrete Fourier transform (DFT) of ϕ̃[u′, v′] and its inverse as [52]

Φ[m, n] =
2U

∑
u′=1

2V

∑
v′=1

ϕ̃[u′, v′] exp
{
−j2π(m − 1)(u′ − 1)

2U

}
exp

{
−j2π(n − 1)(v′ − 1)

2V

}
,

1 ≤ m ≤ 2U, 1 ≤ n ≤ 2V (30)

ϕ̃[u′, v′] =
1

4UV

2U

∑
m=1

2V

∑
n=1

Φ[m, n] exp
{

j2π(m − 1)(u′ − 1)
2U

}
exp

{
j2π(n − 1)(v′ − 1)

2V

}
,

1 ≤ u′ ≤ 2U, 1 ≤ v′ ≤ 2V (31)

By substituting (31) into the left-hand-side of (28), we obtain

1
4UV

2U

∑
m=1

2V

∑
n=1

Φ[m, n]ejαejβ
{

ejπ(m−1)/U + e−jπ(m−1)/U

+ejπ(n−1)/V + e−jπ(n−1)/V − 4
}

(32)

where α = π(m − 1)(u′ − 1)/U and β = π(n − 1)(v′ − 1)/V. The right-hand side of (28)
can be represented as

ρ[u′, v′] = IDFT{P[m, n]} =
1

4UV

2U

∑
m=1

2V

∑
n=1

P[m, n]ejαejβ,

1 ≤ u′ ≤ 2U, 1 ≤ v′ ≤ 2V (33)

By equating (32) and (33), we obtain

P[m, n] = Φ[m, n]
(

2 cos
π(m − 1)

U
+ 2 cos

π(n − 1)
V

− 4
)

(34)

The phase unwrapping procedure is summarized as follows:
Step 1: Take the mirror reflections of ¯̄ϕ(4) to obtain ¯̄ϕ(4′), as in (22);
Step 2: Compute ρ[u′, v′] in (29), with 1 ≤ u′ ≤ 2U and 1 ≤ v′ ≤ 2V;
Step 3: Take 2D DFT of ρ[u′, v′] to obtain P[m, n], as in (33);
Step 4: Compute Φ[m, n] by using (34), with 1 ≤ m ≤ 2U, 1 ≤ n ≤ 2V, and Φ[1, 1] = 0;
Step 5: Take 2D IDFT of Φ[m, n] to obtain the solution, ϕ̃[u′, v′];
Step 6: Retrieve the unwrapped interferometric phases in the target area as

ϕ(5)[u′, v′] =

 ϕ̃[U, V] · · · ϕ̃[U, V]
...

. . .
...

ϕ̃[1, 1] · · · ϕ̃[1, V]

 (35)

2.9. Nonlocal Filter

A nonlocal filter can be applied to either the interferometric phase ϕ(1)[u′, v′] in (18)
before phase unwrapping or ϕ(5)[u′, v′] in (35) after phase unwrapping. The output of the
nonlocal filter to ϕ(1)[u′, v′] is computed as [15,53]

ϕ
(2)
NL[u, v] = ∑

[u′ ,v′ ]∈Wse

W1[u, v; u′, v′]ϕ(1)[u′, v′] (36)

where Wse is a search window and W1[u, v; u′, v′] is a weighting coefficient that is deter-
mined by the difference of pixels between two similarity windows centered at [u, v] and
[u′, v′]. The weighting coefficient is large if the pixels in these two similarity windows
match closely, and vice versa. The sum of all weighting coefficients over Wse is set to one.
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In the literature, a nonlocal filter is applied before phase unwrapping to reduce noise,
speckle, or other artifacts embedded in the wrapped flattened phase, aiming to acquire a
more accurate unwrapped phase. A nonlocal filter applied after phase unwrapping aims to
smooth the unwrapped phase, at the risk of inducing artifacts or errors to the latter. The
simulation results in this work show that smoother interferometric phase distribution is
acquired by applying a nonlocal filter before phase unwrapping than after it.

2.10. Quality-Guided Phase Unwrapping

A quality-guided phase unwrapping process is also used in this work for comparison.
A quality map is defined over a window Ws centered at [u, v] as [25]

Z[u, v] =
√

∑
[u′ ,v′ ]∈Ws

(∆ϕu[u′, v′]− ⟨∆ϕu[u, v]⟩)2

+

√
∑

[u′ ,v′ ]∈Ws

(∆ϕv[u′, v′]− ⟨∆ϕv[u, v]⟩)2 (37)

where ∆ϕu[u′, v′] and ∆ϕv[u′, v′] are the partial derivatives of the wrapped phase in the u
and v directions, respectively, and their mean values over the window Ws are denoted as
⟨∆ϕu[u, v]⟩ and ⟨∆ϕv[u, v]⟩, respectively.

After computing the quality map over an image area of interest, the pixel with the
highest quality-map value is denoted as [us, vs]. The phase unwrapping process begins with
its four surrounding pixels, [us ± 1, vs] and [us, vs ± 1], followed by the pixels surrounding
them. The process is repeated until all the pixels in the image area are exhausted.

2.11. Target Height Estimation

By adding the flat-earth phases in the target area,

ϕ̄
(2)
f =



ϕ
(2)
f [1]

ϕ
(2)
f [2]

...
ϕ
(2)
f [2Lr + 1]


=


ϕ f [Nr/2 − Lr]

ϕ f [Nr/2 − Lr + 1]
...

ϕ f [Nr/2 + Lr]

 (38)

back to the unwrapping phase, ϕ(5)[u′, v′], we have

ϕ(6)[u′, v′] = ϕ(5)[u′, v′] + ϕ
(2)
f [v′] (39)

Without loss of generality, choose cell [1, 1] as the reference cell, with a reference phase
ϕref = ϕ(6)[1, 1]− ϕ

(2)
f [1]. The phase difference between the master image and the slave

image is calibrated as

ϕ(7)[u′, v′] = ϕ(6)[u′, v′]− ϕref (40)

Figure 5 shows the geometry for target-height estimation. The difference between
|P0 A| and |P1 A| is estimated as

∆rA[v′] =
λ

4π
ϕ(7)[u′, v′] (41)

The side-looking angle from the master track toward the point target A is calculated by
using the law of cosines as

θℓA[v′] = cos−1

{
(r0A[v′])2 + b2 − (r0A[v′] + ∆rA[v′])

2

2br0A[v′]

}
− π

2
(42)
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Finally, the height of point target A is estimated as

h[v′] = H − r0A[u′, v′] cos θℓA[v′] (43)

Figure 5. Geometry for target-height estimation.

3. Simulations and Discussions

In this section, three scenarios are simulated by using the DEM models extracted from
the US Geological Survey (USGS) 3D Elevation Program (3DEP) dataset [48], including
Mount St. Helens, Columbia Glacier, and Santa Cruz landslide. Without loss of effective-
ness, each DEM model is scaled down by a common factor in all three dimensions to reduce
the computational time. Table 1 lists the default InSAR parameters used in the simulations,
from which the height of ambiguity is determined as [54]

zamb =
λR0 sin θℓ

2B⊥
= 80.52 (m) (44)

Table 1. Default parameters for InSAR simulations.

Parameter Symbol Value

carrier frequency fc 1258 MHz
range bandwidth Br 300 MHz
pulse duration Tr 1 µs
range sampling rate Fr 360 MHz
range chirp rate Kr 300 THz/s
range samples Nr 1024
pulse repetition frequency Fa 400 Hz
azimuth samples (case 1) Na 2048
azimuth samples (cases 2,3) Na 1024
look angle θℓ 45◦

platform height H 2000 m
platform velocity vp 150 m/s
closest slant range R0 2828 m
slant range resolution ∆r 0.5 m
azimuth resolution (case 1) ∆a 0.44 m
azimuth resolution (cases 2,3) ∆a 0.88 m
baseline B 5 m
height of ambiguity zamb 80.52 m

Aside from the mean filter (MF) and the least-squares phase unwrapping (LSPU)
method, the nonlocal filter (NF) and the quality-guided phase unwrapping (QGPU) method
are also used for comparison. The effects of noise are studied by comparing the acquired
images without noise with their counterparts at SNR = 0 dB, −5 dB, and −10 dB.
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3.1. Mount St. Helens

Figure 6 shows the intermediate images of Mount St. Helens, scaled down tenfold to
reduce the computational time. Mount St. Helens is an active volcano located at (46.2◦ N,
122.18◦ W), Skamania County, Washington, USA. Its elevation is 2549 m and its prominence
is 1404 m. The DEM is extracted from the USGS 3DEP dataset [48], with spatial resolution
of 1 m × 1 m.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 6. Intermediate images of Mount St. Helens: (a) master SAR image without noise, (b) master
SAR image at SNR = −10 dB, (c) interferometric phase without noise, (d) interferometric phase
at SNR = −10 dB, (e) wrapped flattened phase without noise, (f) wrapped flattened phase at
SNR = −10 dB, (g) coherence map without noise, (h) coherence map at SNR = −10 dB.
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Figure 6a,b shows the master SAR images without noise and at SNR = −10 dB,
respectively. The latter manifests speckles over the whole image. Figure 6c,d shows the
interferometric phase without noise and at SNR = −10 dB, respectively. The latter is
severely smeared by noise and covered with speckles. Figure 6e,f shows the wrapped
flattened phase without noise and at SNR = −10 dB, respectively. Similar features as in the
interferograms are observed.

Figure 6g,h shows the coherence maps without noise and at SNR = −10 dB, respec-
tively. The coherence between the master SAR image S0[u, v] and the coregistered slave
image S1c[u, v] is defined as [54]

γco[u, v] =
E{S0[u, v]S∗

1c[u, v]}√
E{|S0[u, v]|2}E{|S1c[u, v]2}

(45)

which is equal to one if the coregistration is perfect. It is observed that the coherence map
without noise is close to one, and that, at SNR = −10 dB, it is slightly reduced to about 0.8.

Figure 7 shows the reconstructed images of Mount St. Helens with the proposed
method and the effects of noise. The comparison between mean filter (MF) and nonlocal
filter (NF), as well as between least-squares phase unwrapping (LSPU) and quality-guided
phase unwrapping (QGPU) methods, under noise free condition are also demonstrated.

(a) (b)

(c) (d)

(e) (f)
Figure 7. Cont.
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(g) (h)
Figure 7. Images of Mount St. Helens: (a) DEM extracted from USGS 3DEP dataset [48], (b) tenfold
scale-down model of DEM in (a); reconstructed DEM with (c) proposed method (MF and LSPU),
SSIM = 0.90, RMSE = 5.79 m, (d) NF [15,53] and LSPU, SSIM = 0.89, RMSE = 6.14 m, (e) MF
and QGPU [25], SSIM = 0.90, RMSE = 5.79 m, (f) proposed method at SNR = 0 dB, SSIM = 0.89,
RMSE = 10.8 m, (g) proposed method at SNR = −5 dB, SSIM = 0.89, RMSE = 9.22 m, (h) proposed
method at SNR = −10 dB, SSIM = 0.74, RMSE = 22.38 m.

Figure 7a shows the true DEM of Mount St. Helens extracted from the dataset,
Figure 7b shows the tenfold scale-down model of that in Figure 7a, and Figure 7c shows
the reconstructed DEM with the proposed method.

The fidelity of the acquired InSAR image a against the true image b is evaluated with
a structural similarity (SSIM) index defined as [55,56]

SSIM(a, b) =

(
2µaµb + c1

µ2
a + µ2

b + c1

)(
2σab + c2

σ2
a + σ2

b + c2

)
(46)

where µp and σp are the mean and standard deviation, respectively, of image p, with p = a, b;
σab is the covariance between images a and b; and c1 and c2 are stability constants. The
SSIM index lies in [0, 1], with higher index indicating higher similarity. Each image pixel is
stored in 8 bits, implying the dynamic range of L = 28 − 1 = 255. The stability constants
are chosen as c1 = (0.01L)2 = 6.50 and c2 = (0.03L)2 = 58.52. The SSIM index between the
images in Figure 7b,c is 0.90.

The fidelity of the acquired InSAR image a against the true image b is also evaluated
with a root-mean-square error (RMSE) defined as [57]

RMSE(a, b) =

√√√√ 1
P

P

∑
p=1

(ap − bp)2 (47)

where ap and bp are the values of the pth pixels in images a and b, respectively, and P is the
number of pixels in one image. The RMSE between the images in Figure 7b,c is 5.79 m.

Figure 7d shows the reconstructed DEM, with the NF replacing the mean filter; its
SSIM index and RMSE against the image in Figure 7b are 0.89 and 6.14 m, respectively, i.e.,
slightly worse than the proposed method.

A closer inspection of the images in Figure 7c,d reveals that the NF preserves sharper
edge while the MF smears image features. The SSIM indices and RMSE values of these two
images are similar, implying that MF and NF have comparable performance.

Figure 7e shows the reconstructed DEM with MF and QGPU; its SSIM index and RMSE
against the image in Figure 7b are 0.90 and 5.79 m, respectively, which are identical to those
in Figure 7c, indicating that LSPU and QGPU methods have comparable performance in
this case. Note that the QGPU method has longer computation time than the LSPU method.

Table 2 lists the CPU time of running for LSPU, QGPU, mean filter, and nonlocal filter,
with MATLAB R2019a on a PC with i7-3.00 GHz CPU and 32 GB memory. The CPU time
of running for the mean filter is about half that of the nonlocal filter. The CPU time of the
LSPU is much shorter than that of the QGPU because the former is implemented with
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FFT on the whole image, while the QGPU is executed pixel by pixel. The breakdown of
CPU time in LSPU, QGPU, mean filter, and nonlocal filter, as well as their algorithms, are
detailed in Appendix A.

Table 2. CPU time of running for LSPU, QGPU, mean filter, and nonlocal filter.

Method CPU Time (s)

mean filter (MF) 962.80
nonlocal filter (NF) 1970.78
LS phase unwrapping 0.72
QG phase unwrapping 10,271.32

Figure 7f–h shows the InSAR images acquired with the proposed method at SNR
= 0 dB, −5 dB, and −10 dB, respectively. Their SSIM indices against Figure 7b are 0.89,
0.89, and 0.74, respectively, and their RMSE values against Figure 7b are 10.8 m, 9.22 m, and
22.38 m, respectively. The main features in the image are almost unaffected at SNR = −5 dB
and become slightly distorted at SNR = −10 dB. In short, the DEM of Mount St. Helens
is reconstructed with high fidelity by visual inspection, as well as in terms of SSIM and
RMSE, even at SNR = −10 dB.

Figure 8 shows the differences between the reconstructed DEMs in Figure 7c,f,g,h
and the true DEM in Figure 7b. The difference is calculated as ∆z = |ap − bp|, where ap
and bp are the values of the pth pixel in images a and b, respectively. Figure 8 shows that
the difference is negligible at SNR≤ −5 dB and becomes significant at SNR= −10 dB.

(a) (b)

(c) (d)
Figure 8. Difference between reconstructed DEM and true DEM in Figure 7b: (a) noise-free, (b) SNR
= 0 dB, (c) SNR = −5 dB, (d) SNR = −10 dB.

Figure 9 shows the reconstructed images of Mount St. Helens, with the nonlocal filter
(NF) applied before and after the LSPU, under noise-free condition. The computational
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noise distorts some terrain features and inflicts speckles in the reconstructed image if the
nonlocal filter is applied after phase unwrapping.

(a) (b)
Figure 9. Reconstructed images of Mount St. Helens under noise-free condition: (a) with NF before
phase unwrapping, (b) with NF after phase unwrapping.

3.2. Columbia Glacier

Figure 10 shows the images of the Columbia Glacier, located at (61.14◦ N, 147.08◦ W)
on the south coast of Alaska, USA. The DEM is extracted from the USGS 3DEP dataset [48],
with spatial resolution of 5 m × 5 m. Figure 10a shows the true DEM of the Columbia
Glacier extracted from the dataset. Figure 10b shows the fivefold scale-down model of that
in Figure 10a. Figure 10c shows the reconstructed DEM with the proposed method and the
simulation parameters listed in Table 1. The reconstructed DEM closely matches the true DEM;
its SSIM index and RMSE against the image in Figure 10b are 0.88 and 28.4 m, respectively.

The backscattered signals from multiple resolution cells near the steep mountain slope
region surrounding the glacier, enclosed by white dashed curves in Figure 10b, are mapped
to the same resolution cell in the acquired image, inflicting layover effect. The high RMSE
value is attributed to such layover regions, which is confirmed later in Figure 11.

(a) (b)

(c) (d)
Figure 10. Cont.
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(e) (f)

(g) (h)
Figure 10. Images of Columbia Glacier: (a) DEM extracted from USGS 3DEP dataset [48], (b) fivefold
scale-down model of (a)—glacier edge is marked by white curve, region of layover is marked by
white dashed curve; reconstructed DEM with (c) proposed method, SSIM = 0.88, RMSE = 28.4 m,
(d) NF and LSPU, SSIM = 0.87, RMSE = 28.24 m, (e) MF and QGPU, SSIM = 0.88, RMSE = 24.91 m,
(f) proposed method at SNR = 0 dB, SSIM = 0.87, RMSE = 31.93 m, (g) proposed method at
SNR = −5 dB, SSIM = 0.86, RMSE = 30.24 m, (h) proposed method at SNR = −10 dB, SSIM = 0.78,
RMSE = 33.24 m.

(a) (b)

(c) (d)
Figure 11. Difference between reconstructed DEM and true DEM in Figure 10b: (a) noise-free,
(b) SNR = 0 dB, (c) SNR = −5 dB, (d) SNR = −10 dB.
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Figure 10d shows the reconstructed DEM with NF replacing the mean filter; its SSIM in-
dex and RMSE against the image in Figure 10b are 0.87 and 28.24 m, respectively. Figure 10e
shows the reconstructed DEM with QGPU replacing LSPU; its SSIM index and RMSE
against the image in Figure 10b are 0.88 and 24.91 m, respectively, slightly better than their
counterparts in Figure 10c. The glacier in this scenario manifests a steeper slope than that of
the volcano in the previous scenario. The use of mean filter may blur some fine features in
the DEM; hence, it should be used with caution if the terrain profile changes drastically.

Figure 10f–h shows the InSAR images acquired with the proposed method at SNR
= 0 dB, −5 dB, and −10 dB, respectively. Their SSIM indices against Figure 10b are 0.87,
0.86, and 0.78, respectively, and their RMSE values against Figure 10b are 31.93 m, 30.24 m,
and 33.24 m, respectively. The acquired InSAR images at SNR = 0 dB and SNR = −5 dB
have similar SSIM indices, and the RMSE at SNR = −5 dB is slightly lower than the other
two images.

Figure 11 shows the difference between the reconstructed DEM in Figure 10c,f–h,
and the true DEM in Figure 10b. As SNR is decreased from 0 dB to −10 dB, more pixels in
the layover regions manifest significant difference.

3.3. Santa Cruz Landslide

Figure 12 shows the images of an area with potential landslide hazards near Santa
Cruz (37.03◦ N, 122.12◦ W), California, USA, on 17 March 2020, which are extracted from
the USGS 3DEP dataset [48], with spatial resolution of 3 m × 3 m. Figure 12a shows the
true DEM of the target area, and Figure 12b shows the tenfold scale-down model of that in
Figure 12a.

(a) (b)

(c) (d)

(e) (f)
Figure 12. Cont.
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(g) (h)
Figure 12. Images of landslide area near Santa Cruz on 17 March 2020: (a) DEM extracted from USGS
3DEP dataset [48], (b) tenfold scale-down model of (a); reconstructed DEM with (c) proposed method,
SSIM = 0.90, RMSE = 2.32 m, (d) NF and LSPU, SSIM = 0.89, RMSE = 2.46 m, (e) MF and QGPU,
SSIM = 0.90, RMSE = 2.32 m, (f) proposed method at SNR = 0 dB, SSIM = 0.90, RMSE = 2.32 m,
(g) proposed method at SNR = −5 dB, SSIM = 0.72, RMSE = 7.74 m, (h) proposed method at
SNR = −10 dB, SSIM = 0.66, RMSE = 9.09 m.

Figure 12c shows the reconstructed InSAR image with the proposed method. The
reconstructed DEM closely matches the true DEM; its SSIM index and RMSE against the
image in Figure 12b are 0.90 and 2.32 m, respectively. Figure 12d shows the reconstructed
InSAR image, with the nonlocal filter replacing the mean filter. Its SSIM index and RMSE
against the image in Figure 12b are 0.89 and 2.46 m, respectively. Figure 12e shows the
reconstructed DEM, with QGPU replacing LSPU. Its SSIM index and RMSE against the
DEM in Figure 12b are 0.90 and 2.32 m, respectively, same as those for the proposed method.

Figure 12f–h show the InSAR images acquired with the proposed method at SNR
= 0 dB, −5 dB, and −10 dB, respectively. Their SSIM indices against Figure 12b are 0.90,
0.72, and 0.66, respectively, and their RMSE values against Figure 12b are 2.32 m, 7.74 m,
and 9.09 m, respectively.

Figure 13 shows the differences between the reconstructed DEM in Figure 12c,f–h and the
true DEM in Figure 12b. As SNR is decreased, more pixels manifest significant difference.

(a) (b)

(c) (d)
Figure 13. Difference between reconstructed DEM and true DEM in Figure 12b: (a) noise-free,
(b) SNR = 0 dB, (c) SNR = −5 dB, (d) SNR = −10 dB.
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Table 3 summarizes the RMSE and SSIM indices of images in Figures 7, 10, and 12,
with different combinations of the filter and phase unwrapping methods under noise-free
condition. The best indices among the three different methods are marked by boldface,
and the differences among these combinations are not significant.

Table 3. RMSE and SSIM indices of acquired images under noise-free condition.

Figure 7 MF + LSPU NF + LSPU MF + QGPU
RMSE (m) 5.79 6.14 5.79
SSIM 0.90 0.89 0.90

Figure 10 MF + LSPU NF + LSPU MF + QGPU
RMSE (m) 28.40 28.24 24.91
SSIM 0.88 0.87 0.88

Figure 12 MF + LSPU NF + LSPU MF + QGPU
RMSE (m) 2.32 2.46 2.32
SSIM 0.90 0.89 0.90

Table 4 summarizes the RMSE and SSIM indices of images in Figures 7, 10, and 12,
by using the proposed method under different SNRs. In general, the best indices occur at
SNR = 0 dB, but some indices at SNR = −5 dB turn out to be slightly better.

Table 4. RMSE and SSIM indices of acquired images with proposed method under different SNRs.

Figure 7 SNR = 0 dB SNR = −5 dB SNR = −10 dB
RMSE (m) 10.80 9.22 22.38
SSIM 0.89 0.89 0.74

Figure 10 SNR = 0 dB SNR = −5 dB SNR = −10 dB
RMSE (m) 31.93 30.24 33.24
SSIM 0.87 0.86 0.78

Figure 12 SNR = 0 dB SNR = −5 dB SNR = −10 dB
RMSE (m) 2.32 7.74 9.09
SSIM 0.90 0.72 0.66

Next, we reconstruct two DEMs over the same area, dated 17 March 2020 and 10 Au-
gust 2022, and show their height difference in Figure 14 to detect possible landslide hazards.
Figure 14a shows the height difference between the two true DEMs extracted from the
dataset on the two dates just mentioned [48]. Figure 14b shows the height difference be-
tween the two InSAR images reconstructed with the proposed method, and its SSIM index
against the image in Figure 14a is 0.29. Both images show similar patterns, but some fine
features in Figure 14a are smeared out in Figure 14b.

Figure 14c shows the height difference between the two images reconstructed with the
nonlocal filter replacing the mean filter. The image shows a similar pattern as in Figure 14a,
with more fragmented features than the latter. The SSIM index between these two images
is 0.30.

Figure 14d shows the reconstructed image, with the QGPU replacing the LSPU. It
is more resemblant of Figure 14b than Figure 14c, and its SSIM index against the image
in Figure 14a is 0.29. By comparing Figure 14a–d, the combination of the NF and LSPU
methods seems to manifest more terrain details in the true DEM.

Figure 14e–g shows the height differences acquired with the NF and LSPU at SNR
= 0 dB, −5 dB, and −10 dB, respectively. Their SSIM indices against Figure 14a are 0.45,
0.20, and 0.13, respectively, and their RMSE values against Figure 14a are 4.31 m, 4.63 m,
and 9.54 m, respectively. The images in Figure 14e,f still retain some useful information
about terrain profile change, but that in Figure 14g provides no useful clue.
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(a) (b)

(c) (d)

(e) (f)

(g)
Figure 14. Height difference between 17 March 2020 and 10 August 2022 in landslide area near
Santa Cruz,: (a) between DEMa on 10 August 2022 and DEMb in Figure 12b; reconstructed with
(b) proposed method, SSIM = 0.29, RMSE = 2.32 m, (c) NF and LSPU, SSIM = 0.30, RMSE = 2.26
m, (d) MF and QGPU, SSIM = 0.29, RMSE = 2.26 m, (e) NF and LSPU at SNR = 0 dB, SSIM = 0.45,
RMSE = 4.31 m, (f) NF and LSPU at SNR = −5 dB, SSIM = 0.20, RMSE = 4.63 m, (g) NF and LSPU
at SNR = −10 dB, SSIM = 0.13, RMSE = 9.54 m.

Figure 15 shows the density maps of high-risk landslide areas acquired with the three
methods compared in this section. The areas with height difference greater than ±1 m are
highlighted with red marks (z ≥ 1 m) and blue marks (z ≤ −1 m).
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The density maps in Figure 15b,d appear similar, consistent with the performance
indices of these two methods. On the other hand, Figure 15c manifests an excessive number
of high-risk marks.

(a) (b)

(c) (d)
Figure 15. Density map of high-risk landslide areas derived from (a) Figure 14a, true DEM, (b)
Figure 14b, proposed method, (c) Figure 14c, NF and LSPU, (d) Figure 14d, MF and QGPU.

3.4. Comparison with State-of-the-Art Techniques

In [58], a satellite-based InSAR method utilizing a Kalman filter (KF) and sequential
least squares (SLS) was introduced to implement near-real-time applications. The SLS was
designed to reduce the CPU time of conventional LS methods by sequentially processing
the whole image. For comparison, the results in Figures 7, 10, 12, 14 and 15 demonstrate
the efficacy of the LSPU method, which incorporates 2D FFT in the LS method to reduce
the CPU time even more significantly.

In [59], a deep learning-based LSPU method utilizing encoder–decoder architecture
(PGENet) was proposed to reconstruct the wrapped phase data embedding noise. Simi-
larly, a deep learning-based QGPU via global attention U-Net was introduced in [60]. The
efficacy of LSPU and QGPU can be enhanced by utilizing a deep learning approach. Further-
more, the results in [59] demonstrated that LSPU outperformed QGPU, producing lower
RMSE and shorter computational time, especially in low-coherence areas. The results in
Figures 7c,e and 12c,e show that the LSPU has nearly the same performance as the QGPU,
not to mention that the LSPU has high computational efficiency, as listed in Table 2.

In [61], a weighted least-squares (WLS) technique was proposed to improve the
effectiveness of phase unwrapping within a small baseline InSAR framework. Choosing
a small baseline in a satellite-based InSAR approach can reduce the computational cost.
The proposed UAV-based InSAR approach has relatively smaller (temporal and spatial)
baseline compared to the satellite-based counterpart in [61]. In addition, the UAV-based
platform offers more flexibility in achieving specific baseline and revisit time.
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In [15], the low-coherence area and high-coherence area were filtered by a local fringe
frequency compensation nonlocal filter and Goldstein filter, respectively. The Goldstein
filter, considered an old-fashioned method, was used for its computational efficiency [15].
For the same reason, the mean filter adopted in our work is suitable for relatively smooth
and high-coherence areas. In our approach, the data can be acquired with two UAVs
(sensors) in a single flight or with one UAV (sensor) in two separate flights that are staggered
by a short revisit time. The coherence in the UAV-based InSAR image pair is higher than
that in the satellite-based counterpart, which has typical revisit time of 12 days or longer.

In [53], various filters were simulated upon ramp and square noisy images. The results
indicated that the nonlocal filter outperformed both the Lee filter and the Goldstein filter
(considered old-fashioned filters) on square noisy images, but underperformed the latter on
ramp noisy images [53]. Such outcomes are consistent with the simulation findings presented
in Sections 3.1–3.3. The scenarios simulated in Sections 3.1 and 3.3 manifest relatively smooth
height profiles, resembling ramp noisy images. Figures 7c,d and 12c,d show that the mean
filter achieves lower RMSE and higher SSIM value in these two scenarios. On the other hand,
the scenario simulated in Section 3.2 manifests a steep mountain terrain, resembling square
noisy images. Figure 10c,d show that nonlocal filter achieves lower RMSE in this scenario.

In the presence of additive Gaussian noise, the pivoting mean filter emerges as sta-
tistically optimal from the perspective of maximum likelihood estimation [20]. As for the
scenarios with relatively smooth profile discussed in Sections 3.1 and 3.3, reconstruction
with mean filter (MF) results in slightly higher SSIM value and lower RMSE value compared
with the nonlocal filter (NF). However, the mean filter may oversmooth the phase details
in areas with drastic topographical variations. As discussed in Section 3.2, the scenario
containing some steep areas may not be well reconstructed by using the mean filter, and
the nonlocal filter achieves a lower RMSE on the reconstructed DEM.

In [62], a coherence-guided InSAR phase unwrapping method was proposed in con-
junction with cycle-consistent adversarial networks. The coherence-guided phase unwrap-
ping method typically employs a cost function in terms of phase gradients and coherence
values to penalize phase discontinuities in low-coherence regions and promote smooth
phase paths in high-coherence areas. The method could achieve accurate phase unwrap-
ping with low RMS value. However, the generative adversarial networks entail high
computational cost and require extensive training data.

In [63], a median filter was cascaded with a mean filter based on stationary wavelet
transform for phase filtering. The median filter exceled in preserving phase fringes, while
the mean filter demonstrated superior noise reduction capabilities.

Lightweight UAVs are typically more susceptible to wind disturbances than airborne
platforms in conducting SAR or InSAR imaging tasks. Both types of platform may tilt or
dip under headwinds and deviate from planned flight path under crosswinds [64]. Take a
real-world example of dispatching a small UAV for InSAR imaging. It can carry a payload
up to 7.5 kg and stay in the air for an hour while equipped with GPS navigation gear. Its
attitude response to the wind interference can be ignored if the wind speed if less than 5 mph,
and its trajectory deviation can be compensated with servo mechanisms and algorithms.

3.5. Discussions on Contributions and Constraints

The contributions of this work are summarized as follows:

1. An on-site InSAR imaging method is proposed for monitoring environmental changes.
The imaging task is carried out with UAVs, which can be swiftly deployed on site
with small decorrelation between master and slave images;

2. High-resolution DEMs are reconstructed and enhanced with a mean filter to mitigate
artifacts on InSAR images, which are attributed to imperfect coregistration between
master and slave images. A least-squares phase unwrapping method at extremely
low computational cost is applied to run the imaging task near real-time;

3. Three scenarios of DEM reconstruction are simulated to validate the efficacy of the
proposed approach, considering the effect of noise. The fidelity of acquired InSAR
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images is evaluated in terms of SSIM index and RMSE. The merits of using mean
filter and least-squares phase unwrapping method are compared with two popular
counterparts.

We propose a feasible scheme of deploying UAVs for on-site InSAR imaging of small
areas, which cannot be achieved with satellite-borne InSAR platforms. Potential appli-
cations include monitoring natural disasters such as landslides, wildfires, and volcanic
eruptions. In these scenarios, the satellite-borne InSAR imaging technique is limited by
the long revisit time of days, which is impractical for real-time monitoring of disaster
evolution. Among many state-of-the-art algorithms, choosing the mean filter and the least-
square phase unwrapping method via Poisson’s difference equation and FFT can practically
accomplish real-time imaging tasks in terms of robustness and computational efficiency.

The attitude of an airborne platform can be disturbed by complicated airflow dis-
turbance and platform mechanical oscillation. Their effects on SAR imaging have been
compensated with a compressive-sensing technique [46].

4. Conclusions

An on-site UAV-borne InSAR imaging method is proposed to reconstruct terrain
profile with high spatial resolution in real time. A UAV-borne imaging system can be
swiftly deployed to monitor rapidly changing environments during extreme weather events
or natural disasters. Three different high-resolution DEMs are extracted from the USGS
3DEP datasets to validate the efficacy of the proposed approach. The combination of the
least-squares phase unwrapping method featuring short CPU time and the mean filter for
mitigating speckles on the acquired InSAR image is effective for monitoring terrain profile
in real time. Several state-of-the-art techniques like nonlocal filter and quality-guided phase
unwrapping method have been used to validate the advantages of the proposed approach
to acquire InSAR images for reconstructing terrain profile in real time.
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Appendix A. Breakdown of CPU Time and Algorithms

Table A1 lists the number of multiplication/division operations in QGPU and LSPU,
where Na and Nr are the numbers of azimuth samples and range samples, respectively.
The target area has the size of U azimuth cells by V range cells and is centered at sample
indices [Na/2, Nr/2].

Algorithm A1 lists the procedure of the QGPU algorithm. The image sizes in
Sections 3.1–3.3 are U × V = 1401 × 841, 781 × 499, and 781 × 499, respectively. The aver-
age CPU time to run a complete cycle of phase unwrapping steps within the while loop
(for one pixel) is about 0.01 s. For example, the image in Section 3.1 takes a CPU time of
about 1401 × 841 × 0.01 = 11, 782.41 s.
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Table A1. Number of multiplication/division operations in QGPU and LSPU.

QGPU LSPU

Process No. of M/D Process No. of M/D

∆ϕu[u′, v′] none ¯̄ϕ(4′) none
⟨∆ϕu[u, v]⟩ none ρ[u′, v′] none
(∆ϕu[u′, v′]− ⟨∆ϕu[u, v]⟩)2 1 per pixel 2D DFT UV log2 UV
(∆ϕv[u′, v′]− ⟨∆ϕv[u, v]⟩)2 1 per pixel Φ[m, n] 4UV
Z[u, v][u′ ,v′ ]∈Ws

2Ws per window 2D IDFT UV log2 UV
ϕ(5)[u′, v′] none

total 2UV total 2UV(log2 UV + 2)

Algorithm A1: Pseudocode of QGPU algorithm

Initialization: Calculate quality map, Z[u, v]
Select starting pixel
Store phase value of starting pixel in the solution matrix
Mark the starting pixel unwrapped
Mark the adjoin pixel around the starting pixel wrapped

Input: Wrapped phase ϕ(4)[u′, v′]
Output: Unwrapped phase ϕ(5)[u′, v′]
while the adjoin pixel is not empty do

Select the highest quality pixel from the adjoin pixel
for each of the four adjoining pixels do

if the pixel is not unwrapped then
if the pixel is not a border pixel then

Unwrap the pixel and store the value in the solution matrix
Mark the pixel unwrapped

end
end

end
end
Unwrap 1st column by using 2nd column
Unwrap Vth column by using (V − 1)st column
Unwrap 1st row by using 2nd column
Unwrap Uth row by using (U − 1)st column

Table A2 lists the number in multiplication/division operations of nonlocal filter and
mean filter. The total numbers of multiplication/division operations to run the nonlocal
filter and the mean filter over an image of size U × V are 2UV and UV, respectively.

Table A2. Number of multiplication/division operations in nonlocal filter and mean filter.

Nonlocal Filter Mean Filter

Process No. of M/D Process No. of M/D

W1[u, v; u′, v′] 1 per pixel ¯̄ϕ(2) none
ϕ
(2)
NL[u, v] 1 per pixel ¯̄ϕ(3)

u′v′ none
Aϕs [u

′, v′]ejϕs [u′ ,v′ ] none
ϕ(3′)[u′, v′] 1 per pixel

total 2UV total UV

Algorithm A2 lists the procedure for applying the mean filter on an image of size
U × V. Algorithm A3 lists the procedure for applying the nonlocal filter on an image of
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size U × V. The average CPU time to run a complete cycle of mean filter on one pixel is
about 0.005 s, and its counterpart with nonlocal filter is about 0.013 s.

Algorithm A2: Pseudocode of mean filter
Initialization: The size of target area, U × V

The size of searching window, (2wa + 1)× (2wr + 1) = 17 × 9
Input: The interferometric phase, ϕ(2)[u′, v′]
Output: The interferometric phase after mean filtering, ϕ(3′)[u′, v′]
for 1 ≤ u′ ≤ U do

for 1 ≤ v′ ≤ V do
if The searching window exceeds the border of target area then

Cut off the exceeding part
end
else

Apply the searching window with size of (2wa + 1)× (2wr + 1)
end
Calculate the interferometric phase after mean filtering, ϕ(3′)[u′, v′]

end
end

Algorithm A3: Pseudocode of nonlocal filter
Initialization: The size of target area, U × V

The size of searching window, Lse × Lse = 13 × 13
The size of similarity window, Lsi × Lsi = 5 × 5

Input: The interferometric phase, ϕ(1)[u′, v′]
Output: The interferometric phase after nonlocal filtering, ϕ

(2)
NL[u

′, v′]
for 1 ≤ u′ ≤ U do

for 1 ≤ v′ ≤ V do
Define the searching window, W1[u, v; u′, v′], centered at [u′, v′]
if The searching window exceeds the border of target area then

Cut off the exceeding part
end
else

Apply the searching window with size of Lse × Lse
end
for 1 ≤ u ≤ Lse do

for 1 ≤ v ≤ Lse do
if The searching window exceeds the border of target area then

Cut off the exceeding part
end
else

Apply the similarity window with size of Lsi × Lsi
end
Calculate W1[u, v; u′, v′]

end
end
Find the maximum of W1[u, v; u′, v′] ∈ Wse

Calculate ϕ
(2)
NL[u, v]

end
end
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