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Abstract: A complete framework of predicting the attributes of sea clutter under different operational
conditions, specified by wind speed, wind direction, grazing angle, and polarization, is proposed
for the first time. This framework is composed of empirical spectra to characterize sea-surface
profiles under different wind speeds, the Monte Carlo method to generate realizations of sea-surface
profiles, the physical-optics method to compute the normalized radar cross-sections (NRCSs) from
individual sea-surface realizations, and regression of NRCS data (sea clutter) with an empirical
probability density function (PDF) characterized by a few statistical parameters. JONSWAP and
Hwang ocean-wave spectra are adopted to generate realizations of sea-surface profiles at low and
high wind speeds, respectively. The probability density functions of NRCSs are regressed with K
and Weibull distributions, each characterized by two parameters. The probability density functions
in the outlier regions of weak and strong signals are regressed with a power-law distribution, each
characterized by an index. The statistical parameters and power-law indices of the K and Weibull
distributions are derived for the first time under different operational conditions. The study reveals
succinct information of sea clutter that can be used to improve the radar performance in a wide
variety of complicated ocean environments. The proposed framework can be used as a reference
or guidelines for designing future measurement tasks to enhance the existing empirical models on
ocean-wave spectra, normalized radar cross-sections, and so on.

Keywords: sea clutter; radar cross-section; statistical parameters; JONSWAP spectrum; Hwang
spectrum; Monte Carlo method; sea-surface profile; physical-optics method; probability density
function; K distribution; Weibull distribution; power-law distribution; particle swarm optimization;
wind speed; wind direction; grazing angle; polarization

1. Introduction

A complete framework of predicting the attributes of sea clutter under specific radar
operating conditions is presented for the first time. Field measurement data are not
easy to come by. This framework is proposed to predict effectively and efficiently the
statistical properties of sea clutter under given conditions of wind and radar by utilizing
several state-of-the-art models and methods in different research arenas. This framework
is composed of empirical spectra used to characterize sea-surface profiles under different
wind speeds, the Monte Carlo method to generate realizations of sea-surface profiles, the
physical-optics method to compute the normalized radar cross-sections (NRCSs) from
individual sea-surface realizations, and regression of NRCS data (sea clutter) with an
empirical probability density function (PDF) characterized by a few statistical parameters.
The statistical parameters thus obtained can be used to quickly reproduce the sea clutter
under specific operational conditions for radar applications. The proposed framework can
be used as a reference or guidelines for designing future measurement tasks to enhance the
existing empirical models on ocean-wave spectra, normalized radar cross-sections, and so
on. The effectiveness and accuracy of this framework can be further enhanced if the spectra
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of sea-surface profiles are updated by including more measurement data. In this section,
we will review the literature relevant to individual parts of this framework.

Sea clutter can significantly affect the performance of radar surveillance and missile
guidance above the sea surface [1,2]. The capricious features of radar sea clutter are affected
by the radar parameters like carrier frequency, polarization, and grazing angle, as well as
the sea state, which is correlated to the wind speed and direction on the sea surface [3].

Many statistical analyses of measured sea clutter have been presented in the literature,
for example, the relation between the radar backscattering coefficient and wind speed [4],
the spectra of microwave echoes, and the distribution of sea ripples [5]. However, field
measurements were usually constrained by the in situ sea state and the operational radar
parameters. A flexible sea-clutter simulator capable of predicting the radar cross-section
under various sea states and radar parameters will be very useful in field operations.

For some real-time applications that demand quick response, it will be helpful to
have a succinct representation of the sea-clutter distribution in terms of a few statistical
parameters, which are contingent upon the sea state and the radar parameters. To achieve
this goal, we need proper ocean-wave spectra to simulate sea-surface profiles, proper
electromagnetic wave models to compute the radar cross-section from a given sea-surface
profile, and proper statistical models to represent the sea clutter. These three constituent
parts are reviewed next.

A fully developed sea-surface profile can be characterized by a spectral density func-
tion such as the Pierson–Moskowitz (PM) spectrum [6], featuring gravity waves [7], with
parameters estimated from the measurement data [8]. However, its effectiveness is less
credible in characterizing developing sea surfaces. The JONSWAP spectrum was extended
from the Pierson–Moskowitz spectrum and incorporated more wave mechanisms like
fetch-limited wave processes [8]. Modified from the JONSWAP spectrum, the V. Yu. Karaev
spectrum, T. Elfouhaily spectrum, V. N. Kudryavtsev spectrum, and Hwang spectrum have
been used in different scenarios [9].

The directionality embedded in ocean-wave spectra, affected by the wind forcing
on the sea surface, has been investigated over decades. An early study of the spectral
directionality in [10] was based on field observations in Lake Ontario and a laboratory tank.
In [11], several well-established angular spreading functions were reviewed, including
cosine type, half-cosine 2s-power type, parameterized half-cosine 2s-power type, hyperbolic
secant-squared type, and composite-structured type. A pattern-sensitive fusion method
was proposed to model the sea-surface profile with optimal roughness to account for
different ocean environments. The reconstructed random ocean media could be used
to compute the electromagnetic scattering from the sea surface. In [12], a Max Planck
Institute (MPI) method was applied to estimate the ocean-wave spectrum from acquired
synthetic-aperture radar images. The ocean wave spectrum was optimized in terms of a
cost function, with the PM spectrum or Elfouhaily spectrum as the initial guess, and the
Elfouhaily spectrum turned out to be more suitable as an initial-guess spectrum.

In [13], a geometrical optics small-slope approximation (GO-SSA) model was proposed
to compute the radar cross-section (RCS) from sea-surface profiles characterized with a
non-directional ocean-wave spectrum at a wind speed of 15 m/s [14]. In [3], an imaging
radar systems group (IRSG) was proposed to model the mean backscattering coefficient
at low-to-medium grazing angles, and the reflectivity was found to be insensitive to the
grazing angle.

In [15], an efficient method for calculating the bistatic scattering from a rough sea
surface was proposed. The normalized RCS was computed with the physical-optics (PO)
method under a first-order small slope approximation (SSA). Radar polarization and the
permittivity of sea water were considered in the physical-optics method, and the SSA was
imposed in computing the Kirchhoff integral, which was a surface correlation function
of the sea-surface profile. The Kirchhoff integral was related to the probability density
function of random surface slope, and the surface correlation function was related to the
ocean wave spectrum, thus the normalized RCS was related to the given radar parameters
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and sea-surface conditions. In [16], an iterative physical-optics method was applied to
compute the electromagnetic scattering field, including specular scattering and diffused
scattering components, from a sea surface covered with an oil film. The effects of wind
speed, oil film thickness, and radar parameters on the scattering field were investigated.

Sea clutter becomes more sensitive to polarization at small grazing angles [2,17]. The
radar echo from a rough sea surface at large grazing angles can be modeled by using a
Kirchhoff approximation [18]. Predictions under such an approximation matched poorly
with real data at small grazing angles due to finite conductivity of the sea water [17].
At low-to-medium grazing angles, the small-perturbation method was applied to model
the sea clutter [17]. In a Wright–Valenzuela composite model [19,20], the RCS was given
as the Fourier transform of the product of a long-wave component and a short-wave
component [17].

A bunch of scatterers at the wave crest may induce multipath reflection [2], which is
sensitive to polarization. In [21], vv-dominant scatterers were identified as short-lived slow
scatterers and hh-dominant scatterers as long-lived fast scatterers. In [22], the vv backscatter
was related to slow scatterers confined to the back side of the sea-surface profile, and the
hh backscatter was related to fast scatterers near the sea-surface crest, which became more
conspicuous at smaller grazing angles [22].

The attributes of sea clutter at hh and vv polarizations have been reviewed [23].
The backscattered signals at hh polarization were observed less frequently than their
counterparts at vv polarization under moderate sea states [24], and the RCS-versus-time
curve of the former manifested spiky features [25]. The polarization-related differences
were attributed to the fine reflecting facets of wind-driven sea surfaces or small wind
ripples [26,27]. vv-polarized backscattering is stronger than hh-polarized backscattering
due to local interference induced by capillary waves. On the other hand, spikes were
frequently observed in hh polarization with low grazing angles, especially at a high spatial
resolution. In a nutshell, Bragg scattering is induced by capillary waves [2] and dominates
the vv-polarized echo. Non-Bragg scattering, induced by whitecaps and sea spikes [28],
dominates the hh-polarized echo.

Statistical models have been widely used to characterize features of radar sea clutter [29],
including mean backscattered power [1,3,13,18], amplitude [17,28,30,31], short-time tempo-
ral correlation [32], and the Doppler spectrum [33].

In [13], a small-perturbation two-scale model (TSM) was proposed, by applying a
geometric optics (GO) method on long waves and small-slope approximation (SSA) on
short waves. At low-to-medium grazing angles, the parameters of the TSM could be
well estimated by Bragg scattering [18], being dominated by capillary waves [2]. The
results in [2,13,17] suggested that the statistical parameters of sea-clutter distribution vary
continuously with the grazing angle.

In [34], the statistical properties of the Doppler velocity derived from sea-spike scatter-
ing were investigated and verified with three sets of radar sea-clutter data. The temporal
and statistical modeling of scattering from breaking waves agreed well with the measured
spikes. In [35], the Doppler spectrum derived from a cliff-top radar experiment was used
to verify a sea-clutter model which incorporated Bragg scattering, whitecap scattering, and
spikes. The relation between sea-clutter features and wind condition was also studied.
In [29], an autoregressive model was proposed to study the modulation on sea clutter
attributed to Bragg backscattering induced by long waves. In [36], the temporal variation
in Doppler spectra was acquired by fitting the sea clutter to a compound K distribution,
considering Bragg and non-Bragg scattering from short and long waves. In [37], the corre-
lation between the mean Doppler shift and the local spectrum intensity was studied under
up- and downwind conditions.

Weibull, log-normal, and K distributions have generally been used to characterize
sea-clutter data [2,17,30]. In [38], a two-parameter K distribution was developed to fit sea-
clutter data affected by capillary waves, wind waves, and gravity waves. It was claimed
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that a compound model would be useful to characterize the sea clutter attributed to Bragg
and non-Bragg scattering [35–37,39].

The outlier regions in the sea-clutter distribution may become more conspicuous in
high-resolution radar images. Non-Bragg scattering was reported to raise the outlier region
of a K distribution [31,35]. In [30], a Pareto distribution was used to better fit the sea
clutter in the presence of surface spikes. The shape parameter and scale parameter were
successfully estimated by applying a maximum-likelihood estimator on high-resolution
radar images.

In [28], a KK distribution was proposed to better fit strong backscattering signals at
horizontal polarization. At medium grazing angles, a K+Rayleigh distribution could fit the
data better than the K and Pareto+noise distributions [40]. In [28,30,40], the distribution
of RCS on high-resolution radar images affected by non-Bragg scattering were well fit
with a KK distribution. In [3,41], an Ingara airborne multi-mode X-band radar system
was developed to collect fully polarimetric data in a circular spotlight mode, at grazing
angles of 10–45◦. The data of hh, hv, and vv polarizations were fit with K, KA, and KK
distributions, respectively. The KK distribution turned out to fit the data well, including
the outlier region attributed to sea spikes [42].

However, the statistical parameters of the compound models, such as shape and scale
parameters, are insensitive to the properties of radar echoes under different sea states and
radar parameters. The distribution parameters regressed with the measured or simulated
RCS data may not be unique due to the complexity of the compound models.

As scattering from the sea surface involves many complicated processes, the sea-
surface profile changes with time in a random and complicated manner, which is typically
characterized with an empirical ocean-wave spectrum like JONSWAP, with parameters
regressed from measurement data. The spectrum represented in the frequency (ωw) domain
can be used to describe the time variation in individual sea-surface profiles. The spectrum
can also be represented in the spectral (k̄w) domain to reconstruct snapshots of individual
sea-surface profiles. A Monte Carlo simulation method can be applied to the spectrum to
generate realizations of sea-surface profiles in terms of horizontal position r̄ and time t.

Given the incident direction (grazing angle), frequency, and polarization of a radar
signal, the scattering field from a realization of a sea-surface profile can be computed by
applying proper electromagnetic scattering theory, like the physical-optics method in this
work. The normalized radar cross-section (NRCS) derived in terms of the scattering field
from one sea-surface realization accounts for one incidence of measurement data. An
ensemble of NRCS data computed under given wind conditions and radar parameters is
compiled to derive a probability density function (PDF) of NRCSs. The PDF is regressed
with a K distribution function to estimate a few statistical parameters for characterizing
the attributes of sea clutter under the given wind conditions and radar parameters. Power-
law distributions are also used to fit very small and very large NRCS data, respectively,
leading to power-law indices as additional statistical parameters. Possible relations of
these statistical parameters with respect to the wind conditions and radar parameters are
explored. These relations can be used to quickly predict the properties of sea clutter under
specific wind and radar conditions.

In this work, a complete framework is proposed for the first time to derive the statisti-
cal parameters of sea-clutter distribution under variations in wind speed, wind direction,
grazing angle, and polarization. The JONSWAP and Hwang spectra are adopted to re-
alize sea-surface profiles under low-to-moderate and high wind speeds, respectively. A
multitude of sea-surface profiles are realized by applying a Monte Carlo method upon the
specified ocean-wave spectrum. A physical-optics method is applied to compute the nor-
malized radar cross-sections (NRCSs) from individual sea-surface realizations, considering
the finite conductivity of the sea water. The NRCS data are compiled to form a probability
density function (PDF), which is regressed with the K and Weibull distributions, each char-
acterized by two parameters. The NRCS data with very small and very large amplitudes
are also regressed with power-law distributions, each characterized by an index, to explore
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subtle features under different operational conditions. These statistical parameters of sea
clutter are studied under variations in wind speed, wind direction, grazing angle, and
polarization.

The rest of this paper is organized as follows. The realization of sea-surface profiles
with the JONSWAP and Hwang spectra is presented in Section 2; the computation of a
normalized radar cross-section from a given sea-surface profile is presented in Section 3.
In Section 4, the PDFs of the NRCSs are regressed with the K and Weibull distributions
by using a particle swarm optimization method, and the PDFs in the outlier regions are
fit with a power-law distribution by using a weighted linear regression method. The
simulation results under systematic variations in wind speed, wind direction, grazing
angle, and polarization are presented and elaborated in Section 5. Finally, some conclusions
are drawn in Section 6.

2. Realization of Sea-Surface Profiles

Figure 1 shows a flowchart of the proposed framework, which is composed of three
major parts. The first part constitutes an amplitude spectrum H(k̄w) from either the
JONSWAP spectrum ΦJ(ωw) or Hwang spectrum ΦH(ωw) under a specific wind speed
U10 and wind direction ϕwd, as well as an associated azimuthal pattern Θ(ϕ).

Figure 1. Flowchart of proposed framework.

The second part invokes a Monte Carlo method to realize multiple sea-surface profiles
hr(x, y, t) by applying a generalized Fourier transform (GFT) on the amplitude spectrum
H(k̄w). Then, the backscattered electric field Es

pq is computed from each sea-surface realiza-
tion with the physical-optics method under the specified radar parameters of grazing angle
θg, incident azimuth angle ϕi, scattering polarization p, incident polarization q, frequency
f0, field amplitude E0, range R, and target area A. The Es

pq is transformed to the normalized
radar cross-section (NRCS) σ0 in natural units and σ′

0 in dB.
In the third part, a probability density function (PDF) p′(σ′

0) is derived from the
histogram of σ′

0 simulated in the second part. The PDF is then regressed with the K
distribution to derive statistical parameters (ṽ, µ̃), or regressed with the Weibull distribution
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to derive statistical parameters (b̃, c̃). The outlier data are regressed with power-law
distributions to derive power-law indices (b̃ℓ0, b̃ℓ1). The details of these parts are presented
in Sections 2–4.

Note that the third part of the proposed framework can be applied to the PDF derived
from measured NRCS data, σobs

0 .
Due to the complicated ocean environment, rigorous formulation of normalized

radar cross-sections (NRCSs), as in the canonical scattering problems, is impossible and
impractical. Empirical models of NRCSs have been developed on vast measurement data
and extensively used in practice. In this work, we take an intermediate approach by
applying a physical-optics method to compute the NRCSs from individual realizations
of sea-surface profiles generated with an empirical ocean-wave spectrum under specific
wind conditions, then constitute a distribution of NRCS over multitudes of realizations,
characterized with a few statistical parameters.

After reviewing a few state-of-the-art spectra, shown in Appendix A, the JONSWAP
and Hwang spectra were picked to generate sea-surface realizations at low and high wind
speeds, respectively. Other spectra can also be used in the proposed framework to generate
sea-surface realizations suited to the scenarios of interest. Sea-surface realizations will
become more realistic as more robust spectra become available.

To begin with, realizations of sea-surface profiles under a specific wind speed and di-
rection are generated by applying a Monte Carlo method on either the JONSWAP or Hwang
ocean-wave spectrum. Then, the backscattered field from a sea-surface realization under
specific radar parameters is computed with the physical-optics method and transformed to
a normalized radar cross-section (NRCS). The NRCS data over an ensemble of sea-surface
realizations are compiled to form a probability density function (PDF), which is regressed
with the K and Weibull distributions by applying a particle swarm optimization (PSO)
method. The outlier regions of the PDF are fit with power-law distributions by applying a
weighted linear regression method. The statistical parameters and the power-law indices
are, thus, indirectly related to the designated wind conditions and the radar parameters.

A sea-surface profile is realized as follows. The sea-surface profile h(r̄, t) is a function
of time t and horizontal position r̄ = x̂x + ŷy, with x̂ and ŷ pointing in the east and north
directions, respectively. The sea-surface profile can be represented as a generalized Fourier
transform (GFT) of the amplitude spectrum H(k̄w) as [43]

h(r̄, t) = Re
{

1
(2π)2

∫∫
H(k̄w)e−jk̄w ·r̄+jωwtdk̄w

}
(1)

with

H(k̄w) =
∫∫

h(r̄, 0)ejk̄w ·r̄dr̄ (2)

where k̄w = x̂kwx + ŷkwy is the wavenumber vector of a plane-wave constituent, propagat-
ing with angular frequency ωw, which satisfies the dispersion relation of ωw =

√
gkw [43].

A two-dimensional wavenumber-directional energy spectrum is given by [44]

Q(kw, ϕ) = kwR(k̄w) = Θ(ϕ)Φ(kw) (3)

where R(k̄w) = |H(k̄w)|2/A is the power spectrum, A is the illuminated area, Φ(kw) is the
one-dimensional wavenumber spectrum of an ocean wave (sea-surface profile), Θ(ϕ) is

the azimuthal pattern which depends on the wind direction [45], kw = |k̄w| =
√

k2
wx + k2

wy,

and ϕ = arctan(kwy/kwx).
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The Monte Carlo method is applied to generate a realization of a sea-surface profile
based on discretizing (1), as

hr([nx, ny], t) = Re

∆kwx∆kwy

(2π)2

Ny/2−1

∑
my=−Ny/2

Nx/2−1

∑
mx=−Nx/2

H[mx, my]e−jmx∆kwx xb e−j2πmxnx/Nx e−jmy∆kwyyb

e−j2πmyny/Ny ejωw [mx ,my ]tejϕ[mx ,my ]
}

(4)

with

x = xb + nx∆x, 0 ≤ nx ≤ Nx − 1

y = yb + ny∆y, 0 ≤ ny ≤ Ny − 1

kwx = mx∆kwx, −Nx/2 ≤ mx ≤ Nx/2 − 1

kwy = my∆kwy, −Ny/2 ≤ my ≤ Ny/2 − 1 (5)

ϕ[mx, my] ∈ [−ϕr, ϕr] is a Gaussian random phase, with

ϕr = αc

√
|kwx − kxp|2 + |kwy − kyp|2 (6)

where αc is an empirical coefficient, and the maximum of |H(k̄w)| appears at k̄w = (kxp, kyp).
Equation (1) shows the relation between the space–time sea-surface profile h(r̄, t)

and its amplitude spectrum H(k̄w), which is the spectral component propagating with
wavenumber vector k̄w and temporal frequency ωw, satisfying the dispersion relation of

ωw =
√

g|k̄w| [43]. The amplitude spectrum H(k̄w) is related to a snapshot of h(r̄, t) at
t = 0 without loss of generality, by (2). The fact that h(r̄, t) is real-valued implies that
H(−k̄w) = H∗(k̄w), or H(k̄w) is diagonally symmetric [7], if the Re{} operator is not
imposed in (1).

The time evolution of h(r̄, t) manifests water-wave features that move along the wind-
blowing direction, which is achieved by multiplying the omnidirectional JONSWAP or
Hwang spectrum with an azimuthal (angular spreading) pattern, like a cosine azimuthal
pattern suggested in [46] and applied in [47]. In [44], a wave prediction model was de-
veloped by imposing a cosine azimuthal pattern on the JONSWAP spectrum under the

constraint of
∫ π

−π
Θ(ϕ)dϕ = 1. Either the two-dimensional JONSWAP or Hwang spec-

trum is substituted into (4) to generate realizations of sea-surface profiles, representing the
interface between sea water and the atmosphere.

However, the two-dimensional spectrum embedding an azimuthal pattern no longer
satisfies the condition of H(−k̄w) = H∗(k̄w). Thus, the conventional two-dimensional
Fourier transform in (1) without the Re{} operator will give rise to complex-valued h(r̄, t),
and the generalized Fourier transform with the Re{} operator will generate real-valued
h(r̄, t) to comply with the observations.

In this work, the JONSWAP spectrum [48] is adopted to simulate sea-surface profiles
under wind speeds of U10 = 6–12 m/s [49], and the Hwang spectrum is adopted to simulate
sea-surface profiles under wind speeds of U10 ≥ 10 m/s [9].

2.1. JONSWAP Spectrum

The one-dimensional JONSWAP spectrum is given by [48]

ΦJ(ωw) =
αg2

ω5
w
(2π)e−1.25(ωmax/ωw)4

γexp{−(ωw−ωmax)2/(2σ2ω2
max)} (7)
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where α is an empirical parameter which is related to the fetch length F as [48]

α = 0.076

(
Fg
U2

10

)−0.22

(8)

and γ is the base of peak enhancement factor, g is the gravitational acceleration, ωmax = g/U10
is the frequency of the spectral peak [6,44], σ = σa if ωw ≤ ωmax and σ = σb if ωw > ωmax,
with σa and σb the left-side and right-side spectral widths, respectively, of the spectral peak.
The JONSWAP spectrum can be transformed to the wavenumber domain as

ΦJ(kw) =
απ
k3

w
e−1.25(ωmax/ωw)4

γexp{−(ωw−ωmax)2/(2σ2ω2
max)} (9)

Figure 2 shows the relation between wind direction and sea-surface wave direction [50].
The x and y axes point in the east and north directions, respectively. The wind blows along
the xwd-axis, with an angle ϕwd from the x-axis. The sea-surface profile propagates along
the xw-axis, with an angle ϕ from the x-axis, and ϕd = ϕ − ϕwd is the angle between the
moving direction ϕ of the sea-surface profile of interest and the wind-blowing direction
ϕwd. The azimuthal pattern Θ(ϕ) in the JONSWAP spectrum is given by [47]

ΘJ(ϕ) =


2 cos2(ϕ − ϕwd), |ϕ − ϕwd| ≤ π/2

0, otherwise
(10)

which is contingent upon ϕd.

Figure 2. Relation between wind direction (xwd) and sea-surface wave direction (xw) [50]; x and y
axes point east and north, respectively.

Table 1 lists the default parameters used to generate sea-surface profiles with the
JONSWAP spectrum. Figure 3 shows the JONSWAP amplitude spectrum HJ(k̄w), with
the default parameters listed in Table 1 and wind speeds of U10 = 6, 8, 10, and 12 m/s.
Each amplitude spectrum is normalized against its maximum amplitude, which is listed in
Table 2. As the wind speed increases, the maximum amplitude increases and the dominant
spectral region shrinks.

Figure 4 shows sample snapshots of sea-surface realizations h(r̄, t) computed with (4)
in an area of 628 m × 628 m, under U10 = 6 m/s and 12 m/s. Each realization manifests
water-wave features that move along the wind-blowing direction. As U10 is increased from
6 m/s to 12 m/s, the crest-to-trough amplitude increases, the wave-fronts perpendicular to
the wind direction become more conspicuous.
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Table 1. Default parameters for simulating sea-surface profiles with JONSWAP or Hwang spectra.

Parameter Symbol Value

Observation period Tob 10 s

Sampling frequency fa 100 Hz

Surface resolution ∆x, ∆y 4.9087 m

Wavenumber resolution ∆kwx, ∆kwy 0.01 rad/m

x length Lx 628.3185 m

y length Ly 628.3185 m

Illuminating area A 394,784.176 m2

Number of samples in x dir. Nx 128

Number of samples in y dir. Ny 128

Wind speed U10 10 m/s

Fetch length F 50 m

Parameter σa σa 0.06 [48]

Parameter σb σb 0.1 [48]

Peak enhancement factor γ 3.3 [49]

Wind direction ϕwd 180◦

Empirical phase coefficient αc 128

Ratio of surface pressure to water mass density γr 7.1585 × 10−5 m3/s2 [51]

(a) (b)

(c) (d)
Figure 3. JONSWAP amplitude spectrum HJ(k̄w) (in dB), with default parameters in Table 1:
(a) U10 = 6 m/s; (b) U10 = 8 m/s; (c) U10 = 10 m/s; (d) U10 = 12 m/s.
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Table 2. Maximum amplitudes of JONSWAP spectra.

U10 (m/s) |HJ| (dB)

6 66.5116

8 76.7065

10 85.1549

12 91.1055

(a) (b)
Figure 4. Sample snapshots of sea-surface realization hJr(r̄, t) with JONSWAP spectrum:
(a) U10 = 6 m/s; (b) U10 = 12 m/s.

To confirm that the realizations follow the specified two-dimensional spectrum, we
generate multiple snapshots from multiple realizations, compute the autocorrelation of each
snapshot, and take the two-dimensional Fourier transform with respect to the spatial offset
to derive a sample spectrum. Figure 5 shows the ensemble average over multiple sample
spectra, under U10 = 6 m/s, expecting to reconstruct the amplitude spectrum shown in
Figure 3a. The reconstructed spectrum reveals not only the original amplitude spectrum,
but also its diagonally symmetric image, because each sample spectrum is derived from
a snapshot of h(r̄, t) at a fixed time instant, which is real-valued and implies a diagonally
symmetric sample spectrum. Note that a time-frozen snapshot does not manifest movement
of wave features. The Re{} operator in the generalized Fourier transform of (1) implies a
real-valued h(r̄, t) while preserving the movement of wave features.

Figure 5. Amplitude spectrum reconstructed from realizations of sea-surface profile generated with
JONSWAP amplitude spectrum in Figure 3a; U10 = 6 m/s.

The significant wave height (SWH) used to characterize sea-surface profiles under
the specific U10 is also compared with its empirical counterpart specified in the Douglas
(DG) sea-state table [52]. The significant wave height is defined as hs = 4σh [53], with

σh =
√
⟨h2

J ⟩ the root-mean-square of the sea-surface profiles, namely,
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σh =

{
1

Na

Na

∑
n=1

1
A

∫∫
h2

J (r̄, tn)dr̄

}1/2

(11)

where Na is the number of snapshots, and the integral over r̄ can be implemented as a sum
over Nx × Ny spatial cells in the illuminated area A.

Table 3 lists the SWHs at U10 = 6, 8, 10, and 12 m/s, which fall in the range of SWH
specified in the DG sea-state table [52].

Table 3. Significant wave height (SWH) simulated with JONSWAP spectrum.

U10 Simulated SWH SWH in [52]

6 m/s 0.7921 m 0.3–0.9 m

8 m/s 1.5600 m 1.5–2.4 m

10 m/s 2.5877 m 1.5–2.4 m

12 m/s 3.8939 m 2.4–3.7 m

2.2. Hwang Spectrum

The one-dimensional Hwang spectrum is given by [54–56]

ΦH(kw) =
1

k3
w

BH(kw) (12)

with

BH(kw) = AH(kw)

[
u∗

Vw(kw)

]aH(kw)

(13)

where u∗ is the air friction velocity, and Vw is the phase velocity of sea-surface profile
(ocean wave). The amplitude AH(kw) and the exponent aH(kw) are given by fifth-order
polynomials of kln = ln kw as [54]

AH(kw) = −3.862 × 10−5k5
ln + 7.991 × 10−4k4

ln

−6.417 × 10−3k3
ln + 2.342 × 10−2k2

ln

−3.668 × 10−2kln + 2.898 × 10−2

aH(kw) = −5.213 × 10−4k5
ln + 1.524 × 10−2k4

ln

−1.358 × 10−1k3
ln + 5.865 × 10−1k2

ln

−1.167kln + 1.136 (14)

with kwℓ ≤ kw ≤ kwh, where kwℓ = 1.5 rad/m and kwh = 100 rad/m.
The expressions of AH(kw) and aH(kw) in the wavenumber ranges of 0 ≤ kw < kwℓ

and kwh < kw < ∞ can be found in [54], hence are not listed here.
The azimuthal pattern ΘJ(ϕ) in (10) is adopted if 10 ≤ U10 < 14 m/s. To make

the significant wave height (SWH) derived from the realizations of sea-surface profile
consistent with those suggested in the Douglas sea-state table, under 14 ≤ U10 ≤ 20 m/s,
we adopt the azimuthal pattern [57]

ΘH(kw, ϕ) = β1(kw) + ∆1(kw) cos(ϕ − ϕwd)

+ sgn(π/2 − ϕd)∆2(kw) cos[2(ϕ − ϕwd)] (15)
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with

β1(kw) =


1 + 2∆2(kw), |ϕ − ϕwd| ≤ π/2

1, |ϕ − ϕwd| > π/2
(16)

where sgn(x) = ±1 if x ≷ 0,

∆1(kw) = exp

{
−4
[

log
(

u∗
1.5Vw

)]2
}
(−4.66 × 10−7k2

w

+4.55 × 10−4kw + 6.78 × 10−2) (17)

is the upwind–downwind ratio [58],

∆2(kw) = tanh
{

a0 + ap
(
Vw/Vp

)2.5
+ amin(Vmin/Vw)

2.5
}

(18)

is the upwind–crosswind ratio [51]; a0 = ln 2/4, ap = 4, amin = 0.13u∗/Vmin, Vmin = 0.23 m/s,
and Vp = Vw(kp) (m/s) is the phase speed at the spectral peak [51]

kp =
g

U2
10

Ω2
c (19)

where Ωc is the inverse wave-age parameter.
Figure 6 shows the amplitude spectra HH(k̄w) at wind speeds of U10 = 10, 12, 16,

and 20 m/s, with the default parameters listed in Table 1. Each amplitude spectrum is
normalized against its maximum value, which is listed in Table 4. The amplitude spectra at
U10 = 10 and 12 m/s manifest patterns similar to ΘJ(ϕ) in (10), and those at U10 = 16 and
20 m/s manifest patterns similar to ΘH(ϕ) in (15).

Table 4. Maximum amplitude of Hwang spectra.

U10 (m/s) |HH| (dB)

10 90.6582

12 91.6060

16 96.1053

20 97.2381

Figure 7 shows samples of sea-surface realization in an area of 628 m × 628 m,
with U10 = 12 m/s and 20 m/s. By comparing with Figure 4, the features of long waves
become more conspicuous, and the size of wave fronts and crest-to-trough amplitudes
increase with the wind speed.

Table 5 lists the SWHs at U10 = 10, 12, 16, and 20 m/s. It is observed that the SWH
at U10 = 10 m/s falls within the suggested range in the DG sea-state table, while those at
U10 = 12, 16, and 20 m/s are close to the lower end of their suggested ranges in the DG
sea-state table [52].
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(a) (b)

(c) (d)
Figure 6. Hwang amplitude spectrum HH(k̄w) (in dB), with default parameters in Table 1:
(a) U10 = 10 m/s; (b) U10 = 12 m/s; (c) U10 = 16 m/s; (d) U10 = 20 m/s.

(a) (b)
Figure 7. Samples of sea-surface realization hHr(r̄, t) with Hwang spectrum: (a) U10 = 12 m/s;
(b) U10 = 20 m/s.

Table 5. Significant wave height (SWH) simulated with Hwang spectrum.

U10 Simulated SWH SWH in [52]

10 m/s 2.1756 m 1.5–2.4 m

12 m/s 2.4264 m 2.4–3.7 m

16 m/s 5.8004 m 6.1–12.2 m

20 m/s 6.5855 m 6.1–12.2 m
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3. Computation of Normalized Radar Cross-Section

Figure 8 shows the schematic of computing the radar backscattered field from a sea-
surface profile, which is modeled with triangular patches. The radar is located at (xtx, 0, h),
the slant range between the radar and the center of the target area is Ri, and the angle
between the downwind direction xwd and the x-axis is ϕwd. A continuous electromagnetic
wave is radiated towards the target area, at a grazing angle of θg. The backscattered
electric fields from all the triangular patches are computed by using the physical-optics
(PO) method, and then, transformed to the NRCS from the target region.

Figure 8. Schematic of computing radar backscattered field from sea-surface profile.

Figure 9a shows the schematic of a plane wave incident upon the sea-surface profile
modeled with triangular patches. Figure 9b shows that the sea-surface profile is projected
onto a grid of triangular patches on the xy-plane, each with edge length of ∆L. The centroid
of a triangle S is chosen as the origin of a local Cartesian coordinate system (xℓ, yℓ, zℓ),
with a normal vector of n̂ = ẑℓ. The incident and the scattering directions are specified
in the global (x, y, z) coordinate by (θi, ϕi) and (θs, ϕs), respectively. The unit vectors in the
scattering direction and the incident direction are r̂s and r̂i, respectively, R̄i is the range
vector from the transmitter Tx to the centroid of S, and R̄s is the range vector from the latter
to the receiver Rx.

(a) (b)
Figure 9. (a) Schematic of a plane wave incident upon a sea-surface profile modeled with triangular
patches. (b) Projection of triangle S onto xy-plane.

The angle between the z-axis and the local normal vector n̂ is θβ. The local incident
angle with respect to n̂ is θn = θi − θβ. The scattering field from S is computed as an
integral over its projection in the xy-plane as [59]

Es
pq(R̄s) = jk

e−jk(|R̄i |+|R̄s |)

4π|R̄i||R̄s|
E0Upq

∫
S

ejk(r̂s−r̂i)·R̄p ds (20)
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where k is the wavenumber of the radar wave, E0 is the magnitude of the incident electric
field, R̄p = x̂ℓxℓ + ŷℓyℓ, and Upq is the polarization factor, given by [59]

Upq =
1√

ζ2
x + ζ2

y + 1
[apq0 + apq1(ζx cos ϕi + ζy sin ϕi)

+apq2(ζx cos ϕi + ζy sin ϕi)
2], p, q = v, h (21)

where ζ(x, y) is the sea-surface profile, ζx = ∂ζ(x, y)/∂x and ζy = ∂ζ(x, y)/∂y are the
slopes of ζ(x, y) in the x and y directions, respectively. The coefficients apqn, with p, q = v, h
and n = 0, 1, 2, are derived in terms of (θi, ϕi), (θs, ϕs), and the Fresnel reflection coefficients
are approximated as [59]

Γh ≃ Γh0 + Γh1(ζx cos ϕi + ζy sin ϕi) (22)

Γv ≃ Γv0 + Γv1(ζx cos ϕi + ζy sin ϕi) (23)

The incident electric field Ēi from the transmitter Tx is given by

Ēi = êiE0
e−jk|R̄i−R̄p |

|R̄i − R̄p|
≃ êiE0

e−jk|R̄i |e−jkr̂i ·R̄p

|R̄i|
(24)

where êi is the unit polarization vector of the incident field. In (20), the electric field
scattered from the nth triangular patch is reduced to

Es
pqn(R̄sn) = an(R̄sn)ejϕn(R̄sn) (25)

where

an(R̄sn) =
|Ēi|
|R̄| bn(R̄sn)

bn(R̄sn) =
jkUpqn

4π

∫
S

ejk(r̂sn−r̂in)·R̄p ds

ϕn(R̄sn) = −k(|R̄in|+ |R̄sn|) (26)

By making further approximations that |R̄in| = |R̄sn| ≃ |R̄| and |Ēi
n| ≃ |Ēi|, the total

scattered electric field in (20) is computed as the sum of contributions from all the triangular
patches in the target area as [60]

Es
pq(R̄s) ≃

|Ēi|
|R̄|

N

∑
n=1

bn(R̄sn)ejϕn(R̄sn) (27)

Then, the radar cross-section (RCS) is computed as

σ = 4π|R̄|2
|Es

pq(R̄s)|2

|Ēi|2
(m2)

= 4π

∣∣∣∣∣ N

∑
n=1

bn(R̄sn)ejϕn(R̄sn)

∣∣∣∣∣
2

(m2) (28)

The normalized RCS (NRCS) is the RCS per unit scattering area [61], namely,

σ0 =
σ

A
(29)

where A = L2 is the size of the target area, which is a square of edge length L.
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The dielectric constant of sea water is determined by using the double-Debye dielectric
model (D3M) as [61]

ϵrw = ϵ′w − jϵ′′w (30)

with

ϵ′w = ϵw∞ +
ϵw0 − ϵw1

1 + (2π f τw1)2 +
ϵw0 − ϵw∞

1 + (2π f τw2)2 (31)

ϵ′′w =
2π f τw1(ϵw0 − ϵw1)

1 + (2π f τw1)2 +
2π f τw2(ϵw0 − ϵw∞)

1 + (2π f τw2)2

+
σi

2πϵ0 f
(32)

where f is the radiation frequency, ϵ0 is the permittivity of free space, and the empirical
formulas of the other parameters can be found in [61].

Figures 4 and 7 show a few samples of sea-surface profiles generated with the JON-
SWAP and the Hwang spectra, respectively. The NRCSs of over 40,000 realizations are
computed to form a convergent PDF of NRCS data. Empirically, the background of sea
clutter can be reasonably well modeled in terms of tilt-modulated Bragg scattering, whereas
the spikes can be modeled via the scattering from steepened and/or breaking waves. These
features account for some salient signatures in the sea clutter.

In this work, an alternative approach is proposed by generating sea-surface profiles
in terms of an empirical ocean-wave spectrum. This alternative is consistent with the
empirical model just mentioned as long as the sea-surface features (tilt-modulated surface,
steepened and/or breaking waves) are manifested in the sea-surface realizations. The
samples in Figure 4 manifest geometrical features that may cause Bragg scattering via
steepened and/or breaking waves. The same argument applies to surface gravity waves
(swells) and capillary waves (ripples). Different geometrical features may be highlighted
by adopting different ocean-wave spectra.

In this work, each realization of a sea-surface profile is approximated with a set of
triangular patches, as shown in Figures 8 and 9, before applying the physical-optics (PO)
method to compute the NRCS. The PO method demands that a triangular patch cannot
be too small compared with the wavelength. Thus, the swells can be well represented,
but maybe not the ripples. A more delicate electromagnetic model is preferred to better
account for the ripples, which may take higher computational cost.

4. Estimation of Statistical Parameters on PDF of NRCS

The NRCSs computed on an ensemble of sea-surface realizations are compiled to
form a probability density function (PDF), which is then regressed with the Weibull and
K distributions [17]. However, the outlier regions with very small and very large NRCSs,
respectively, cannot regress well with the K or Weibull distributions. The Pareto distribu-
tion [30] and other compound models like KK [62], WW [62], and K+Rayleigh [40] have
been adopted to characterize the non-Bragg scattering caused by sea spikes.

However, a given PDF may lead to multiple sets of statistical parameters in a com-
pound model, which implies that a slight change in the distribution of NRCSs may overly
perturb the statistical parameters, hampering the prediction of the latter under different
operational conditions.

In this work, the K and Weibull distributions are adopted to regress the PDF of the
simulated NRCS data, and the power-law is used to regress the outlier regions of very large
and very small NRCSs.
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The PDF of an NRCS, σ′
0 = 10 log10 σ0 (in dB), is approximated from the set of simu-

lated NRCS data as [63]

p′(σ′
0) =

H(σ′
0)

∆σ′
0Nrd

(33)

where Nrd is the total number of NRCS data, ∆σ′
0 is the bin width in dB scale, and H(σ′

0)
is the number of NRCS data falling in [σ′

0 − ∆σ′
0/2, σ′

0 + ∆σ′
0/2]. The ratio H(σ′

0)/Nrd
approximates the probability of σ′

0 ∈ [σ′
0 − ∆σ′

0/2, σ′
0 + ∆σ′

0/2], which is equal to the PDF
p′(σ′

0) multiplied by the bin width ∆σ′
0.

The PDF of the K distribution is given by [64]

pK(σ0; v, µ) =
∫ ∞

0
pcr(σ0|ξ)pχ(ξ)dξ =

2
σ0Γ(v)Γ(m)(

mv
µ

σ0

)(v+m)/2
Kv−m

(
2
√

mv
µ

σ0

)
(34)

where v and µ are the statistical parameters to be estimated by regression, m is the number
of looks, and m = 1 is adopted in this work, Kν(x) is the νth-order modified Bessel function
of the second kind [65],

pχ(ξ) =

(
v
µ

)v ξv−1

Γ(v)
e−vξ/µ, ξ ≥ 0 (35)

is the chi distribution, and

pcr(σ0|ξ) =
(

m
ξ

)m σm−1
0

Γ(m)
e−mσ/ξ , σ0 ≥ 0 (36)

is the conditional Rayleigh distribution. To regress with (33) in the dB scale, (34) is trans-
formed to the dB scale as

p′K(σ
′
0) = pK(σ0)σ0

ln 10
10

(37)

The PDF of the Weibull distribution is given by [66]

pW(σ0) =
cσc−1

0
bc e−(σ0/b)c

(38)

where b and c are are the statistical parameters to be estimated by regression. To regress
with (33) in the dB scale, (38) is transformed to

p′W(σ′
0) = pW(σ0)σ0

ln 10
10

(39)

4.1. Validation with Measurement Data

The PDF of simulated NRCS data, p′(σ′
0), is validated by comparing with its counter-

part PDF of measured sea clutter in an Ingara dataset [62], as shown in Figure 10. The PDF
p′(σ′

0) matches well with its counterpart of measurement in shape and size, except for a
lateral shift, which is attributed to unknown normalization and calibration in the measure-
ment data.
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(a) (b)
Figure 10. PDFs of NRCSs at vv polarization: U10 = 9.3 m/s, θg = 38.7◦, ϕwd = 68◦. (a) •: Data of
run34683 [62], ———: regressed with K distribution; •: simulated NRCS data, ———: regressed with
K distribution. (b) •: Data of run34683 [62], ———: regressed with Weibull distribution; •: simulated
NRCS data, ———: regressed with Weibull distribution.

4.2. Particle Swarm Optimization

Figure 11 shows the flowchart for estimating the statistical parameters of (v, µ) in the K
distribution or (b, c) in the Weibull distribution by applying a particle swarm optimization
(PSO) algorithm to the PDF derived from the set of simulated NRCS data.

Figure 11. Flowchart for estimating the statistical parameters of a specific probability density function
with particle swarm optimization (PSO) algorithm.
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A total of P pseudo-particles are guided by the PSO algorithm to move around in a
two-dimensional space, in which the position vector X̄p of the pth particle is defined as

X̄p =


[vp, µp], K distribution

[bp, cp], Weibull distribution

(40)

The initial values of {X̄p} are randomly picked in the ranges of 0.1 ≤ vp ≤ 25, 0 ≤ µp ≤ 2µ,
0 ≤ bp ≤ 10, and 0 ≤ cp ≤ 10.

Next, the fitness functions associated with the K and Weibull distributions are defined
as

FK(X̄p) =
∫

|p′K(σ′
0, X̄p)− p′(σ′

0)|W(σ′
0)dσ′

0 (41)

FW(X̄p) =
∫

|p′W(σ′
0, X̄p)− p′(σ′

0)|W(σ′
0)dσ′

0 (42)

respectively, where W(σ′
0) = H(σ′

0)/Nrd is used as the weighting function.
The positions of all the particles are iterated by D rounds. In each iteration, the position

of the pth particle reaching its lowest fitness function so far is registered as X̄pb, and the
position with the lowest fitness function ever reached by all the P particles is registered as
X̄gb. The velocity of the pth particle in iteration d is updated as

γ̄
(d)
p = hwγ̄

(d−1)
p + cℓ β̄ℓ ⊙ (X̄pb − X̄(d)

p )

+cg β̄g ⊙ (X̄gb − X̄(d)
p ) (43)

where β̄ℓ, β̄g ∈ R2 are two-dimensional vectors, with each component a random number
of uniform distribution in [0, 1]; hw = 0.4 is the inertia weight, cℓ = cg = 2 are empirical
constants, and ⊙ is the Hadamard product operator. The position of the pth particle is then
updated as

X̄(d+1)
p = X̄(d)

p + γ̄
(d)
p (44)

The population size is set to P = 20. The PSO algorithm halts when d reaches D = 40 for
the K distribution and D = 60 for the Weibull distribution.

The PSO method has been widely used in many disciplines and is used as an auxiliary
tool in this work. Other methods can be used to estimate these statistical parameters.
It is worth mentioning that the weighting function W(σ′

0) = H(σ′
0)/Nrd adopted in (41)

and (42) is the posteriori information, which is the probability of observed data falling in
the designated σ′

0 bin. This weighting function bears the same spirit as in the maximum-
likelihood estimation, which turns out to improve the goodness of fit.

4.3. Power-Law Distribution

The power-law distribution has been observed in the outlier region of many physical
quantities [67]. The PDFs of NRCSs with very large and very small values appear to follow
the power-law distribution. The outlier regions are specified as [ds, ∞) (dB) and (−∞, dw]
(dB), respectively, with the thresholds ds and dw selected by observation.

Each outlier region is divided into Mb bins, with the PDF value yℓm (dB) in the mth
bin linearly regressed as

yℓm = bℓ0 + bℓ1σ′
0m (45)
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where 1 ≤ m ≤ Mb, and (bℓ0, bℓ1) are the regression coefficients, which are determined by
minimizing the sum of squared errors as

(b̃ℓ0, b̃ℓ1) = arg min
(bℓ0,bℓ1)

Mb

∑
m=1

Wℓm(yℓm − p′dBm)
2 (46)

where p′dB(σ
′
0) = 10 log10 p′(σ′

0), and Wℓm is the value of weighting function

Wℓ(σ
′
0) =


H(σ′

0)/Nw, σ′
0 ≤ dw (dB)

H(σ′
0)/Ns, σ′

0 ≥ ds (dB)

(47)

in the mth bin, Nw and Ns are the numbers of NRCS data with σ′
0 ≤ dw and σ′

0 ≥ ds,
respectively.

5. Simulations and Discussion

In this section, realizations of sea-surface profiles are generated under different wind
speeds and wind directions, with either the JONSWAP or Hwang spectrum. The NRCS
from each sea-surface realization is computed by using the default radar parameters listed
in Table 6. The NRCS data from all the realizations are compiled to form a PDF, which is
then regressed with the K and Weibull distributions to derive two statistical parameters
of each distribution by using the particle swarm optimization method. The power-law
indices in the two outlier regions are determined by applying the weighted linear regression
method. Then, the effects of wind speed, wind direction, grazing angle, and polarization
on these statistical parameters are investigated.

Table 6. Default radar parameters.

Parameter Symbol Value

Radar center frequency f0 10.1 GHz [32]

Slant range R0 15.4169 km

Grazing angle θg 15◦

Polarization vv

3 dB azimuth beamwidth ϕa 1◦ [68]

3 dB elevation beamwidth θe 13◦ [68]

5.1. Effects of Wind Speed

The effects of wind speed on an NRCS are studied by computing σ′
0vv’s over 40,000 re-

alizations of sea-surface profiles at each wind speed of interest. Figure 12a shows the K
distributions, regressed with the PDFs formed at U10 = 6 and 20 m/s, and Figure 12b
shows their counterparts of Weibull distributions. It is observed that both the K and Weibull
distributions can well characterize the PDFs of simulated NRCS data.

Figure 13a shows the statistical parameters µ and v of the K distribution over wind
speeds of U10 = 6–20 m/s, and Figure 13b shows the statistical parameters b and c of
the Weibull distribution over the same wind-speed range. It is observed that v and c
are insensitive to the wind speed. On the other hand, µ and b manifest a discontinuity
at U10 = 14 m/s, which is attributed to different azimuthal patterns adopted in the
Hwang spectrum. Note that ΘJ(ϕ) and ΘH(kw, ϕ) are adopted in 10 ≤ U10 < 14 m/s and
14 ≤ U10 ≤ 20 m/s, respectively, in order to comply with the significant wave heights
(SWHs) suggested in the Douglas sea-state table. The azimuthal pattern ΘJ(ϕ) in (10) is
independent of wind speed, whereas ΘH(kw, ϕ) in (15) is affected by the air friction velocity
u∗, which in turn is a function of wind speed.
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(a) (b)
Figure 12. PDFs of NRCSs at vv polarization, with default parameters listed in Tables 1 and 6. •: Gen-
erated with JONSWAP spectrum, U10 = 6 m/s; △: generated with Hwang spectrum, U10 = 20 m/s.
———: Regressed on •; ———: regressed on △. (a) Regressed with K distribution; (b) regressed with
Weibull distribution.

(a) (b)
Figure 13. Statistical parameters versus wind speed, vv polarization. •, •: Simulated with JONSWAP
spectrum; △, △: simulated with Hwang spectrum. (a) Regressed with K distribution, µ (•, △), v (•,
△); (b) regressed with Weibull distribution b (•, △), c (•, △). The vertical grey lines indicate that
simulation with Hwang spectrum starts at U10 = 10 m/s, and simulation with JONSWAP spectrum
ends at U10 = 12 m/s.

Figure 14 shows the PDFs of NRCSs on a log–log scale, which manifests the power-law
distribution in the outlier regions of strong signals and weak signals, respectively. The
power-law index is estimated by applying the weighted linear regression method, with
the thresholds of weak and strong signals arbitrarily set at dw = −28 dB and ds = −12 dB,
respectively. The vertical green line marks the noise floor of typical radar systems [69].

Figure 15 shows the power-law indices of PDFs in the outlier regions versus wind
speed. It is observed that the index in the strong signal outlier region is more sensitive to
the wind speed than that in the weak signal one. A discontinuity of bs

ℓ1 is also manifested
at about U10 = 14 m/s.



Sensors 2024, 24, 3720 22 of 33

Figure 14. Weighted linear regression on simulated NRCS at vv polarization in outlier regions. •:
Simulated with JONSWAP spectrum, U10 = 6 m/s; △: simulated with Hwang spectrum, U10 = 20 m/s.
———: Regressed on •; ———: regressed on △; ———: noise floor at σ′0 = −38 dB. The vertical grey lines
indicate that σ′0 = −28 dB is threshold of weak signals, and σ′0 = −12 dB is threshold of strong signals.

Figure 15. Power-law indices of PDF in outlier regions versus wind speed, vv polarization. •, •:
Simulated with JONSWAP spectrum; △, △: simulated with Hwang spectrum; bw

ℓ1 (•, △), bs
ℓ1 (•, △).

The vertical grey lines indicate that simulation with Hwang spectrum starts at U10 = 10 m/s, and
simulation with JONSWAP spectrum ends at U10 = 12 m/s.

5.2. Effects of Polarization

Similar to vv polarization, Figure 16 shows that the PDFs of NRCSs at hh polarization
can be well characterized with the K and Weibull distributions. The magnitude of σ′

0vv is
larger than that of σ′

0hh, which in turn is larger than those of σ′
0vh and σ′

0hv.

(a) (b)
Figure 16. PDFs of NRCSs at hh polarization, with default parameters listed in Tables 1 and 6. •: Sim-
ulated with JONSWAP spectrum, U10 = 6 m/s; △: simulated with Hwang spectrum, U10 = 20 m/s.
———: Regressed on •; ———: regressed on △. (a) Regressed with K distribution; (b) regressed with
Weibull distribution.
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Figure 17 shows that the parameter v of the K distribution and the parameter c of the
Weibull distribution are insensitive to the wind speed. The parameter µ of the K distribution
and the parameter b of the Weibull distribution are more easily affected by the wind speed,
and manifest a discontinuity at U10 = 14 m/s, across which different azimuthal patterns
are adopted.

In Figures 13 and 17, the shape parameter v of the K distribution remains about 25
when the wind speed U10 reaches 20 m/s (corresponding to sea state 7), implying the
clutter amplitude still follows a Rayleigh distribution. By taking a second inspection of the
sea-surface profile shown in Figure 4a, simulated under U10 = 6 m/s, numerous potential
scatterers are observed. The magnitude of the backscattering field contributed by these pre-
sumably uncorrelated scatterers is expected to follow a Rayleigh distribution. On the other
hand, the sea-surface profile shown in Figure 7b, simulated under U10 = 20 m/s, manifests
significant long-wave features superposed with roughness of short wavelengths. Despite
the long-wave features, the random sea-surface roughness presents numerous uncorrelated
scatterers which contribute to the backscattering field that follows a Rayleigh distribution.

(a) (b)
Figure 17. Statistical parameters versus wind speed, hh polarization. •, •: Simulated with JONSWAP
spectrum; △, △: simulated with Hwang spectrum. (a) Regressed with K distribution, µ (•, △), v (•,
△); (b) regressed with Weibull distribution, b (•, △), c (•, △). The vertical grey lines indicate that
simulation with Hwang spectrum starts at U10 = 10 m/s, and simulation with JONSWAP spectrum
ends at U10 = 12 m/s.

Figure 18 shows the weighted linear regression on simulated NRCSs at hh polarization
in the outlier regions. The outlier region of weak signals is not regressed in practice because
the threshold of dw = −50 dB is below the noise floor of σ′

0 = −38 dB. The threshold of
strong signals is set at ds = −37 dB, and Figure 19 shows that the power-law index varies
between −4 and −3 as the wind speed varies between 6 and 20 m/s.

Figure 18. Weighted linear regression on simulated NRCSs at hh polarization in outlier regions. •:
Simulated with JONSWAP spectrum, U10 = 6 m/s; △: simulated with Hwang spectrum, U10 = 20 m/s.
———: Regressed on •; ———: regressed on △; ———: noise floor at σ′0 = −38 dB. The vertical grey lines
indicate that σ′0 = −50 dB is threshold of weak signals, and σ′0 = −37 dB is threshold of strong signals.
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Figure 19. Power-law indices of PDFs in outlier regions versus wind speed, hh polarization. •, •:
Simulated with JONSWAP spectrum; △, △: simulated with Hwang spectrum; bw

ℓ1 (•, △), bs
ℓ1 (•, △).

The vertical grey lines indicate that simulation with Hwang spectrum starts at U10 = 10 m/s, and
simulation with JONSWAP spectrum ends at U10 = 12 m/s.

5.3. Effects of Grazing Angle

Low-earth orbit (LEO) satellites are becoming practical and viable platforms to carry
radars for sensing sea surfaces. Sea clutter will still be an important factor to consider, as in
conventional shipborne or coast-based radars, except large grazing angles will be engaged,
pending on applications.

Figure 20 shows the PDFs of NRCSs with vv polarization for U10 = 10 m/s and
θg = 15, 20, 45◦. The PDFs drift leftwards as the grazing angle increases from θg = 15◦

to 45◦. The PDFs simulated with the Hwang spectrum drift slightly leftwards from their
counterparts simulated with the JONSWAP spectrum. The Weibull distribution fits better
near the peak of PDFs than the K distribution.

(a) (b)
Figure 20. PDFs of NRCSs with default parameters listed in Tables 1 and 6, vv polarization,
U10 = 10 m/s. •: Simulated with JONSWAP spectrum at θg = 15◦; △: simulated with Hwang
spectrum at θg = 15◦; •: simulated with JONSWAP spectrum at θg = 20◦; △: simulated with Hwang
spectrum at θg = 20◦; •: simulated with JONSWAP spectrum at θg = 45◦; △: simulated with Hwang
spectrum at θg = 45◦. ———: Regressed on •; ———: regressed on •; ———: regressed on •; - - - - -:
regressed on △; - - - - -: regressed on △; - - - - -: regressed on △. (a) Regressed with K distribution;
(b) regressed with Weibull distribution.

Figure 21 shows the statistical parameters versus grazing angle. It is observed that
the parameter v of the K distribution and the parameter c of the Weibull distribution are
insensitive to the grazing angle, whereas the parameter µ of the K distribution and the
parameter b of the Weibull distribution decrease monotonically with the grazing angle. The
decreasing rate is more conspicuous at low grazing angles.
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(a) (b)
Figure 21. Statistical parameters versus grazing angle, with default parameters listed in Tables 1 and 6,
vv polarization, U10 = 10 m/s. •, •: Simulated with JONSWAP spectrum; △, △: simulated with
Hwang spectrum. (a) Regressed with K distribution, µ (•, △), v (•, △); (b) regressed with Weibull
distribution, b (•, △), c (•, △).

Figure22 shows the PDFs of NRCSs at θg = 1◦, 5◦, and 10◦. Their shapes are very close
to one another, their v parameters are close to 25 and their c parameters are close to one,
as shown in Figure 21. As θg is decreased from 10◦ to 1◦, the NRCS value (backscattering
signal strength) increases monotonically, accompanied by the monotonical increase in
parameters µ and b.

(a) (b)
Figure 22. PDFs of NRCSs with default parameters listed in Tables 1 and 6, vv polarization,
U10 = 10 m/s. •: Simulated with JONSWAP spectrum at θg = 10◦; △: simulated with Hwang
spectrum at θg = 10◦; •: simulated with JONSWAP spectrum at θg = 5◦; △: simulated with Hwang
spectrum at θg = 5◦; •: simulated with JONSWAP spectrum at θg = 1◦; △: simulated with Hwang
spectrum at θg = 1◦. ———: Regressed on •; ———: regressed on •; ———: regressed on •; - - - - -:
regressed on △; - - - - -: regressed on △; - - - - -: regressed on △. (a) Regressed with K distribution;
(b) regressed with Weibull distribution.

The empirical model in [17] for estimating the shape parameter v of the K distribution
at low grazing angles was based on measurement data, which were inevitably affected by
many uncertainties. In our framework, the simulation parameters listed in Tables 1 and 6
bear no uncertainties, implying that the PDFs of simulated NRCSs can be attributed to
specific wind conditions (sea states). The results presented in Figure 21 are obtained under
U10 = 10 m/s, corresponding to a medium-to-high sea state or Douglas sea state 5.

The shape parameter in [17] varied with grazing angle at low sea state and low grazing
angles. The variation in the shape parameter at sea state 6 and θg > 1◦ was limited. The
shape parameter at vv polarization in 15◦ ≤ θg ≤ 45◦ varied without trend, partially
attributed to the uncertainties embedded in the measurement data.
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5.4. Effects of Wind Direction

Figure 23 shows PDFs of NRCSs with vv polarization, U10 = 10 m/s, and ϕwd = 0
and 90◦. It is observed that the mean value of NRCSs at ϕwd = 90◦ is larger than that at
ϕwd = 0◦. The mean value simulated with the JONSWAP spectrum is slightly larger than
its counterpart simulated with the Hwang spectrum.

Figure 24 shows the statistical parameters versus wind direction. It is observed that
the parameter v of the K distribution and the parameter c of the Weibull distribution are
insensitive to the wind direction. The parameter µ of the K distribution and the parameter
b of the Weibull distribution monotonically increase as ϕwd sweeps from 0 to 90◦, and
monotonically decrease as ϕwd sweeps from 90 to 180◦, in an almost symmetrical pattern
about ϕwd = 90◦. The magnitudes of µ and b simulated with the JONSWAP spectrum are
larger than their counterparts simulated with the Hwang spectrum.

Figure 25 shows the weighted linear regression on simulated NRCSs in the outlier
regions, with ϕwd = 0 and 90◦. Figure 26 shows the power-law indices of PDFs in the
outlier regions versus wind direction. It is observed that the index in the outlier region of
weak signals is insensitive to the wind direction. The index in the outlier region of strong
signals increases monotonically from −5 at ϕwd = 0 to −3 at ϕwd = 90◦, and decreases
monotonically to −5 at ϕwd = 180◦, in an almost symmetrical pattern about ϕwd = 90◦.

(a) (b)
Figure 23. PDFs of NRCSs, with default parameters listed in Tables 1 and 6, vv polarization,
U10 = 10 m/s. •: Simulated with JONSWAP spectrum at ϕwd = 0◦; △: simulated with Hwang
spectrum at ϕwd = 0◦; •: simulated with JONSWAP spectrum at ϕwd = 90◦; △: simulated with
Hwang spectrum at ϕwd = 90◦. ———: Regressed on •; ———: regressed on •; - - - - -: regressed on
△; - - - - -: regressed on △. (a) Regressed with K distribution; (b) regressed with Weibull distribution.

(a) (b)
Figure 24. Statistical parameters versus wind direction, with default parameters listed in
Tables 1 and 6, vv polarization, U10 = 10 m/s. •, •: Simulated with JONSWAP spectrum; △, △:
simulated with Hwang spectrum. (a) Regressed with K distribution, µ (•, △), v (•, △); (b) regressed
with Weibull distribution, b (•, △), c (•, △).
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Figure 25. Weighted linear regression on simulated NRCSs in outlier regions, vv polarization. •:
Simulated with JONSWAP spectrum at ϕwd = 0◦; △: simulated with Hwang spectrum at ϕwd = 0◦; •:
simulated with JONSWAP spectrum at ϕwd = 90◦; △:simulated with Hwang spectrum at ϕwd = 90◦.
———: Regressed on •; ———: regressed on •; - - - - -: regressed on △; - - - - -: regressed on △; ———:
noise floor at σ′

0 = −38 dB. The vertical grey lines indicate that σ′
0 = −28 dB is threshold of weak

signals, and σ′
0 = −12 dB is threshold of strong signals.

Figure 26. Power-law indices of PDFs in outlier regions versus wind direction, vv polarization, •, •:
simulated with JONSWAP spectrum; △, △: simulated with Hwang spectrum; bw

ℓ1 (•, △), bs
ℓ1 (•, △).

5.5. Highlights and Prospects

Collecting field measurement data on sea clutter may be expensive to cover all possible
radar operation conditions, under conceivable combinations of wind speed, wind direction,
polarization, and grazing angle, among others. A complete framework of predicting the
characteristics of sea clutter under specific radar operation conditions will be useful to a
wide variety of applications, and can be used as a reference or guidelines for designing
future measurement tasks to enhance the existing empirical models on ocean-wave spectra,
normalized radar cross-sections (NRCSs), and so on. The proposed framework is composed
of empirical spectra used to characterize sea-surface profiles under different wind speeds,
the Monte Carlo method to generate realizations of sea-surface profile, the physical-optics
method to compute the NRCSs from a multitude of sea-surface realizations, and regression
of NRCS data (sea clutter) with empirical probability density functions (PDFs) to derive a
few statistical parameters.

An ensemble of sea-surface profiles under wind speeds of U10 = 6–20 m/s are realized
by applying the Monte Carlo method upon the JONSWAP spectrum at low-to-medium
wind speeds and the Hwang spectrum at high wind speeds. These two spectra are adopted
for demonstration. More robust ocean-wave spectra can be developed and their efficacy
can be evaluated by comparing the realizations of sea-surface profiles with observed ones.

The physical-optics method is used to compute the NRCS from an individual sea-
surface realization, which is approximated by a set of triangular patches. This method
works well on one premise, that the patch size is at least a few radar wavelengths. Thus,
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sea-surface ripples with wavelengths of cm or less cannot be perceived if X-band radar is
used. More sophisticated electromagnetic models can be developed to compute the NRCS,
possibly at higher computational cost.

The PDFs of NRCSs, under different operational conditions, are well regressed with
the K or Weibull distributions, each characterized by two statistical parameters, plus two
power-law indices for characterizing weak and strong signals. The power-law distributions
for weak and strong radar echoes were not found in the literature. The dependence of
these statistical parameters and power-law indices upon wind speed, wind direction,
polarization, and grazing angle is explored, which can be used to quickly predict these
statistical parameters and power-law indices when a specific operational condition is given.
These statistical parameters and indices can be used to reconstruct the PDFs of NRCSs
effectively and efficiently for predicting the properties of sea clutter under given wind and
radar operation conditions.

Sea-clutter-related issues have been widely discussed in the literature. Recently, three
adaptive detectors were proposed to detect a target immersed in a sea-clutter dominant
scenario [70]. An asymmetric adaptive detection problem was solved, with sea clutter
characterized by a compound-Gaussian distribution with inverse-Gaussian (CG-IG) texture.
Statistical parameters were estimated by applying a moment estimator and a Nelder–Mead
algorithm. The CG-IG distribution was validated with the South Africa Fynmeet sea clutter
dataset in a specific scenario. In comparison, our framework provides more flexibility and
can be applied to describe more diverse sea-clutter distributions under different sea states
and radar conditions, which will benefit the development of target detection methods.

In [71], co-polarized and cross-polarized bistatic coherent sea-clutter returns were
investigated with statistical inference. A spherically invariant random process (SIRP) was
applied to describe the statistical properties of sea clutter, assuming a wide-sense stationary
texture and speckle of sea clutter. Our framework can deal with more versatile sea states
and radar conditions in the simulations, including wind speed, wind direction, grazing
angle, and polarization.

In [72], a distribution of sea clutter was regressed with a statistical model composed
of the gamma distribution and its second moment to facilitate ship detection. It was
validated with measured sea-clutter data under low-to-medium wind speeds at L-band.
In comparison, our framework has been validated to cover wind speeds up to 20 m/s.

In [73], the statistical properties of sea clutter, under low grazing angles, were modeled
with the compound K distribution and gamma-distributed texture, and were studied via
two examples of monochromatic swell pattern and simulated sea-surface profiles with em-
pirical ocean-wave spectra, respectively. Separate memoryless nonlinear transformations
(MNLTs) were applied on the simulated sea-surface profiles to acquire the characteristics of
the Doppler spectrum. It was reported that further studies on the relationship between the
empirical parameters in the model and the environmental conditions were needed, which
can be implemented by applying our framework.

In [74], S-band sea clutter from a NetRAD radar system, at low grazing angles, was
analyzed with a Suzuki distribution, which was a compound Gaussian model with log-
normal texture. It was shown that the Suzuki distribution could be transformed to obtain
the normally distributed texture directly related to the sea-surface slope. The water depth
and wave direction were estimated by using a dispersion relation derived from the two-
dimensional range-time autocorrelation function (ACF) of sea clutter. Our framework can
account for more versatile sea states and radar conditions in the simulations, providing
useful clues for similar studies like this.

In [75], a two-dimensional amplitude and phase matching optimization (APMO)
method was proposed to simulate spatial–temporal correlated sea clutter in two steps.
First, a frequency-domain inverse transform and a correlation transfer were applied on the
measured sea clutter from NAU clutter data to simulate clutter amplitudes with similar
distribution. Then, the clutter phases were estimated by applying an optimization method.
In our framework, the sea clutter is computed from sea-surface realizations simulated in
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terms of an empirical ocean-wave spectrum, which can be flexibly adjusted to simulate a
wide variety of sea states.

Note that the third part of the proposed framework can be applied to the PDF derived
from measurement NRCS data, σobs

0 . Imagine a framework comparable to that shown
in the flowchart of Figure 1 was conducted by measurement, the cost spent in acquiring
the measurement data to derive PDF p′(σobs

0 ), over the same ranges of wind conditions
and radar parameters as presented in Section 5, would be much higher than the cost
of simulations.

6. Conclusions

A complete framework of predicting the properties of sea clutter, under different oper-
ational conditions specified by wind speed, wind direction, grazing angle, and polarization,
is proposed for the first time. This framework is composed of empirical spectra used to
characterize sea-surface profiles under different wind speeds, the Monte Carlo method
to generate realizations of sea-surface profiles, the physical-optics method to compute
the normalized radar cross-sections (NRCSs) from a multitude of sea-surface realizations,
regression of NRCS data (sea clutter) with empirical probability density functions (PDFs)
to derive a few statistical parameters, and power-law indices via a particle swarm optimiza-
tion (PSO) algorithm. The JONSWAP and Hwang spectra of ocean waves are adopted to
generate realizations of sea-surface profiles at low and high wind speeds, respectively. The
probability density functions of NRCSs are regressed with the K and Weibull distributions,
each characterized by two parameters. The probability density functions in the outlier re-
gions of weak signals and strong signals are regressed with power laws, each characterized
by an index. These statistical parameters of the K and Weibull distributions, including the
power-law indices, are investigated for the first time under different operational conditions.
The study reveals useful and succinct information of sea clutter that can be used to improve
the radar performance in a wide variety of complicated ocean environments. The proposed
framework can be used as a reference or guidelines for designing future measurement tasks
to enhance existing empirical models.
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Appendix A. Comparison of Pierson–Moskowitz, Mitsuyasu, and Elfouhaily Spectra

The Pierson–Moskowitz (PM) spectrum is given by [6]

ΦPM(ωw) =
αg2

ω5
w

e−β(ωmax/ωw)4

where α = 8.1 × 10−3 , β = 0.74, and ωmax is the frequency of the spectral peak. The PM
spectrum was proposed by modifying the Phillips’ spectrum of ΦPh(ωw) = αg2/ω5

w [76],
to characterize fully developed wind-driven sea surfaces, featuring gravity waves [7]. On
the other hand, the PM spectrum is not suitable for characterizing developing sea surfaces.
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The Mitsuyasu spectrum ΦM(ωw) was proposed by modifying the coefficients of the
Phillips’ spectrum with field measurements of limited fetch length F in a wave tank and in
Hakata Bay. Its spectrum is given by [77]

ΦM(ωw) =
g2

ω5
w

(
21 log10

gF
u2∗

− 34.5
)−1

if ωw ≥ ωmax, and

ΦM(ωw) = 1.66 × 10−9 g2

ω5
w

exp

{
3.94

(
gF
u2∗

)0.283 u∗ωw

g

}

if ωw ≤ ωmax, where u∗ is the surface friction velocity. Similar to the PM spectrum,
the Mitsuyasu spectrum applies to fully developed wind-driven sea surfaces [78].

The JONSWAP spectrum ΦJ(ωw) in (7) was extended from the PM spectrum to cover
both developing and fully developed sea surfaces [48]. Its functional form was determined
by five parameters (ωmax, α, γ, σa, and σb) via regressing with the spectra observed under
different ocean-wave generation conditions [48]. The peak of the JONSWAP spectrum is
equal to that of the PM spectrum multiplied by the base of peak enhancement factor, γ. The
conventional JONSWAP spectrum is characterized by γ = 3.3, σa = 0.07, and σb = 0.09,
which are not strictly tenable [48]. It was claimed in [49] that γ = 1 characterizes fully
developed sea surfaces, with the JONSWAP spectrum reduced to the PM spectrum; and
γ > 1 characterizes developing sea surfaces. In this work, we choose the values of γ = 3.3,
σa = 0.06, and σb = 0.1 to characterize developing sea surfaces.

The Elfouhaily spectrum was proposed by modifying the JONSWAP spectrum, as [51]

ΦEl(kw) =
2π

k3
w
[Bℓ(kw) + Bh(kw)]

where Bℓ(kw) and Bh(kw) are the spectra at low and high wavenumbers, respectively,
with the explicit forms

Bℓ(kw) =
1
2

αp
Vp

Vw
Fp(kw)

Bh(kw) =
1
2

αm
Vmin

Vw
Fm(kw)

Vp = Vw(kp) is the phase speed at the spectral peak kp, and αp and αm are the generalized
Phillips–Kitaiporodskii equilibrium range parameters at low and high wavenumbers,
respectively [51].

The explicit form of the side-effect function Fp(kw) at low wavenumbers is modified
from its counterpart in the JONSWAP spectrum as

Fp(kw) = e−1.25(ωmax/ωw)4
γexp{−(ωw−ωmax)2/(2σ2ω2

max)}

exp

{
− Ω√

10

(√
kw

kp
− 1

)}

where Ω is the inverse wave-age parameter, and the third term on the right-hand side
accounts for the observed spectral roll-off in tank experiments [79]. Similarly, the explicit
form of Fm(kw) is given by

Fm(kw) = e−1.25(ωmax/ωw)4
γexp{−(ωw−ωmax)2/(2σ2ω2

max)}

exp

{
−1

4

(
kw

kmin
− 1
)2
}
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where the third term on the right-hand side accounts for the viscous cutoff of gravity-
capillary waves [51].

The Elfouhaily spectrum reveals more precise properties of gravity-capillary and
capillary waves in the high-wavenumber regime. It is suitable to describe finer ocean-
wave features at low sea states under low wind speeds. However, its difference from the
JONSWAP spectrum is indiscernible at moderate wind speeds.
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