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Optimization of Sparse Linear Arrays Using
Harmony Search Algorithms

Song-Han Yang and Jean-Fu Kiang

Abstract—A sparse linear array, composed of a uniformly
spaced core subarray and an extended sparse subarray, is synthe-
sized using a harmony search (HS) and an exploratory harmony
search (EHS) algorithms. The optimal solution is searched by
changing the amplitudes of all the elements and the positions
of the extended elements, under a set of practical constraints.
Performance of the EHS, the HS, a genetic algorithm (GA) and
a particle swarm optimization (PSO) algorithm, has also been
compared in synthesizing these sparse linear arrays.

Index Terms—Antenna radiation patterns, evolutionary compu-
tation, phased arrays.

I. INTRODUCTION

YNTHESIS of a linear antenna array by tuning the ampli-

tudes, phases, and/or positions of its elements can be
formulated as a nonconvex optimization problem. Different
types of evolutionary algorithms (EAs) have been successfully
applied to achieve one design goal or another. In general, the
performance of a specific EA is related to the array it is to
be applied. An EA works better than the others for certain
types of electromagnetic problems. Sometimes, just changing
the number of control parameters in the same problem may
favor different algorithms. In many applications, the arrays are
required to be able to generate a specified beamwidth while
maintaining an allowable peak sidelobe level (PSL). More com-
plicated tasks like beamforming or pattern shaping have also
been accomplished.

For example, Murino et al. applied a simulated annealing
(SA) algorithm to reduce the sidelobe level by adjusting the
position and amplitude of elements [1]. Chen et al. proposed
a modified genetic algorithm (GA) to reduce the sidelobe level
by adjusting the element positions [2]. Lommi er al. applied
a GA to reduce the PSL of a linear sparse array [3]. Khodier
et al. applied a particle swarm optimization (PSO) algorithm
to adjust the spacings between elements, aiming to minimize
the sidelobe level, as well as control the beamwidth and the
null locations [4]. Bevelacqua et al. proposed a two-step PSO
approach to achieve the minimum sidelobe level of an array
[5]. The amplitudes are first optimized under given element
positions, leading to a convex problem. Then, the element
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positions are optimized, with the amplitudes adjusted together,
using a PSO algorithm. Guney et al. applied a harmony search
(HS) algorithm to adjust the amplitude, phase, and position,
respectively, of a linear array; in order to obtain single or mul-
tiple nulls at specific directions while maintaining low sidelobe
level [6].

Rocca et al. presented a systematic review of differen-
tial evolution (DE) technique to synthesize array patterns [7].
Kurup et al. shaped the radiation pattern using a differential
evolution strategy (DES) to determine the positions and phases
of elements [8]. Chen et al. modified the conventional DES to
improve its balance between convergence rate and exploration
ability in searching for the global optimum [9]. The sum and
difference patterns of various linear arrays have been optimized
by varying element phases, positions, or both. Lin et al. applied
several variants of DES to optimize linear arrays by adjusting
element positions, phases, or both [10]. Goudos et al. applied
a self-adaptive DE algorithm to optimize a linear array, among
other electromagnetic problems [11]. It was reported that the
comparison among different EAs and the choice of control
parameters in a given algorithm are dependent on the problem
to be solved.

Karimkashi and Kishk [12] applied an invasive weed opti-
mization (IWO) algorithm to optimize the element positions
of a planar array in [2] to achieve a lower sidelobe level with
fewer elements. Quevedo-Teruel and Rajo-Iglesias applied an
ant colony optimization (ACO) algorithm to control the side-
lobe level of a thinned array [13]. Weng et al. used the Taguchi’s
method (TM) to control the null locations and to generate a
sector-beam pattern [14]. Datta and Misra applied an adaptive
bacteria-foraging algorithm (BFA) to steer the null locations
and suppress the sidelobe level of an array [15]. Ho and Yang
used the tabu search algorithm (TSA) to synthesize a nonuni-
formly spaced linear array, involving a tradeoff between the
desired pattern and the PSL [16].

Oliveri et al. proposed a technique based on an almost dif-
ference set (ADS), which is a binary sequence bearing certain
autocorrelation property, to remove a specific set of elements
from an otherwise uniform planar array [17]. The PSL can
be specified a priori. A similar technique has been proposed
to design a very sparse array of a rectangular geometry [18].
These techniques can be applied to generate the optimal layout
of elements efficiently out of a specific type of uniform array
geometry.

Oliveri et al. proposed a Bayesian compressive sampling
technique to design maximally sparse linear arrays, by casting
the pattern matching problem into a probabilistic formulation
[19], [20]. Tradeoff analysis on several key parameters have
also been presented.
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Fig. 1. Configuration of a linear subarray with uniform spacing (circle),
extended by a linear spare subarray with at unequal spacings (triangle).

From the hardware perspective, phase shifters are needed to
implement phase differences among elements of equal ampli-
tudes, and variable-gain amplifiers are needed to implement
amplitude differences among elements.

In this work, we choose the HS algorithm [21] to synthesize
a linear array, which is composed of a uniform core subarray
and an extended sparse subarray. Another exploratory harmony
search (EHS) [22] is also chosen for comparison. The HS algo-
rithm is briefly reviewed in Section II, and the EHS algorithm
is a straightforward extension of the former. The linear arrays
and the constraints upon them are described in Section III; sim-
ulation results of several optimized linear arrays are presented
in Section IV; the comparison with GA and PSO algorithms in
synthesizing these arrays is discussed in Section V; and some
conclusion is drawn in Section VI

II. HARMONY SEARCH ALGORITHMS

The HS algorithm mimics the improvisation process of musi-
cians, each playing a note, to find the best harmony for all
[21]. The HS algorithm has been successfully applied to struc-
ture problems [23], communications [24], power systems [25],
course scheduling [26], and array synthesis [6]; and it will be
applied to synthesize sparse arrays in this work.

There are four major parameters in the HS algorithm, the
harmony memory size (HMS), the harmony memory consider-
ing rate (HMCR), the pitch adjustment rate (PAR) and the fret
width (FW), also called the adjusting bandwidth. The conven-
tional HS algorithm used in this work is described below [21].

Initialization
for(g=1:N;)
{
Improvisation starts
for(n=1:N)
{
if rand(1) < HMCR
R D[n] = HD[mlD n]
if rand(1) < PAR
R D[n] = h@D[n] + (=1 + 2 x rand(1))FW
else
B(q) [n] = —Xnin + rand(l) (Xmax - Xmin)

} end of loop ¢

where rand(1) generates a random number between 0 and 1;
N; is the number of iterations; m(%) is an integer picked from

4733

TABLE I
PARAMETERS USED IN CONVENTIONAL HS AND EHS ALGORITHMS [22]

Case HMS | N | HMCR | FWR | PAR | N, K
L5 3(10) 30 10 0.99 0.05 [ 033 | 10% [ 10%
L5.3(20) 30 10 0.99 0.05 | 033 | 10°% [ 10°
L5 4(10) 30 12 0.99 005 [ 033 [ 10° | 10°

L50.50(10) 30 149 0.99 0.05 | 033 | 10° | 10°

AF (0) (dB)
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Fig. 2. Radiation patterns. (a) —A—: L5 3(10),—: L5geR), — — —:
Ls5,3(1S); de = 0.5, BW4 = 10.40°, k = 1. (b) —A—: L5 3(20), —:
Ls12(R), — — —: L5,3(2S); dy = 0.5A, BW; = 6.80°, k = 1.

1,2,..., HMS with equal probability; X i, and X, are the
lower and upper bounds, respectively, of the note.

A. Initialization

The values of HMS, HMCR, PAR, and FW are assigned at
the initialization stage, where HMS is the number of rows in the
harmony memory (HM) matrix, having the explicit form of

7:11 hii hiz -+ hn
_ ho hai haa -+ han
H = . = . .

B hare hara -+ hun

where M is equal to HMS and NV is the number of musicians.
Each row of H represents a harmony, and each column records

the notes played by a musician. In the first improvisation, take
I?[(l) - Xmin + (Xmax - Xmin) rand(M, N)

where rand(M, N) returns an M x N matrix of random num-
bers, all picked from the interval [0, 1].
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TABLE II
BEAMWIDTH AND PSL OF LINEAR ARRAYS WITH N, = 3,4

Core L5 3(18) L5 6(R) L5 3(10), k =1 Ls3(10), k = 1.2 L53(10), s =15 L53(10), k=2
BW (%) 23.00 14.40 10.40 10.40 12.48 15.60 20.80
PSL (dB) —12.96 —7.78 —13.20 —13.59 —14.57 —15.67 —27.76
core L53(25) Lsi2(R)  L53(20), k=1 L53(20),x=12 L53(20), k=15 L53(20), k=2
BW (°) 23.00 9.40 6.80 6.80 8.16 10.20 13.60
PSL (dB) —12.96 —6.84 —13.23 —8.39 —9.02 —11.60 —12.56
core L5 4(1S) L5 s(R) L5 4(10), k =1 L5 4(10), Kk = 1.2 L54(10), k = 1.5 L5 4(10), £ =2
BW (®) 23.00 12.80 8.80 8.80 10.56 13.20 17.60
PSL (dB) —12.96 —6.82 -13.21 —14.60 —15.69 —-16.19 —-29.17
TABLE III
POSITIONS AND AMPLITUDES OF ELEMENTS IN LINEAR ARRAYS WITH Ne = 3
Positions (A) in L3 3(18S) £ 025 X075 L1255 X175 £225 £325 =£42F5 L3525
Positions (A) in Ls.3(10) +025 +£075 +125 +1.75 +225 +366 +436 =525
Amplitudes in Lz 3(1S) 1 1 1 1 1 1 1 1
Amplitudes in Ls 3(10) 1.06 0.77 1.05 0.91 1.36 1.73 1.65 1.20
positions (A) in Ls 3(28) =025 X075 £125 X175 £225 £425 £625 L£825
positions (A) in L5 3(20) +£025 +075 +125 +1.75 +£225 +443 +673 +825
Amplitudes in L5 3(2S) 1 1 1 1 1 1 1 1
Amplitudes in Lz 3(20) 0.25 0.53 1.27 1.07 1.08 091 1.90 1.79
Oy C. HM Update
- During the improvisation process, each musician (decision
variable) generates a note (value) to find the best harmony
= 50 (global optimum). If a set of values, representing a specific geo-
= metrical configuration with specific amplitudes, do not satisfy
3-30' ¥ the constraints, they will be discarded. If the new harmony is
= H better than the worst harmony in matrix H (@) based on the fit-
a0 ¥ ness value (aesthetic evaluation), this new harmony will replace
F the worst harmony.
L]
%50 0 30 60 70 80 90
III. LINEAR ARRAY WITH EXTENDED SPARSE ELEMENTS
In a typical sparse array or thinned array, the elements are
Fig. 3. Radiation patterns: —A—: Lg 4(10), ——: L53s(R), —— —

Ls5,4(18); de = 0.5A, BW4 = 8.80°, k = 1.

B. Improvisation

In the gth iteration, a new harmony h(? is created via a
recombination and a mutation process. The nth component of
the new harmony is selected, with probability HMCR, from
the set {h1n, hon, - - ., harn }; or randomly selected, with prob-
ability 1— HMCR, from [Xnin, Xmax]- A pitch adjustment is
applied to the nth component, with probability PAR, if it is
selected from the existing harmonies.

The FW is derived as

FW = FWR(Xmax - Xmin)

where FWR stands for FW ratio. An adaptive FW can also be

adopted as [22]
FW@ = ¢\/var{H @}

where var{ H(9)} is the variance over all the elements in H (%),
and ( is an empirical number, suggested to be 1.17.

The EHS algorithm is the same as the conventional HS algo-
rithm, with the FW in each iteration updated according to the
variance of the HM matrix H during that iteration.

allowed to move farther away from adjacent elements to reduce
the number of elements, while maintaining similar radiation
pattern as that of a counterpart with uniform spacing [1], [2],
[4], [8], [12], [13], [27]-[29]. In this work, we attach a sparse
subarray to a core subarray with uniform spacing. The core sub-
array determines the key characteristics of the radiation pattern,
while the sparse subarray is used to improve the radiation pat-
tern using fewer elements than another conventional subarray
of the same length.

Fig. 1 shows a linear subarray of 2V, elements, at a uniform
spacing of d,; extended by a sparse subarray of 2N, elements.
All the elements are aligned along the x axis. The length of
the core subarray is L, and the total length of the whole array
is L N,-

In this work, we will focus on the comparison of different
EAs in optimizing a sparse linear array to achieve a narrow
beamwidth and low sidelobe levels. The main beam is steered
toward the broadside direction without loss of generality. More
complicated patterns as in [19] and [20] can also be achieved.

To further simplify the problem, the positions and amplitudes
of the elements are required to be symmetrical about the origin.
Hence, the array factor can be reduced to

NJ‘/ NC
AF(0) = Z ap, cos(kx, cosb) + Z ae,, cos(kx,,, cosb)

n=1 m=1
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TABLE IV
POSITIONS AND AMPLITUDES OF ELEMENTS IN LINEAR ARRAYS WITH N, = 4

Positions (A) in L5 4(1S)  +£0.25 +075 £+ 1.25
Positions (A) in L5 4(10) +£025 4075 4+ 1.25

+ 1.75
+ 1.75

+225 +£325 +425 +£525 +£625
+225 +373 +£449 +£529 +6.25

Amplitudes in Ls 4(1S) 1 1 1
Amplitudes in L5__4(IO) 0.60 0.60 1.04

1 1 1 1 1 1
1:12 0.92 1.39 1.22 1.26 1.05

TABLE V
BEAMWIDTH AND PSL OF LINEAR ARRAYS WITH N = 50 AND
Ne =50

Core
2.30
—13.26

L50,50(1S)
1.10
—6.78

L50,50(10), & =1
(.80
—18.05

L50,100(R)
0.80
—13.26

BW (°)
PSL (dB)

Fig. 4. Radiation patterns: —A—: L5, 50(10), ——: L50,100(R), — — —:
L50,50(1S); de = 0.5, BW,; = 0.80°, k = 1.

where 2, = (n — 1/2)d,, is the position of the nth core ele-
ment; a,, is the amplitude of the nth core element, with 1 <
n < Ng; ae,, is the amplitude of the mth extended element,
with 1 < m < N,. The amplitudes of all the elements and the
positions of all the extended elements are recorded in vector
form as

[a17a27"'7a‘N¢aa€17a627"'7a6N6]

[mel,x62,...,x6Nc]

The amplitudes of all the elements are initially set to one,
and limited to (0, 2] all the time to provide more freedom for
optimization yet are practical to realize. Tuning the positions
of the extended elements will add more degrees of freedom to
optimize the radiation pattern. A similar discussion on how to
optimize the amplitudes and positions of elements in a linear
array can be found in [5].

A few more practical constraints will be imposed on the
positions of the extended elements: the spacing between two
adjacent extended elements must be greater than A\/2 and
smaller than 2)\; and the outermost extended elements must be
located at x = +L /2 to make the array length equal to Ly, .

IV. RESULTS OF OPTIMIZATION

Firstly, consider a linear array with N, =5, d, = 0.5,
and N, = 3. The initial amplitudes are chosen as a; =
G2 =+ =05 = Q¢; = Ge, = Gey = 1, and the initial posi-
tions of the extended elements are chosen as [T, , Tey, Tey] =
[3.25,4.25,5.25] \. For the convenience of discussion, this

initial setting is labeled as L5 3(1S), where the number 1 in the
parenthesis indicates the original spacing of the extended ele-
ments. For comparison, another linear array, labeled as L5 ¢(R),
is simulated, in which the extended elements are located at the
spacing of 0.5\ to reach the total length of Ly, = 10.5), and
the amplitudes of all the elements are equal to one.

We will try to minimize the PSL of L5 3(1S), while maintain-
ing the same beamwidth as that of Lj s(R), by optimizing the
positions of its extended elements and the amplitudes of all the
elements. The optimized array is labeled as Ls 3(10).

The fitness function for optimization is chosen as

f(w,9) = P(Q|w,¢) + K [BW(@,9) — k x BWy4| (1)

where @ = [a1,az,...,aN,, e, ey, .., Gey, | contains the
amplitudes of all the elements; ) = [Zc,, Ty, -, Tey, |
contains the positions of the extended elements except the out-
ermost one, which is fixed to Ly, /2; and K is an empirical
weighting factor. The first term on the right-hand side of (1) is
used to minimize the PSL, which appears at the angular direc-
tion 2. The second term on the right-hand side of (1) is used to
achieve the desired beamwidth x x BW (in degrees), where
BW, is the beamwidth of L5 ¢(R), which is measured from null
to null.

Table I lists the parameters used in the HS and the EHS algo-
rithms. More details can be found in [22]. We also observed
that the optimum solution is not very sensitive to the parame-
ters as long as they fall within a reasonable range. A tradeoff
analysis in [19] shows that the object functions usually appear
smooth near the optimal parameters, leading to a mild tolerance
in picking these parameters.

Fig. 2 shows the field patterns of various linear arrays with
N, =5 and N, = 3, which are derived from the best solution
in 10 trials of the EHS algorithm. The associated beamwidths
and PSLs are listed in Table II.

The sparse array L5 3(1S) has the beamwidth of 14.40° and
the PSL of —7.78 dB. The optimized array, Ls 3(10), under
BW,; = 10.40, and x = 1, achieves a similar beamwidth as that
of Ls g(R); its sidelobe level is reduced to —13.59 dB, better
than —13.20 dB of the latter.

Table III lists the element positions and amplitudes in these
arrays. Compared with a shorter array consisting of the core
elements only, L5 3(10) provides a narrower beamwidth and
lower PSL. Compared with the uniformly spaced array L5 6(R),
L5 3(10) takes fewer elements. If the beamwidth requirement
is relaxed by setting x = 2, the PSL can be further reduced to
—27.76 dB.

Next, the spacing between the extended elements is increased
to 2\, to check if more elements can be spared without degrad-
ing the radiation pattern too much. A linear array Ls 3(2S) is
thus proposed, with its performance listed in Table II and its
pattern shown in Fig. 2(b). The tradeoff between beamwidth
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TABLE VI
PERFORMANCE OF EHS, HS, PSO, AND GA ON L5 3(10)

Algorithm | Best fitness (dB) | Average fitness (dB) | Fitness SD (dB) | Average FI | SD of FI
EHS —13.59 —13.47 0.07 76,796 18,076
HS —13.53 —13.48 0.10 84,450 17,818
PSO —13.61 —13.07 0.57 41,269 25,037
GA —11.88 —11.32 0.67 57,347 37,063
FI: fitness iteration, SD: standard deviation.
and PSL is similar to the previous case. However, reducing TABLE VII

the PSL of L5 3(20) becomes more difficult, only —8.39 dB
with k = 1 and —12.56 dB with x = 2, as listed in Table II.
Obviously, a wider initial spacing between extended elements
raises the PSL. The optimal positions and amplitudes in
L5 3(20) are also listed in Table III.

A longer sparse array Ls 4(1S) can be derived by adding one
more extended element to either side of Ls 3(1S). The perfor-
mance of L5 4(1S) and L5 4(10) is listed in Table II, and their
patterns are shown in Fig. 3. The PSL is suppressed to —14.60
dB with kK = 1 and —29.17 dB with k = 2. The positions and
amplitudes of the extended elements in L5 4(10) are listed in
Table I'V.

Finally, consider large linear arrays with N, = 50, d, =
0.5\, and N, = 50. In Lsg 50(1S), the amplitudes are a; =
Ay =+ =0A50 = Ge; = Qe, = *** = (e,, = 1, and the spac-
ing between extended elements is 1A. The L5 50(10) array
is derived from Lsg 50(1S) by optimizing the amplitudes of
all the elements and the positions of the extended elements.
In Lsg,100(R), more extended elements are located at a uni-
form spacing of 0.5\, making its total length equal to that of
L50,50(18).

Table V lists the performance of these three arrays plus a core
array, which is consisted of 50 core elements only. These results
are derived from the best solution in 10 trials using the EHS
algorithm. Fig. 4 shows the radiation patterns of these three
arrays. The PSL of Lsq50(1S) is —6.78 dB. As a comparison,
L50,50(10) has the PSL of —18.05 dB, while its beamwidth is
0.80°, the same as that of L5 100(R).

V. COMPARISON OF EHS, HS, PSO, AND GA

In this section, performance of the EHS and the HS algo-
rithms will be compared, in optimizing two sparse arrays
L5 3(10) and L5 50(10), respectively. Two commonly used
EAs, PSO and GA, will also be used for reference [30].

These algorithms are assessed for their convergence rate,
in terms of the required number of fitness iterations (FI), and
the success ratio of converging to the global optimum. The
deviation among individual realizations is characterized by the
standard deviation of FI, labeled as SD.

A general view of matching different EAs to different elec-
tromagnetic problems has been presented in [31]; in which a
probability density function is propossed to assess the match-
ing between algorithm and specific problem. The success ratio
defined in our work plays a similar role. A higher success ratio
implies less probability of being trapped in a local minimum,
which is one of the motives to develop EAs.

PERFORMANCE OF EHS, HS, PSO, AND GA ON L5 3(10)

Algorithm | Requirement on | —11 (dB) —12 (dB) —13 (dB)
PSL
EHS Success ratio (%0) | 100 100 100
Average FI (SD) 1311 3237 9513
(1300) (2227) (3842)
HS Success ratio (%) 100 100 100
Average FI (SD) 2423 3998 14 597
(2621) (1580) (221372)
PSO Success ratio (%) | 100 90 70
Average FI (SD) 7639 11952 13216
(2629) (5212) (2806)
GA Success ratio (%) | 70 20 0
Average FI (SD) | 35707 36 402 =
(34 406) (39 259)

FI. fitness iteration, SD: standard deviation.

A. Particle Swarm Optimization

The PSO algorithm is inspired by food-searching swarms
[32], [33]. Particles fly in their search space based on the
instructions of habit, self knowledge, and social knowledge.
In the subsequent discussions, we choose the population size
of the swarm to be 30, and the empirical factors C; and C5 in
the updating equation to be 2. The habit weight w is decreased
from 0.9 to 0.4 linearly with iterations. The invisible boundary
condition (IBC) is adopted, and the maximum velocity is set to
20% that of the maximum coordinate in the search space.

B. Genetic Algorithm

The GA was motivated by Darwins theories of evolution,
which is consisted of the processes of genetic selection, recom-
bination (also named reproduction or crossover), mutation,
and propagation (also named creation) [34], [35]. The ver-
sion suggested in [36] is used in the subsequent discussions.
The population size is assumed 30; the tournament selection
is adopted; the crossover and the mutation probabilities are set
to p, = 0.9 and p,, = 0.3, respectively. The maximum num-
bers of recombined and mutated individuals are functions of p,.,
P and the population size. The recombined and the mutated
individuals are always involved in the propagation process. If
the population size is not full, the best individual and some
randomly chosen individuals from the old generation will be
recruited.

C. Comparison on L 3(10)

The computational time depends on the computers used for
simulations and how the computer codes are architected. In
general, the computational time is roughly in proportional to
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TABLE VIII
PERFORMANCE OF EHS, PSO, AND GA ON Ls¢,50(10)

Algorithm | Constraint | Success ratio (%) | Best fitness (dB) | Average fitness (dB) | Fitness SD (dB) | Average FI | SD of FI
EHS k=1 100 —18.05 —-17.79 0.13 104 207 46 807
k=12 100 —19.70 —19.51 0.20 87923 45966
k=15 100 —20.30 —20.01 0.10 44 750 27 350
PSO =1 0 — - - - -
r=1 50 —20.54 —19.40 0.51 69 398 45775
k=105 80 —21.05 —11.70 5.58 27 054 10 996
GA k=1 0 — — — — -
k=12 0 - - - - -
k= 1.5 0 — — — — —

the number of iterations required, assuming that each iteration
takes about the same amount of arithmetic operations. Different
algorithms usually take different amounts of arithmetic oper-
ations in each iteration. In this work, we focus more on the
convergence behavior and the exploration ability (success ratio)
to reach the global optimum.

In any trial of EHS, HS, PSO, or GA, different number of
FIs may be taken [14]. In order to reach a fair comparison, each
algorithm is given 10 trials, with a maximum of 100000 FIs in
each trial. The number of FIs is recorded when the algorithm
ceases to improve over the previous solution. Table VI lists the
performance of these algorithms on L5 3(10). Table VII lists
the performance statistics of these algorithms, under different
requirements on the PSL.

The EHS and the HS algorithms take more Fls to reach the
optimal solution than the other two algorithms, but the global
optimum can always be reached in 10 trials. On the other hand,
the PSO and the GA algorithms may fail to find the solution,
especially when the requirement on PSL is more stringent.

If we take a closer look at Table VI, the EHS and the HS algo-
rithms seem to be more capable of avoiding the local optima
than the other two algorithms, at the cost of taking more iter-
ations. As listed in Table VII, the success ratios of the EHS
and the HS algorithms are 100%, under three different PSL
requirements. The PSO algorithm seems prone to stuck in local
optimum, and its success ratio gets lower under more stringent
requirement, e.g., 70% under —13 dB of PSL. The GA algo-
rithm has poor success ratios of 20% and 0% under PSL of —12
and —13 dB, respectively.

As listed in Table VII, when the PSL is used as the stopping
criterion of iteration, the EHS and the HS algorithms take fewer
FIs than the PSO and the GA algorithms. When the PSL is set
on —11 dB, the EHS algorithm takes about 17% iterations that
of the PSO algorithm. Compared with the HS algorithm, the
EHS algorithm takes fewer iterations due to the adaptive FW.
When the PSL is set to —13 dB, the EHS algorithm takes about
65% iterations that of the HS algorithm.

D. Comparison on Lsg 50(10)

Table VIII lists the performance of EHS, PSO, and GA algo-
rithms on a larger array of Lsg 50(10). Each algorithm is given
10 trials, with a maximum of 200 000 FIs in each trial. A trial is
claimed successful if the beamwidth satisfies the requirement.

The GA fails in all three cases. The PSO algorithm fails to
fulfill the narrowest beamwidth constraint (x = 1), and achieve

50% and 80% of success rates under the constraints of k = 1.2
and xk = 1.5, respectively. The EHS algorithm reaches 100% of
success ratio in all three cases. However, the best fitness of the
EHS algorithm is worse than that of the PSO algorithm.

The factor x can be viewed as a relaxation parameter to
achieve the ideal beamwidth BW; of a uniformly spaced array.
The simulation results associated with 1 < x < 2 are presented
in this work. It is observed by simulations that choosing x <
1 is accompanied by high sidelobe levels. When s > 2, the
required beamwidth is very difficult to achieve. It appears that
BW, sets a reasonable range of beamwidth that is achievable.

E. Further Considerations

In practical implementation, especially when the hardware
is involved, the allowable amplitudes can be predefined in a
set of discrete levels. The step size between adjacent levels
may affect the optimization results of amplitudes and radiation
pattern, which are expected to converge to those obtained by
assuming analog amplitudes as the step size is reduced to a very
small number. The extended elements may also be allocated to
a finite number of allowable positions, which will also affect
the optimal choice of amplitudes.

One may also consider optimizing the amplitudes of the S
arrays, which is equivalent to optimizing the fitness function in
(1) over possible amplitudes @, with fixed positions ).

A specific optimization algorithm may work better than the
others for one specific application, and vice versa for another
application. The results presented in this work are used to val-
idate the proposed method in optimizing sparse linear arrays
specified in the context.

VI. CONCLUSION

A linear array composed of a uniform core subarray and an
extended sparse subarray is optimized using the HS and the
EHS algorithms. The amplitudes of all elements and the posi-
tions of the extended elements are optimized to generate a field
pattern with the desired beamwidth and allowable PSL. Arrays
of different sizes and sparsities have been simulated. Under the
specific geometrical configuration and the assumption of analog
amplitudes, the performance of synthesized arrays is compared
with that using the GA and the PSO algorithm. The EHS and
the Hs algorithms take fewer FIs than the PSO and the GA
algorithms to reach the optimal solution, which satisfies the
requirement on the PSL and the beamwidth.
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