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Abstract: A rigorous TomoSAR imaging procedure is proposed to acquire high-resolution L-band
images of a forest in a local area of interest. A focusing function is derived to relate the backscattered
signals to the reflectivity function of the forest canopies without resorting to calibration. A forest
voxel model is compiled to simulate different tree species, with the dielectric constant modeled
with the Maxwell-Garnett mixing formula. Five different inverse methods are applied on two forest
scenarios under three signal-to-noise ratios in the simulations to validate the efficacy of the proposed
procedure. The dielectric-constant profile of trees can be used to monitor the moisture content of the
forest. The use of a swarm of unmanned aerial vehicles (UAVs) is feasible to carry out TomoSAR
imaging over a specific area to pinpoint potential spots of wildfire hazards.

Keywords: TomoSAR; high resolution; L-band; focusing function; forest model; dielectric constant;
reflectivity function; unmanned aerial vehicle; wildfire prediction

1. Introduction

The morphology of a forest, including canopy height, vertical structure and spatial dis-
tribution, provides useful information for ecological protection [1], biomass estimation [2],
the monitoring of biodiversity [1] and the global carbon cycle [3]. More incidences of forest
fires in recent years may be correlated to the trend of global warming [4]. Regular monitor-
ing of forest morphology may help in predicting potential wildfire spots for emergency
preparation.

Wildfire risk increases as the soil dehydrates [4] or more dry bushes pile up [5]. L-band
and C-band radars have been used to estimate the moisture content in the leaves, branches
and trunks of trees [6], by detecting their dielectric constants [7].

In [8], an area-based approach was proposed to estimate different forms of deadwood.
Light detection and ranging (LiDAR) has been used to retrieve 3D data of the forest
structure, surface fuel depth, coverage and canopy density [9]. Synthetic aperture radar
tomography (TomoSAR) in L- and P-bands has been used to reconstruct the 3D forest
morphology via volume backscattering [10].

The soil and trunks are dominant scatterers in the P-band, while small branches are
dominant scatterers in the L-band [11]. The backscattered signals in the L-band were
reported to have a more uniform distribution in elevation [12]. In [13], an airborne P-
and L-band TomoSAR technique using a Capon estimator was proposed to reconstruct a
tropical forest, and the results were validated with small-footprint LiDAR (SFL) data. In [1],
an airborne L-band TomoSAR technique was proposed to retrieve the vertical profile of
a forest. In [14], an airborne L-band TomoSAR technique using wavelets was applied to
survey the forest morphology, and its performance in conjunction with inverse algorithms
of Fourier beamforming, Capon and compressive sensing, respectively, was analyzed.

To acquire TomoSAR images with high fidelity, the baseline aperture, baseline spacing,
number of tracks and elevation ambiguity must be well orchestrated [15]. A method of
coordinating baselines at nonuniform and uniform spacings was proposed by judging the
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corresponding point spread function [16]. As nonuniform baseline spacings may yield
poor elevation resolution, a baseline aperture interpolator was proposed [2] to suppress
sidelobes of the point spread function.

Inverse algorithms used for TomoSAR imaging of the reflectivity profile in the target
volume can be roughly categorized into model-based (parametric), model-free (nonpara-
metric) and hybrid [14]. Model-based algorithms include multiple signal classification
(MUSIC) and covariance matching estimator (COMET). Model-free algorithms include
Fourier beamforming (FB) and Capon beamforming (CB) [17]. In [18], a model-free it-
erative adaptive approach was shown to deliver finer elevation resolution than Fourier
beamforming and Capon beamforming.

Compressive sensing (CS) techniques have been proposed to enable sparse SAR
imaging methods [19,20]. In [21], a sparse SAR imaging method based on `2,1-norm regular-
ization was proposed to reduce the ghost-target phenomenon caused by azimuth periodic
block sampling. In [22], an incremental SAR imaging method was proposed to improve the
image quality and computational efficiency by reducing the azimuth ambiguity. In [23], a
weighted sparse reconstruction method was proposed for single-channel SAR imaging on
maritime targets to mitigate the azimuth ambiguities and improve the resolution.

In [16–18], several TomoSAR imaging methods were developed in terms of a normal-
ized impulse response [24,25]. In [16], the effects of track number and track configuration
on the acquired forest images were studied. It was reported that at least seven tracks were
required to suppress the sidelobe level of the impulse response below −6 dB, resulting in
a vertical resolution of 6 m. In [11], a weighted covariance fitting-based iterative spectral
estimator (WISE) was proposed to retrieve the canopy height models and the above-ground
biomass, achieving finer resolution than Capon and weighted-CS methods could deliver.
In [14], the pros and cons of Capon beamforming, Fourier beamforming and CS algorithm
were compared. In [18], a robust iterative adaptive approach (RIAA) in conjunction with a
weighted least-squares criterion was proposed to conduct TomoSAR imaging with a small
aperture of 5–30 m.

A vivid tree model is useful to validate a TomoSAR imaging method with fine spatial
resolution. In [12,26], a forest was modeled as a reflectivity profile composed of a ground
layer and a canopy layer. Three-dimensional tree generator software such as Arbaro
(1995) [27], OnyxTREE (2020) [28] and AMAPstudio (2014) [29] were commonly used in
LiDAR researches [30]. Arbaro is a rule-based growth algorithm [31], with which the
trunks, branches and leaves of trees are transformed to a voxel model. A voxel model with
a resolution of the order of a decimeter will be useful for pinpointing potential spots of
wildfire hazards.

In this work, a rigorous L-band TomoSAR imaging method is proposed to reconstruct
the dielectric-constant profile of a forest. A focusing function is derived to relate the
backscattered signals to the reflectivity function along an elevation line segment at a specific
azimuth and depth, without resorting to calibration. The profile of the reflectivity function
along the elevation line segment is reconstructed with the inverse methods of compressive
sensing (CS), Fourier beamforming (FB), multiple signal classification (MUSIC), amplitude
and phase estimation (APES), and Capon, respectively. The simulated TomoSAR images
acquired with these five inverse methods are analyzed in different scenarios under different
signal-to-noise ratios.

SAR imaging tasks carried out on an unmanned aerial vehicle (UAV) were reported
to achieve a fine spatial resolution of 10 cm [32]. The UAV navigation and trajectory for
TomoSAR imaging has been studied [33]. A swarm of UAVs can be flexibly deployed to
acquire high-resolution TomoSAR images of forest canopies, with the proposed TomoSAR
imaging method.

The rest of this work is organized as follows. The forward problem and signal model
are presented in Section 2, the TomoSAR imaging methods are presented in Section 3, the
simulation results of acquired images are analyzed in Section 4 and some conclusions are
drawn in Section 5.
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2. Forward Problem and Signal Model

Figure 1 shows the schematic of electromagnetic scattering by a dielectric object in V
with distribution of the refraction index n(r̄′). An incident field Ui(r̄, τ) upon the object
induces a scattered field Us(r̄, τ), resulting in the total field U(r̄, τ). The origin is arbitrarily
located within the volume V, the observation point P is given by r̄ = r̂rp + ŷyp + ŝsp and a
point in volume V is given by r̄′ = r̂r′ + ŷy + ŝs. The (r, y, s) coordinate system is related
to the conventional (x, y, z) coordinate system by a rotation about the y-axis.

Figure 1. Scattering of electromagnetic wave by dielectric object in V [34], P at r̄ = r̂rp + ŷyp + ŝsp is
the observation point, and T at r̄′ = r̂r′ + ŷy + ŝs denotes a point in volume V.

By taking the first-order Born approximation that U(r̄, τ) ' Ui(r̄, τ) and the weak
scattering assumption that |Us(r̄, τ)| � |Ui(r̄, τ)|, the scattered field can be represented
as [34]

Us(r̄, τ) =
1

4π

∫
V

1− n2(r̄′)
|r̄− r̄′|c2

∂2Ui(r̄′, τ′)

∂τ′2
dr̄′ (1)

where τ′ = τ − |r̄− r̄′|/c.
Linear frequency modulation (LFM) pulses are periodically emitted from the radar

to the object, with the waveform of P(τ) = rect(τ/Tr)ej(2π f0τ+πKrτ2), where Tr is the pulse
duration, and rect(τ/Tr) is a window function of duration Tr. Thus, the incident field can
be represented as

Ui(r̄, τ) =
1

4π

P
(
τ − |r̄− r̄′|/c

)
|r̄− r̄′|

and the scattered field is reduced to

Us(r̄, τ) =
∫

V
γ(r̄′)P(ζ)dr̄′ (2)

where ζ = τ − 2|r̄− r̄′|/c,

γ(r̄′) =
f ′20 [n2(r̄′)− 1]

4c2|r̄− r̄′|2 (3)

is the reflectivity function [34], and f ′0 = f0 + Kr(τ′ − |r̄− r̄′|/c), with τ′ = τ − |r̄− r̄′|/c.
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2.1. Range Compression

The backscattered signal in (2) is first demodulated to obtain the baseband signal
Ub(r̄, τ) = Us(r̄, τ)e−j2π f0τ . A matched filter Pmf(u) = rect(u/Tr)e−jπKru2

[35] is then
convolved with the baseband received signal Ub(τ, r̄) to give [34]∫

U
Pmf(u)Ub(r̄, τ − u)du =

∫
V

γ(r̄′)Qb(|r̄− r̄′|, τ)dr̄′ (4)

where Qb(|r̄− r̄′|, τ) = Qr(|r̄− r̄′|, τ)e−j4π f0|r̄−r̄′ |/c [35] and

Qr(|r̄− r̄′|, τ) = −2sgn(ζ)
sin(2πKrζ[ζ − sgn(ζ)Tr]/2)

2πKrζ
(5)

is called the range factor [34].

2.2. Azimuth-Depth Compression

Figure 2 shows the schematic of azimuth sampling along track n. The sampling
position Pnm is located at r̄ = r̄nm, with −Na/2 ≤ m ≤ Na/2 and uniform spacing d. The
range between Pnm and a target point at r̄′ can be approximated as

|r̄nm − r̄′| ' |r̄n0 − r̄′|+ (md)2

2|r̄n0|
(6)

Thus, the phase term in (4) is approximated as

e−j4π f0|r̄nm−r̄′ |/c ' e−j4π f0|r̄n0−r̄′ |/cΨnm(r̄′) (7)

where Ψnm(r̄′) = e−j2πm2d2/(λ|r̄n0|).

Figure 2. Schematic of azimuth sampling along track n, r̄nm is the platform position at the mth
sampling time, d is azimuth spacing.
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Let us define an azimuth reference function Φn(k−m) = ej2π(k−m)2d2/(λ|r̄n0|), then multi-
ply it to both sides of (4) and sum over −Na/2 ≤ m ≤ Na/2 to give

Na/2

∑
m=−Na/2

∫
U

Pmf(u)Ub(r̄nm, τ − u)duΦn(k−m)

=
∫

V
γ(r̄′)

Na/2

∑
m=−Na/2

Qb(|r̄nm − r̄′|, τ)Φn(k−m)dr̄′

=
∫

V
γ(r̄′)e−j4π f0|r̄n0−r̄′ |/cξnk(τ, r̄′) (8)

where

ξnk(τ, r̄′) =
Na/2

∑
m=−Na/2

Qr(|r̄nm − r̄′|, τ)Ψnm(r̄′)Φn(k−m)

= −
Na/2

∑
m=−Na/2

sgn(ζnm)[ζnm − sgn(ζnm)Tr]

sinc(Krζnm[ζnm − sgn(ζnm)Tr])e−j2πm2d2/(λ|r̄n0|)ej2π(k−m)2d2/(λ|r̄n0|) (9)

with sinc(x) = sin(πx)/(πx) and ζnm = τ − 2|r̄nm − r̄′|/c. By making the approximation
ζnm ' ζn0, (9) is further reduced to

ξnk(τ, r̄′) ' −sgn(ζn0)[ζn0 − sgn(ζn0)Tr]ej2πk2d2/(λ|r̄n0|)

sinc(Krζn0[ζn0 − sgn(ζn0)Tr])
sin[(Na + 1)2πkd2/(λ|r̄n0|)]

sin[2πkd2/(λ|r̄n0|)]
(10)

Figure 3 shows the amplitude of ξnk(τ, r̄′) in (10), with−20 ≤ y ≤ 20 and−20 ≤ r′ ≤ 20.
The magnitude of ξnk(τ, r̄′) manifests a conspicuous peak at r′′ = −10 m and y′′ = 10 m
(k = 20), similar to a conventional point spread function or a delta function.

Figure 3. Magnitude of ξnk(τ, r̄′) in (10), Dy = 0.5 m and Dr = 0.5 m, τ = 2|r̄n0 − r̄′′|/c, k = 20,
y′′ = 10 m, r′′ = −10 m.

Since ξnk(τ, r̄′) is concentrated about r′′ = r′, (8) is further approximated as

Na/2

∑
m=−Na/2

∫
U

Pmf(u)Ub(r̄nm, τ − u)duΦn(k−m)

' DrDy

∫
Snk(r′′)

γ(r̄′)e−j4π f0|r̄n0−r̄′ |/cξnk(τ, r̄′)dsn (11)
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where Dr and Dy are the spatial resolutions in range (r) and azimuth (y), respectively,
Snk(r′′) denotes a sequence of voxels along a line parallel to the s axis viewed from track n,
with r′′ = r′ and y = kDy.

3. TomoSAR Imaging Methods

Figure 4 shows the schematic of TomoSAR imaging. Without loss of generality, all the
tracks are assumed to be at the same height H. The side-looking angle from platform P0
along the master track at η = 0 to point O is θ`. The b axis is perpendicular to P0O and
passes through P0. The s axis is parallel to the b axis and passes through O.

Figure 4. Schematic of TomoSAR imaging with platforms P0 and Pn along master track and track
n, respectively [14], which are separated by perpendicular baseline bn⊥, parallel baseline bn‖ and
parallel distance Bn.

The backscattered signal from the qth voxel is received along the nth track and demod-
ulated to the baseband as

u1nq(τ, ηm) = ∆Vqγ(r̄′q)rect

(
τ − 2|r̄nm − r̄′q|/c

Tr

)
e−j4π f0|r̄nm−r̄′q |/c+jπKr(τ−2|r̄nm−r̄′q |/c)2

(12)

where ∆Vq is the volume of the qth voxel, and ηm = md/vp. The received baseband signals
from all the Q voxels are given by

Us(τ, ηm) = ∆V
Q

∑
q=1

γ(r̄′q)rect

(
τ − 2|r̄nm − r̄′q|/c

Tr

)
ej2π f0(τ−2|r̄nm−r̄′q |/c)+jπKr(τ−2|r̄nm−r̄′q |/c)2

(13)

By applying range compression and azimuth-depth compression as prescribed in the
last Section, we have

gnk(τn(r′′)) =
Na/2

∑
m=−Na/2

∫
U

Pmf(u)Ub(r̄nm, τ − u)duΦn(k−m)

' DrDy

∫
Snk(r′′)

γ(r̄′)e−j4π f0|r̄n0−r̄′n |/cξnk(τn(r′′), r̄′n)dsn (14)
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which is the acquired single-look complex (SLC) image along track n at y = kd, where (11)
is used and

τn(r′′) = 2|r̄n0 − r̄′′|/c (15)

is the round-trip time between r̄n0 and r̄′′.
In conventional TomoSAR imaging methods, the original 3D inverse problem is

decomposed into multiple inverse problems of solving a 1D SLC image as [24,25]

gn =
∫ smax

smin

γ(s)ejφ(s)ds

where gn is the SLC image along track n, s is the coordinate along an elevation line segment
at specific azimuth y and depth r′′, γ(s) is the reflectivity function to be reconstructed and
φ(s) is a phase function pertinent to track location and coordinate s.

In [24], a spectral estimation for coherent adaptive nulling (SPECAN) algorithm was
proposed to acquire SAR images at medium-to-low resolution. The received signal was
modeled as a convolution of reflectivity function and a deramped phase, usually involving
some calibration or normalization. In [25], a 2D point spread function (PSF) was proposed,
which was later approximated as a 2D Dirac delta function to simplify the formulation. The
SLC image acquired along track n was represented as a convolution of the 2D PSF and the
reflectivity function multiplied with a phase function accounting for the round-trip range
between the observation point and target point.

In our procedure, a rigorous scattering theory is used to derive the backscattered
signals from the target volume. A focusing function at specific azimuth y and depth r′′ is
derived to relate the backscattered signals to the reflectivity function, without resorting
to calibration or normalization. The focusing function, ξnk(τn(r′′), r̄′), manifests a similar
feature of a point spread function in the azimuth-depth plane, as in [25].

3.1. Covariance of Deramped Images

Next, multiply gnk(τn(r′′)) with ej4π f0|r̄n0|/c to derive a deramped image g̃nk(τn(r′′)),
then compute the covariance between the two SLC deramped images along tracks n and n′,
respectively, as [36]

Rknn′(r
′′) = E{g̃nk(τn(r′′))g̃∗n′k(τn′(r

′′))

= D2
r D2

y

∫
Snk(r′′)

dsn

∫
Sn′k(r

′′)
dsn′E{γ(r̄′n)γ∗(r̄′n′)}

e−j4π f0(|r̄n0−r̄′n |−|r̄n0|)/cej4π f0(|r̄n′0−r̄′n′ |−|r̄n′0|)/cξnk(τn(r′′), r̄′n)ξ
∗
n′k(τn′(r

′′), r̄′n′) (16)

where r̄′n ∈ Snk(r′′) and r̄′n′ ∈ Sn′k(r′′).
Then, the autocorrelation of the reflectivity function is approximated as [36]

E{γ(r̄′n)γ∗(r̄′n′)} ' |γ(r̄
′
n)|2δ(r̄′n − r̄′n′) (17)

where δ(r̄′n− r̄′n′) is the Dirac delta function. In practice, Snk(r′′) and Sn′k(r′′) almost overlap
with each other, and the difference between the look angles, ∆θnn′ = θn − θn′ , cannot be
ignored. Thus, (16) is reduced to [14,37]

Rknn′(r
′′) =

∫
Snk(r′′)

Fknn′(sn, r′′)e−jκnn′ sn dsn (18)

where

Fknn′(sn, r′′) = D2
r D2

y|γ(r̄′n)|2ξnk(τn(r′′), r̄′n)ξ
∗
n′k(τn′(r

′′), r̄′n) (19)
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is called the vertical reflectivity profile, r̄′n = ŝsn + ŷkd + r̂r′′, and κnn′ = 4π∆θnn′/λ0 is the
vertical wavenumber, with 0 ≤ n, n′ ≤ Np.

The covariances between all possible pairs of SLC deramped images are compiled into
a covariance matrix as [38]

¯̄Rk(r′′) =

 E{g̃0k(τ0, r′′)g̃∗0k(τ0, r′′)} · · ·
...

. . .
E{g̃Npk(τNp , r′′)g̃∗0k(τ0, r′′)} · · ·

· · · E{g̃0k(τ0, r′′)g̃∗Npk(τNp , r′′)}
. . .

...
· · · E{g̃Npk(τNp , r′′)g̃∗Npk(τNp , r′′)}


(Np+1)×(Np+1)

which is vectorized into R̄k(r′′)|(Np+1)2×1 [14]. Similarly, all the vertical wavenumbers are
compiled into a vertical wavenumber matrix as

¯̄K =


κ00 κ01 · · · κ0Np

κ10
. . . κ1Np

...
. . .

...
κNp0 · · · · · · κNp Np


(Np+1)×(Np+1)

(20)

which is vectorized into K̄|(Np+1)2×1.
The value of Fknn′(sn, r′′) is insensitive to n or n′; hence, we select a set of grid

points (voxels) along a common s axis in a vector s̄ = [s1, s2, · · · , sL]
t, independent of

n or n′. The values of Fknn′(sn, r′′) at the grid points {sn} are put in a vector F̄k(r′′) =
[Fk(s1, r′′), Fk(s2, r′′), · · · , Fk(sL, r′′)]tL×1, which is also independent of n or n′. Define a

steering matrix on the grid points {sn} as ¯̄A(s̄) =
[
e−jK̄s1 , e−jK̄s2 , · · · , e−jK̄sL

]
(Np+1)2×L

[14].

Thus, (18) is discretized into

R̄k(r′′) = ¯̄A(s̄) · F̄k(r′′) (21)

The backscattered signals are related to the vertical reflectivity profile, Fknn(sn, r′′),
which is the counterpart of γ(s) in [39] and σ(x, γ) in [19]. The focusing function proposed
in this work is the counterpart of the point spread function or delta function in conventional
TomoSAR imaging methods. Since the focusing function is derived from the scattering
theory, no calibration or normalization on the reconstructed reflectivity function is required.

The main contribution of our work is to establish a rigorous formulation of backscat-
tered signals in terms of the reflectivity function via the scattering theory, without resorting
to the empirical point spread function or delta function. The focusing function manifests a
similar feature of PSF yet retains all of the original information. After range compression,
azimuth-depth compression, co-registration and covariance among SLC images, an inverse
problem in (21) is formed, which is solved by applying various inverse methods, includ-
ing compressive sensing [40], Fourier beamforming [14,37], multiple signal classification
(MUSIC) [19], amplitude and phase estimation (APES) [41] and Capon [14]. The acquired
distributions of the dielectric constant in the target volume is analyzed to validate our
procedure and compare the pros and cons of different inverse methods.
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3.2. Compressive Sensing Method

The unknowns F̄k(r′′) in (21) at L grid points along s direction are relabeled as ū(s̄) =
[u1, u2, · · · , uL]

t. Equation (21) is then solved with the compressive-sensing method as [40]

˜̄u(s̄) = arg min
ū(s̄)
‖ū(s̄)‖1 s.t. R̄k(r′′) = ¯̄A(s̄) · ū(s̄) (22)

where ¯̄A(s̄) plays the role of a dictionary. By substituting Fknn′(sn, r′′) in (19) with ˜̄u(s̄), the
reflectivity |γ(r̄′n)| is obtained without resorting to calibration or normalization. Then, the
dielectric constant can be estimated by using (3).

Equation (22) is equivalent to [14]

˜̄u(s̄) = arg min
ū(s̄)

{∥∥∥R̄k(r′′)− ¯̄A(s̄) · ū(s̄)
∥∥∥2

2
+ λs‖ū(s̄)‖1

}
(23)

where ‖ f̄ ‖1 and ‖ f̄ ‖2 are L1-norm and L2-norm, respectively, of f̄ , and λs is a hyperparam-
eter [40]. The CVX tool can be applied to solve (22) or (23). The reconstructed reflectivity
profile is sensitive to the chosen value of λs, which is varied between 0.1 and 1. Hence, (22)
is adopted in this work.

3.3. Fourier Beamforming (FB) Method

The SLC images g̃nk(τn(r′′))’s acquired along all the tracks are co-registered at y = kd
and r = R0 + r′′ to constitute a measurement vector

ḡ =


g̃0k(τ0(r′′))

g̃1k(τ0(r′′))
...

g̃Npk(τ0(r′′))


(Np+1)×1

(24)

where τ0(r′′) is the round-trip time between the master track and r̄′′, as defined in (15). The
phase terms in (14) along all the tracks constitute a steering vector as

ā(s) =


ej2k0b0s/(R0+r′′)

ej2k0b1s/(R0+r′′)

...
ej2k0bNp s/(R0+r′′)


(Np+1)×1

(25)

Without loss of generality, the baseline of the master track is set to b0 = 0. The steering
vectors at all the grid points along the s axis constitute a steering matrix as

¯̄A = [ā(s1), ā(s2), · · · , ā(sL)](Np+1)×L

By using (24) and (25), the signal model is rephrased as

ḡ = ¯̄A(s) · ū(s) (26)

where ū(s) = [u1, u2, · · · , uL]
t is the vertical reflectivity profile sampled at L grid points

along the s axis. The image acquired with the FB method is [37]

ūF(s) =
1

(Np + 1)2 h̄†
F(s) · ¯̄R · h̄F(s)
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where

¯̄R =
1

Np + 1

Np+1

∑
n=1

ḡn ḡ†
n

is the covariance matrix of SLC images and

h̄F(s) =
ā(s)

ā†(s) · ā(s)

3.4. Multiple Signal Classification (MUSIC) Method

The covariance matrix ¯̄R among SLC images can be decomposed as ¯̄R = ¯̄U · ¯̄D · ¯̄U†,
where ¯̄D is the eigenvalue matrix sorted in descending order, namely, λ1 ≥ λ2 ≥ · · · ≥
λNp−1 ≥ λNp . The eigenvectors corresponding to the largest K eigenvalues are compiled
into a signal matrix ¯̄S, and the remaining Np − K eigenvectors are compiled into a noise
matrix ¯̄N, where the choice of K is contingent upon the SLC images. The image acquired
with the MUSIC method is [37]

ūM(s) =
1

ā(s) · ¯̄N · ¯̄N† · ā†(s)

Empirical parameter K is related to the actual number of phase centers in the complex
forest structures. For the proposed simulation scenario, K is varied from 1 to 5 and the
resulting images suggest that K = 2 is the most suitable choice. It is observed that as K
increases, the reconstructed image tends to display ghost targets.

3.5. Amplitude and Phase Estimation (APES) Method

The amplitude and phase estimation (APES) method is implemented by optimizing a
filter with finite impulse response (FIR)

h̄ = [h1, h2, · · · , hNp+1]
† (27)

which is applied to the SLC image ḡ in (24) to obtain an output

y =
Np+1

∑
n=1

h[n]g[n] = h̄† · ḡ (28)

of which the power is given by

E{|y|2} = E{|h̄† · ḡ|2} = E{h̄† · ḡḡ† · h̄} = h̄† · ¯̄R · h̄ (29)

where ¯̄R = E{ḡḡ†} is the covariance matrix of SLC images. By substituting (26) into (28),
we obtain

y = h̄† · ḡ = h̄† · ¯̄A · ū = h̄† · ā(s1)u1 + h̄† · ā(s2)u2 + · · ·+ h̄† · ā(sL)uL (30)

The vertical reflectivity profile is acquired by solving the following optimization problem

˜̄u = arg min
ū
|ḡ− ¯̄A · ū|2 (31)

If the filter h̄ is designed to retrieve specific u` at s` while suppressing the other u
components, namely,

h̄† · ā(s`) = 1 (32)

h̄† · [ā(s1)u1 + · · ·+ ā(s`−1)u`−1 + ā(s`+1)u`+1 + · · ·+ ā(sL)uL]→ 0 (33)
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then (31) is reduced to an optimization problem on h̄ as [37]

h̄A(s) = min
h̄

h̄† · ¯̄R · h̄ s.t. h̄† · ā(s) = 1 (34)

where s` is relabeled as s. The optimal solution of (34) is given by [37]

h̄A(s) =

(
¯̄R + λ ¯̄I

)−1
· ā(s)

ā†(s) ·
(

¯̄R + λ ¯̄I
)−1
· ā(s)

(35)

where λ > 0 is an empirical parameter used to avoid possible singularity in matrix
inversion [37]. Next, the optimal solution of u(s) is determined as

ūA(s) = h̄†
A(s) · ḡ (36)

then the reflectivity function is estimated as

|γ̃(s)| ' 1
DrDy

√
|ūA(s)|

|ξ0k(τ0(r′′), r̄′)ξ∗0k(τ0(r′′), r̄′)| (37)

under the approximation that uA(s) is insensitive to n or n′. By using (3), the dielectric
constant is estimated as

|ε̃r(s)| =
4c2|r̄− r̄′|2

f ′20
|γ̃(s)|+ 1 (38)

3.6. Capon Method

The Capon algorithm has been used to detect the forest-height profile from a power
spectrum [14]. It is implemented by using the same filter as derived in (27)–(33),

h̄C(s) =

(
¯̄R + λ ¯̄I

)−1
· ā(s)

ā†(s) ·
(

¯̄R + λ ¯̄I
)−1
· ā(s)

(39)

The power spectrum is obtained by substituting (39) into (29) to give [14]

ūC(s) = h̄†
C(s) · ¯̄R · h̄C(s) =

1
ā†(s) · ( ¯̄R + λ ¯̄I)−1 · ā(s)

(40)

4. Simulations and Discussion

Figure 5 shows the flowchart of the proposed TomoSAR procedure, including genera-
tion of the forest model, SAR tomography and validation of results.
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Figure 5. Flowchart of the proposed TomoSAR procedure, including generation of forest model, SAR
tomography and validation of results.

4.1. Parameters for TomoSAR Simulations

Table 1 lists the parameters used in the simulations. The carrier frequency is 1.25 GHz,
at which the backscattered signal power was claimed to be more uniform in the elevation
(s) direction [12]. UAVs have been used to carry SAR, with a typical velocity of 0.1 m/s [32]
to 5 m/s [42], moving at a height of 10 m [33] to 200 m [43]. In the simulations, we assume
the UAVs fly at a height of H = 150 m, with a velocity of vp = 5 m/s, and the look angle
is θ` = 50◦. A range bandwidth of 500 MHz [32] or 600 MHz [42] has been reported in
UAV-based SAR. The range bandwidth of 300 MHz is chosen to achieve the range resolution
of 0.5 m. A pulse repetition frequency of 50 Hz [44] to 1 kHz [33] has been reported. By
setting Fa = 50 Hz, the synthetic aperture length is La = 51.2 m and the azimuth resolution
is ∆y = 0.54 m. A pulse duration of 10 µs [44] to 100 µs [33] has been used. By setting the
pulse duration to Tr = 1 µs, the corresponding range chirp rate is Kr = 300 THz/s.

Table 1. Parameters for TomoSAR simulations.

Parameter Symbol Value

carrier frequency fc 1.25 GHz
range bandwidth Br 300 MHz
pulse duration Tr 1 µs
range chirp rate Kr 300 THz/s
range sampling rate Fr 512 MHz
pulse repetition frequency Fa 50 Hz
range samples Nr 512
azimuth samples Na 512
platform height H 150 m
platform velocity vp 5 m/s
look angle θ` 50◦

closest slant range R0 233.4 m
synthetic aperture length La 51.2 m
slant range resolution ∆r 0.5 m
azimuth resolution ∆y 0.54 m
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Table 1. Cont.

Parameter Symbol Value

elevation resolution ∆s 0.5 m
baseline aperture Bn 57.22 m
elevation ambiguity Samb 28.72 m
baseline spacing db 0.49 m
number of baselines Np 115
maximum canopy height Hc 22 m

The elevation resolution is given by ∆s = λR0/(2Bn). By specifying ∆s = 0.5 m,
compatible with the range resolution and azimuth resolution, the baseline aperture is
determined as Bn = 57.22 m. The maximum canopy height in Arbaro is Hc = 22 m [27],
which corresponds to the maximum elevation of Hc/ sin θ` = 28.7 m. The elevation
ambiguity is given by samb = λR0/(2db), which must be larger than Hc(s) to avoid
elevation ambiguity. By setting samb = 28.7 m, the baseline spacing is db = 0.49 m. Finally,
the number of baselines is determined from Bn and db as Np = 115.

The effects of noise are also simulated under the signal-to-noise ratio (SNR) of 0 to
−10 dB, where SNR = 10 log(U2

s /U2
n), and Us and Un are the average amplitudes of signal

and noise, respectively.
Table 2 lists the parameters of a healthy taramack, a healthy quaking aspen and a

dry (dead) tamarack, respectively, to be used in the simulations. The wood moisture
and dielectric constant of a deadwood trunk are different from their healthy counterparts.
Lower wood moisture implies a lower dielectric constant.

Table 2. Parameters of forest model.

Parameter Symbol Value Value Value

tree species tamarack quaking
aspen

tamarack
(dry)

country U.S. U.S. U.S.

canopy height Hc 21 m 15 m 21 m

trunk diameter Dt 33 cm 25 cm 33 cm

DC of trunk εw 29.47− j9.39 17.48− j5.92 8.27− j2.83

wood moisture const. Mg 0.7 g/m3 0.5 g/m3 0.2 g/m3

radius of branch rb 0.03 m 0.03 m 0.03 m

length of branch `b 0.5 m 0.5 m 0.5 m

density of branch nb 20/m3 20/m3 20/m3

volume fraction of branches Vb 0.23 0.23 0.23

DC of leaf ε` 15.33− j5.26 13− j6.38 no leaf

avg. leaf thickness t` 0.03 cm 0.03 cm no leaf

leaf area index LAI [0, 5.78] [0, 2.59] [0, 2.59]

volume fraction of leaves V` [0, 0.0173] [0, 0.0132] [0, 0.0132]

effective DC of air&leaf εa`
ε′a` : [1, 1.13],
ε′′a` : [0, 0.06]

ε′a` : [1, 1.13],
ε′′a` : [0, 0.05]

ε′a` : [1, 1.13],
ε′′a` : [0, 0.05]

effective DC of air&leaf&branch εeff ε′eff : [1, 29.49] ε′eff : [1, 17.48] ε′eff : [1, 8.27]

DC of ground εg 4 4 4

voxel size h3 0.53 m3 0.53 m3 0.53 m3

DC: dielectric constant.
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A voxel model of the forest with a resolution of 0.25 m was generated by applying
an open-source Binvox [45] on the airborne laser scanning (ALS) point clouds [30]. In this
work, the Arbaro [27] is used to generate a 3D tree model, composed of trunk, branches and
leaves. The data of the tree model are then mapped to point clouds to form a fine-resolution
voxel model by using an open-source CloudCompare software v2.12.4 [46].

The dielectric constants of tree parts can be estimated with empirical formulas [7,47–50].
The effective dielectric constant of each voxel can be determined by applying proper mixing
formulas to the constituent matters within the voxel. A trunk with a diameter larger than
the voxel size is modeled as a bunch of voxels filled with trunk matter. The dielectric
constant of a voxel composed of leaves and air is estimated by using the Maxwell-Garnett
mixing formula [51]. The dielectric constant of a voxel composed of air and branches is
estimated by using the Maxwell-Garnett mixing formula for randomly oriented, highly
prolate and rotation-symmetric ellipsoidal inclusions [52–54].

Figure 6a shows an example of point clouds of a tree generated with Arbaro [27], and
Figure 6b shows the voxel model mapped from the point clouds with Binvox [45]. Each
voxel is a cubic of size 0.5 m, the same as the range and azimuth resolutions specified in
Table 1. The effective dielectric constant in each voxel is estimated by applying the Maxwell-
Garnett mixing formula to the constituent leaves, branches and trunks. Figure 6c shows
the LAD model of leaves generated with leafR [55], and Figure 6d shows the distribution
of the dielectric constant in voxels of the tree model.

(a) (b)

(c) (d)
Figure 6. Tree models, (a) point clouds generated with Arbaro [27], (b) voxel model mapped with
Binvox [45], (c) LAD model of leaves generated with leafR [55], (d) distribution of dielectric constant
in voxels.

4.2. Simulations on Virtual Forest

Inspired by the tamarack-ignited wildfire that burned 68,637 acres in 2021 [56], Figure 7
shows the dielectric-constant profile of two virtual forests, composed of tamaracks and
quaking aspen, generated with Arbaro [27]. There are 85 trees randomly dispersed in an
area of 100 m × 100 m, with a tree spacing of 2.2–5 m [57]. Figure 7a shows a scenario
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with a deadwood tamarack at the center, close to the surrounding trees. Figure 7b shows
another scenario with the deadwood at the center, but farther away from the surrounding
trees. The proposed TomoSAR procedure is aimed to pinpoint this deadwood from the
acquired dielectric-constant profile of the forest.

(a) (b)
Figure 7. Dielectric-constant profile of virtual forest [27], (a) deadwood taramack at center, sur-
rounded by healthy quaking aspen and taramack, (b) same as (a) except the deadwood taramack is
farther away from the surrounding trees.

The fidelity of an acquired image a against the ground-truth image b can be evaluated
with a structural similarity index (SSIM) defined as [58]

SSIM(a, b) =

(
2µaµb + c1

µ2
a + µ2

b + c1

)(
2σab + c2

σ2
a + σ2

b + c2

)
(41)

where µp and σp are the mean and standard deviation, respectively, of image p, with
p = a, b; σab is the covariance between images a and b; and c1 and c2 are stability constants.
The SSIM index lies between 0 and 1; a higher index means the two images are more similar
to each other. In the simulations, each image pixel is stored in 8 bits, corresponding to
an integer between 0 and L = 255. The stability constants are set to c1 = (0.01L)2 and
c2 = (0.03L2).

The fidelity of an acquired image a against the ground-truth image b can also be
evaluated with a root-mean-square error (RMSE) defined as [59]

RMSE(a, b) =

√√√√ 1
P

P

∑
p=1

(ap − bp)2 (42)

where ap and bp are the values of the pth pixel in images a and b, respectively, and P is the
number of pixels in each image.

Figure 8 shows the ground-truth dielectric-constant profile in Figure 7a at y = yc
and the reconstructed images with the methods of CS, FB, MUSIC, APES and Capon,
respectively. Around x = xc of the reconstructed images, the deadwood is slightly obscured
by the surrounding healthy quaking aspen and taramack, which have a higher dielectric
constant than the deadwood due to the difference in moisture content.

Figure 8c,d show a clear background, while Figure 8b,e,f manifest artifact streaks in
the background. The streaks in the acquired images have similar patterns but different
magnitudes, which may be attributed to numerical errors in the covariance matrix.

Figure 8b,c restore the tree shape and dielectric constant more accurately than the
other three reconstructed images. The contrast of the dielectric constant in the canopy is
less obvious in Figure 8b than in Figure 8c.
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(a) (b)

(c) (d)

(e) (f)
Figure 8. Dielectric-constant profile at y = yc in Figure 7a, deadwood tamarack is enclosed within a
white square, (a) ground truth, (b) CS, (c) FB, (d) MUSIC, (e) APES, (f) Capon.

The SSIM index of each image against the ground-truth image is listed in Table 3,
which is consistent with the visual inspection. The ground is blurred and only partially
revealed, possibly because the incident wave and backscattered wave are attenuated by
the canopies. Since the deadwood is very close to the surrounding healthy trees in this
scenario, the former is not well discernible in all the reconstructed images.

Figure 9 shows the ground-truth dielectric-constant profile in Figure 7b at y = yc
and the reconstructed images with the methods of CS, FB, MUSIC, APES and Capon,
respectively. In this scenario, the deadwood is farther away from the surrounding healthy
trees than in Figure 7a. In general, Figure 9b,c match the ground-truth image in Figure 9a
better than the other three images. Figure 9b shows a higher contrast of the dielectric
constant than the other reconstructed images, and Figure 9c shows the sharpest tree shape
and the cleanest background compared with the others.

Figure 9b,e,f manifest similar patterns of artifact streaks, which may be related to
numerical errors in the covariance matrix of SLC images. Figure 9d displays some speckles
in the background, which are not observed in its counterpart of Figure 8d. The deadwood
part in Figure 9b,c matches well to that in the ground-truth image.

No calibration is needed to acquire the image in Figure 9b with the CS method, but
some artifact streaks appear on the background. The image in Figure 9c acquired with the
FB method vividly imitates the true forest and the background is clean.

The proposed approach can be used to reconstruct the 3D dielectric-constant profile of
a target region at a fine spatial resolution by deploying a swarm of UAVs as platforms. The
time decorrelation issue of multi-pass operations with airplanes or satellites is also avoided.



Sensors 2023, 23, 8335 17 of 25

Table 3. SSIM indices of acquired images.

Figure 8 CS FB MUSIC APES Capon
forest (whole area) 0.629 0.701 0.613 0.556 0.491
deadwood (square) 0.193 0.333 0.300 0.234 0.305

Figure 9 CS FB MUSIC APES Capon
forest (whole area) 0.683 0.704 0.635 0.568 0.572
deadwood (square) 0.430 0.454 0.487 0.416 0.456

Figure 10, SNR = 0 dB CS FB MUSIC APES Capon
forest (whole area) 0.601 0.703 0.723 0.484 0.549
deadwood (square) 0.216 0.294 0.454 0.359 0.419

Figure 11, SNR = −5 dB CS FB MUSIC APES Capon
forest (whole area) 0.525 0.688 0.730 0.406 0.561
deadwood (square) 0.208 0.275 0.454 0.324 0.389

Figure 12, SNR = −10 dB CS FB MUSIC APES Capon
forest (whole area) 0.371 0.597 0.731 0.322 0.461
deadwood (square) 0.162 0.182 0.453 0.268 0.312

Figure 13, SNR = 0 dB CS FB MUSIC APES Capon
forest (whole area) 0.582 0.666 0.677 0.477 0.528
deadwood (square) 0.427 0.448 0.485 0.403 0.460

Figure 14, SNR = −5 dB CS FB MUSIC APES Capon
forest (whole area) 0.600 0.691 0.690 0.470 0.618
deadwood (square) 0.422 0.442 0.485 0.391 0.439

Figure 15, SNR = −10 dB CS FB MUSIC APES Capon
forest (whole area) 0.417 0.608 0.679 0.304 0.498
deadwood (square) 0.350 0.413 0.480 0.277 0.344

(a) (b)

(c) (d)

(e) (f)
Figure 9. Dielectric-constant profile at y = yc in Figure 7b, deadwood tamarack is enclosed within a
white square, (a) ground truth, (b) CS, (c) FB, (d) MUSIC, (e) APES, (f) Capon.

4.3. Effects of Noise

The fidelity of the acquired TomoSAR images may be deteriorated by noises from the
atmosphere and other sources, which is quantified against the backscattered signal in terms
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of the signal-to-noise ratio (SNR). Next, simulations on the two scenarios in Figure 7a,b are
conducted at SNR = 0 dB, −5 dB and −10 dB, respectively.

Figure 10 shows the TomoSAR images acquired on the scenario in Figure 7a under
SNR = 0 dB. Compared with their counterparts in Figure 8, the images in Figure 10a with
the CS method and Figure 10d with the APES method look blurrier, while the images in
Figure 10b,c,e are barely affected, consistent with the SSIM indices listed in Table 3. The
SSIM index suggests that the acquired image with the MUSIC method matches the best to
the ground-truth image.

(a) (b)

(c) (d)

(e)
Figure 10. Dielectric-constant profile at y = yc in Figure 7a, deadwood tamarack is enclosed within a
white square, SNR = 0 dB, (a) CS, (b) FB, (c) MUSIC, (d) APES, (e) Capon.

Figures 11 and 12 show the TomoSAR images acquired for the scenario in Figure 7a
under SNR = −5 dB and SNR = −10 dB, respectively. The FB and the MUSIC methods
outperform the other three methods in terms of forest configuration and background
cleanliness. The artifact streaks in the images with the APES and Capon methods are
strong enough to engulf the trees, especially under SNR = −10 dB. The performance of
these two methods relies on the accurate estimation of the covariance matrix from the
SLC images. Strong speckles appear in the images acquired with the CS method, but
the forest configurations are still recognizable. Among these five methods, the MUSIC
method acquires the cleanest background and the FB method best preserves the forest
configuration.

Figure 13 shows the TomoSAR images acquired for the scenario in Figure 7b under
SNR = 0 dB. In this scenario, the deadwood is slightly separated from the surrounding
trees. The image acquired with the CS method manifests the highest contrast of dielectric
constants compared with the other methods. Compared with its counterpart in Figure 9b,
background speckles grow stronger. The background in the images acquired with the
FB and MUSIC methods are almost unaffected by noise. The forest configuration is also
well preserved with these two methods. The deadwood in the center is much better
reconstructed in the images as compared to their counterparts acquired for the scenario
in Figure 7a. The artifact streaks grow strong in the images acquired with the APES and
Capon methods, respectively, similar to their counterparts in Figure 10.
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(a) (b)

(c) (d)

(e)
Figure 11. Dielectric-constant profile at y = yc in Figure 7a, deadwood tamarack is enclosed within a
white square, SNR = −5 dB, (a) CS, (b) FB, (c) MUSIC, (d) APES, (e) Capon.

(a) (b)

(c) (d)

(e)
Figure 12. Dielectric-constant profile at y = yc in Figure 7a, deadwood tamarack is enclosed within a
white square, SNR = −10 dB, (a) CS, (b) FB, (c) MUSIC, (d) APES, (e) Capon.

Figures 14 and 15 show the TomoSAR images acquired for the scenario in Figure 7b
under SNR = −5 dB and SNR = −10 dB, respectively. As the noise increases, speckles
grow stronger in the images acquired with the CS method, speckles grow slightly with
the FB and MUSIC methods, and artifact streaks grow strong with the APES and Capon
methods. Under SNR = −10 dB, the trees are barely recognizable with the APES and
Capon methods. The deadwood is discernible with the CS, FB and MUSIC methods,
even under SNR = −10 dB. The FB method delivers the highest contrast of dielectric
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constant in the image, while the MUSIC method delivers the highest SSIM index under
noisy conditions.

(a) (b)

(c) (d)

(e)
Figure 13. Dielectric-constant profile at y = yc in Figure 7b, deadwood tamarack is enclosed within a
white square, SNR = 0 dB, (a) CS, (b) FB, (c) MUSIC, (d) APES, (e) Capon.

(a) (b)

(c) (d)

(e)
Figure 14. Dielectric-constant profile at y = yc in Figure 7b, deadwood tamarack is enclosed within a
white square, SNR = −5 dB, (a) CS, (b) FB, (c) MUSIC, (d) APES, (e) Capon.
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(a) (b)

(c) (d)

(e)
Figure 15. Dielectric-constant profile at y = yc in Figure 7b, deadwood tamarack is enclosed within a
white square, SNR = −10 dB, (a) CS, (b) FB, (c) MUSIC, (d) APES, (e) Capon.

Table 3 lists the SSIM index of the images in Figures 8–15. In general, the FB method
achieves the highest SSIM index under noise-free conditions, and the MUSIC method
achieves the highest SSIM index under noisy conditions.

Table 4 lists the RMSE indices of the images in Figures 8–15. As the noise level is raised,
the Capon method and the APES method tend to generate more stripes in the reconstructed
images; hence, their RMSE indices are relatively higher than the other methods. The FB
and MUSIC methods yield relatively lower RMSE indices, and the reconstructed images
better resemble the ground-truth images. In general, the MUSIC method or the CS method
yields the lowest RMSE index across the whole area, while the FB method yields the lowest
RMSE index within the square area.

Table 4. RMSE indices of acquired images.

Figure 8 CS FB MUSIC APES Capon
forest (whole area) 0.95 0.95 1.18 1.39 1.23
deadwood (square) 0.68 1.33 0.66 0.94 1.60

Figure 9 CS FB MUSIC APES Capon
forest(whole area) 1.06 0.85 0.86 1.6 1.15
deadwood(square) 0.83 1.1 1.16 1.21 1.27

Figure 10, SNR = 0 dB CS FB MUSIC APES Capon
forest(whole area) 3.6 2.79 2.37 3.84 3.69
deadwood(square) 2.91 3.66 2.88 3.06 3.12

Figure 11, SNR = −5 dB CS FB MUSIC APES Capon
forest(whole area) 4.66 2.38 3.08 4.13 3.54
deadwood(square) 3.19 3.19 4.48 4.06 3.26

Figure 12, SNR = −10 dB CS FB MUSIC APES Capon
forest(whole area) 4.36 4.72 3.6 6.24 5.00
deadwood(square) 3.16 3.08 5.16 6.04 5.48

Figure 13, SNR = 0 dB CS FB MUSIC APES Capon
forest(whole area) 2.76 3.12 2.25 3.51 4.74
deadwood(square) 2.64 2.07 3.24 3.66 3.66
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Table 4. Cont.

Figure 14, SNR= −5 dB CS FB MUSIC APES Capon
forest(whole area) 2.87 4.55 3.05 3.19 3.33
deadwood(square) 4.45 2.66 4.59 4.40 3.99

Figure 15, SNR= −10 dB CS FB MUSIC APES Capon
forest(whole area) 3.28 4.16 4.44 4.68 6.32
deadwood(square) 3.52 2.76 3.76 5.04 4.56

4.4. Performance Comparison of Imaging Methods

In general, the FB method and the MUSIC method deliver better TomoSAR images
of the simulated forest scenarios than the other three imaging methods. The compressive-
sensing (CS) method has the flexibility of reconstructing TomoSAR images with sparse
baselines and does not require normalization, but it takes more computational loading than
the other methods.

The hyperparameter K in the MUSIC method is sensitive to the number of phase
centers, which can be empirically adjusted to enhance the acquired images under different
noise conditions. Under noise-free conditions, the FB method reconstructs clear images
and is less prone to developing ghost targets. However, it may not effectively identify low
dielectric-constant areas containing deadwood. Under severe noise, the FB method may
render a noisy background image. The FB method takes the lowest computational load
among these methods.

The Capon method and the APES method follow the same process of deriving the
optimal filters. Both methods tend to produce stripes along the elevation direction in the
images. The APES method was originally tried to avoid normalization, but it did not work
out as expected.

The Capon and the FB methods proved to be the most computationally efficient. The
quality of reconstructed images with the FB method excels under noise-free conditions, and
that with the MUSIC method excels under noisy conditions.

The CS method does not require normalization of the reflectivity function as the other
four methods do. Future work may be developed to reduce the computational load of
the CS method and remove the constraint of normalization on the FB, Capon, APES and
MUSIC methods.

4.5. Highlighted Contributions

In conventional TomoSAR imaging methods, the backscattered signals received along
multiple tracks are first compressed and co-registered along a specific elevation line seg-
ment in the target volume by using an empirical point spread function. Then, an inverse
algorithm is applied to reconstruct the image along the elevation line segment. However,
the dielectric-constant profile in the target volume cannot be accurately estimated without
calibration or normalization. In our TomoSAR procedure, the backscattered signals are
related to the reflectivity function via the scattering theory, and the image at specific az-
imuth y and specific depth r′′ is reconstructed via a focusing function ξnk, without resorting
to calibration or normalization. Five different inverse methods are used to acquire the
reflectivity function along the specified elevation line segment. The acquired images are
analyzed to validate the proposed procedure and compare the performance of these five
inverse methods in TomoSAR imaging.

The novelties and contributions of this work are summarized as follows.

1. A complete and rigorous TomoSAR imaging procedure is developed by integrating
scattering theory and signal processing models to acquire a 3D dielectric-constant pro-
file of a forest at decimeter resolution. A focusing function is derived to upgrade the
point spread function adopted in conventional TomoSAR methods, without resorting
to empirical assumption or calibration.
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2. The imaging task can be carried out in near real time with a swarm of UAVs to scout
hot-spots of wildfire hazards.

3. A vivid forest voxel model is developed by integrating the Arbaro tree generator,
Maxwell-Garnett mixing formulas and leaf area index (LAD) for calculating the
dielectric constant of a leaf, branch and trunk.

5. Conclusions

A complete and rigorous TomoSAR imaging procedure is developed by integrating
scattering theory and signal processing models to acquire a dielectric-constant profile of a
forest at decimeter resolution. The imaging task can be carried out with a swarm of UAVs
to scout hot-spots of wildfire hazards in a forest. A vivid forest voxel model is developed
by integrating the Arbaro tree generator, Maxwell-Garnett mixing formulas and leaf area
index (LAD) for calculating the dielectric constant of a leaf, branch and trunk. Simulation
results validate the efficacy of the proposed procedure. Five different inverse methods are
used to acquire and compare the dielectric-constant profiles in two forest scenarios under
three different signal-to-noise ratios.

The simulation results indicate that a deadwood close to the surrounding trees is
difficult to pinpoint. Future efforts are needed to enhance the spatial resolution and the
contrast of the reflectivity function in the acquired images. The five imaging methods are
primarily used to compare their merits and shortcomings on the proposed scenario. Future
efforts are needed to update or tailor these methods for better TomoSAR imaging on forests.
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