Resonance in Cylindrical–Rectangular and Wraparound Microstrip Structures

SAMI M. ALI, SENIOR MEMBER, IEEE, TAREK M. HABASHY, MEMBER, IEEE, JEAN-FU KIANG, AND JIN AU KONG, FELLOW, IEEE

Abstract—A rigorous analysis of the resonance frequency problem of both the cylindrical–rectangular and the wraparound microstrip structure is presented. The problem is formulated in terms of a set of vector integral equations. Using Galerkin's method to solve the integral equations, the complex resonance frequencies are studied with sinusoidal basis functions which incorporate the edge singularity. Furthermore, the complex resonance frequencies are computed using a perturbation approach. Modes suitable for resonator or antenna applications are investigated.

I. INTRODUCTION

CYLINDRICAL microstrip structures are important in many applications where they can be flush-mounted on curved surfaces such as space vehicles, missiles, and boosters [1]. The microstrip antenna elements that are commonly used on these surfaces are of either the wraparound or the cylindrical–rectangular type.

The resonance frequencies of microstrip patches placed on planar structures have been studied extensively [2]–[9]. On the other hand, the resonance frequencies of microstrip patches placed on curved surfaces have attracted less attention. The resonance frequencies of cylindrical–rectangular microstrip patch were calculated using a magnetic wall cavity model [10], thus ignoring the fringing field effects and the radiation loss. In such an analysis, the resonance frequencies obtained are purely real, thus limiting the validity of the obtained results. In [11] the microstrip antennas on cylindrical structures were considered, but no useful results for the resonance problem have been presented.

In this paper, we rigorously analyze the resonance frequency problem of both the cylindrical–rectangular and the wraparound structure using a full-wave approach. The formulation leads to a set of vector integral equations for the current distribution on the conducting patches. This set of vector integral equations is then solved using Galerkin's method. Two different sets of basis functions are used to expand the current distribution, one of which takes into account the edge singularity condition. The resulting nonlinear eigenvalue equation is then solved numerically. Both the real and the imaginary part of the complex resonance frequencies are computed as functions of the dielectric substrate thickness. To ascertain the results obtained from the Galerkin method, a perturbation approach based on the single-mode approximation is also used to compute the complex resonance frequencies of the cylindrical–rectangular and wraparound resonators. Different plots for the real and imaginary parts of the resonance frequencies of TE_{01}, HE_{01}, HE_{10}, and HE_{11} are presented.

II. VECTOR INTEGRAL EQUATION FORMULATION

The geometry of the problem is shown in Fig. 1. An infinitely long metallic cylinder of radius a is covered with a dielectric substrate (region 1) of outer radius b, electric permittivity ε_r, and magnetic permeability μ_0. Region 2 is free space with parameters ε_s and μ_0. A metallic patch is printed on the surface of the dielectric substrate. The metallic cylinder and the patch are assumed to be perfectly conducting.
For an arbitrary distribution of currents on the metallic patch which vary harmonically as $e^{-i\omega t}$, the z components of the electric and magnetic fields are given by

$$E_z(\rho, \phi, z) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} e^{i\omega n} \int_{-\infty}^{\infty} dk_z e^{i k_z z}$$

where

$$\begin{align*}
A_1^{(e)}(k_{1z}, \rho) + B_1^{(m)}(k_{1z}, \rho), & \quad a < \rho < b \\
A_2^{(e)}(k_{2z}, \rho), & \quad b < \rho
\end{align*}$$

and

$$\begin{align*}
A_1^{(m)}(k_{1z}, \rho) + B_1^{(e)}(k_{1z}, \rho), & \quad a < \rho < b \\
A_2^{(m)}(k_{2z}, \rho), & \quad b < \rho
\end{align*}$$

where the field spectral amplitudes $A_1^{(e)}, A_1^{(m)}, B_1^{(e)}, A_2^{(e)}, A_2^{(m)},$ and $B_1^{(m)}$ are functions of the harmonic order n and the spectral variable k_z.

By imposing the boundary conditions on the tangential components of the electric field (E_x and E_y) at the perfectly conducting inner cylinder ($\rho = a$), we obtain the following relationships between the spectral amplitudes:

$$\begin{align*}
B_1^{(e)} &= -\eta_1 A_1^{(e)} \\
B_1^{(m)} &= -\xi_1 A_1^{(m)}
\end{align*}$$

By matching the tangential components of the electric field (E_x and E_y) across the boundary at $\rho = b$, we get

$$\begin{align*}
A_1^{(e)} &= \frac{H_1^{(1)}(k_{1b}, b)}{J_1(k_{1b}, b)} \frac{1}{\eta_0 - \eta_i} A_1^{(e)} \\
A_1^{(m)} &= \frac{H_1^{(1)}(k_{1b}, b)}{J_1(k_{1b}, b)} \frac{1}{\xi_0 - \xi_i} \left[\frac{k_{1b}}{k_{2b}} \frac{\alpha}{\beta} A_2^{(m)} - (\epsilon, -1) \frac{i \omega \epsilon_2}{k_{2b}} \frac{k_z}{k_{2b}} \frac{1}{\beta} A_2^{(e)} \right]
\end{align*}$$

where

$$\begin{align*}
\eta_0 &= \frac{H_0^{(1)}(k_{1b}, b)}{J_0(k_{1b}, b)} \\
\xi_0 &= \frac{H_0^{(1)}(k_{1b}, b)}{J_0(k_{1b}, b)} \\
\beta &= \frac{J_1'(k_{1b}, b)}{J_1(k_{1b}, b)} \\
\alpha &= \frac{H_1^{(1)}(k_{1b}, b)}{H_0^{(1)}(k_{2b}, b)}
\end{align*}$$

We notice from (4) that cross-polarization occurs. With the exception of the $n = 0$ case, the normal modes are no longer pure TE or TM. These hybrid modes are commonly classified as HE_{nm} or EH_{nm}, which, respectively, tend to TE_{nm} and TM_{nm} for vanishingly thin substrate.

Next we will derive an expression which relates the current on the patch to the spectral amplitudes of the fields. To do so, we match the discontinuity in the tangential components of the magnetic field (H_x and H_y) to the current on the patch. Then, applying the orthogonality relationships on the Fourier series expansion with respect to ϕ and the Fourier transform with respect to z, and using (2) and (4), we obtain a relationship between the surface current and the field spectral amplitudes as follows:

$$J_x(k,z) = \frac{\bar{X}_x(k,z) \cdot a_2}{1 - (\epsilon, -1) \frac{i \omega \epsilon_2}{k_{2b}} \frac{k_z}{k_{2b}} \frac{1}{\beta} A_2^{(e)}}$$

By imposing the boundary conditions on the tangential components of the electric field (E_x and E_y) at the perfectly conducting inner cylinder ($\rho = a$), we obtain the following relationships between the spectral amplitudes:

$$\begin{align*}
B_1^{(e)} &= -\eta_1 A_1^{(e)} \\
B_1^{(m)} &= -\xi_1 A_1^{(m)}
\end{align*}$$
On the other hand, the Fourier transforms of the tangential components of the electric field at \(\rho = b \) are related to the field spectral amplitudes as follows:

\[
E_{\mu}(k_z) = \overline{S}_\mu(k_z) \cdot a_2
\]

where

\[
E_{\mu}(k_z) = \begin{bmatrix} E_{\mu 1}(k_z) \\ E_{\mu 2}(k_z) \end{bmatrix}
\]

\[
= \frac{1}{2\pi} \int_0^{2\pi} d\phi e^{-i\phi} \int_{-\infty}^{\infty} dz e^{-ik_zz} E_{\nu}(\phi, z)
\]

\[
\overline{S}_\mu(k_z) = \begin{bmatrix} S_{1\mu} \\ S_{2\mu} \\ S_{3\mu} \end{bmatrix}
\]

\[
S_{1\mu} = \frac{k_z}{k_{2\rho}} \alpha \frac{n}{k_{2\rho} b}
\]

\[
S_{2\mu} = -\frac{1}{k_{2\rho}} \frac{\alpha}{k_{2\rho} b}
\]

\[
S_{3\mu} = 1
\]

\[
S_{22} = 0.
\]

Thus from (6) and (12), we obtain the following relationship between the patch current and the electric field on the patch represented in the spectral domain:

\[
E_{\mu}(k_z) = \overline{I}_\mu(k_z) \cdot J_\nu(k_z)
\]

where \(\overline{I}_\mu(k_z) \) can be obtained from (10) and (15) as follows:

\[
\overline{I}_\mu(k_z) = \begin{bmatrix} \Gamma_{11} \\ \Gamma_{12} \\ \Gamma_{21} \\ \Gamma_{22} \end{bmatrix}
\]

\[
\Gamma_{11} = \frac{1}{\Delta} \left[\frac{k_z^2}{k_{2\rho}} \alpha \frac{n}{k_{2\rho} b} \left(1 - \frac{k_{2\rho}}{k_{1\rho}} \right) \right]
\]

\[
\Gamma_{12} = \Gamma_{21} = \frac{1}{\Delta} \left[\frac{k_z}{k_{2\rho}} \alpha \frac{k_{2\rho}}{k_{1\rho}} \right]
\]

\[
\Gamma_{22} = \frac{1}{\Delta} \left[1 - \frac{k_{2\rho}}{k_{1\rho}} \beta \right]
\]

and \(\Delta \) is the determinant of \(\overline{X}_\mu(k_z) \), given by

\[
\Delta = \frac{i\omega \epsilon_\rho}{k_{2\rho}} \left[\alpha - \epsilon_\beta \frac{k_{2\rho}}{k_{1\rho}} \right] \left[1 - \frac{k_{2\rho}}{k_{1\rho}} \beta \right]
\]

Note that the matrix \(\overline{I}_\mu(k_z) \) is symmetric \((\Gamma_{21} = \Gamma_{12}) \), which is a consequence of reciprocity. Using (4) and (6), the field spectral amplitudes in region 1 can be obtained as

\[
a_1 = \overline{I}_\mu(k_z) \cdot J_\nu(k_z)
\]

where

\[
a_1 = \begin{bmatrix} A_{1\mu}^r \\ A_{1\mu}^i \end{bmatrix}
\]

\[
Y_\mu(k_z) = \begin{bmatrix} Y_{1\mu} \\ Y_{2\mu} \\ Y_{3\mu} \end{bmatrix}
\]

and

\[
Y_{1\mu} = \frac{1}{\Delta} \left[1 - \frac{k_{2\rho}}{k_{1\rho}} \beta \right] \frac{1}{\eta_0 - \eta_i}
\]

\[
Y_{2\mu} = \frac{1}{\Delta} \left[\frac{k_{2\rho}}{k_{1\rho}} \alpha \right] \frac{1}{\eta_0 - \eta_i}
\]

\[
Y_{3\mu} = \epsilon_\rho \left[\alpha - \epsilon_\beta \frac{k_{2\rho}}{k_{1\rho}} \right] \left[\frac{k_{2\rho}}{k_{1\rho}} \beta \right] \frac{1}{\xi_0 - \xi_i}
\]

\[
\eta_{2\rho} = \epsilon_\rho \left[\alpha - \epsilon_\beta \frac{k_{2\rho}}{k_{1\rho}} \right] \left[\frac{k_{2\rho}}{k_{1\rho}} \beta \right] \frac{1}{\xi_0 - \xi_i}
\]

where \(\Delta \) is given by (19).

Imposing the mixed boundary conditions at \(\rho = b \) on the tangential components of the electric field \(E_\nu(\phi, z) \) and on the current density \(J_\nu(\phi, z) \), we obtain a set of vector integral equations given by

\[
E_\nu(\phi, z) = \frac{1}{2} \sum_{n = -\infty}^{\infty} e^{i\phi n} \int_{-\infty}^{\infty} dk_\nu e^{ik_\nu z} \overline{I}_\mu(k_z) \cdot J_\nu(k_z) = 0
\]

on the patch (24)

\[
J_\nu(\phi, z) = \frac{1}{2\pi} \sum_{n, m = -\infty}^{\infty} e^{i\phi n} \int_{-\infty}^{\infty} dk_\nu e^{ik_\nu z} \overline{I}_\nu(k_z) \cdot J_\nu(k_z) = 0
\]

outside the patch. (25)

The next step is to solve this set of vector integral equations using Galerkin's method.

III. GALERKIN'S METHOD

Now we solve the set of dual integral equations (24) and (25) by using Galerkin's method. We expand the current \(J(\phi, z) \) in terms of a set of basis functions which is complete over the support of the patch:

\[
J(\phi, z) = \sum_{n, m} \overline{J}_{nm}(\phi, z) \cdot A_{nm}
\]

on the patch

\[
J(\phi, z) = 0
\]

outside the patch.

The spectral components of this current distribution are given by

\[
J_\nu(k_z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\phi e^{-i\phi} \int_{-\infty}^{\infty} dz e^{-ik_zz} J(\phi, z)
\]

\[
= \sum_{n, m} \overline{J}_{nm}(k_z) \cdot A_{nm}
\]
where
\[
\bar{T}_{r,nm}(k_x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\phi e^{i\phi} e^{-ik_x z} \int_{-\infty}^{\infty} dz e^{-ik_x z} \bar{K}_{nm}(\phi, z). \tag{28}
\]

Substituting (27) into (24), we obtain
\[
\sum_{n,m} \bar{Q}_{pq,nm} \bar{A}_{nm} = 0
\]
on the patch. \(\tag{29}\)

Next, the above equation is tested by the same set of basis functions that was used in the expansion of the patch current. This is done by premultiplying (29) by \(\bar{K}_{pq}(\phi, z)\) and integrating over the patch area. Thus we get
\[
\sum_{n,m} \bar{Q}_{pq,nm} \bar{A}_{nm} = 0 \tag{30}
\]
where
\[
\bar{Q}_{pq,nm} = \int_{-\infty}^{\infty} dk_x \sum_{r=-\infty}^{\infty} \bar{T}'_{r,pq}(k) \cdot \bar{T}_r(k_x) \cdot \bar{T}_{r,nm}(k_x).
\]

Nontrivial solutions can exist if the determinant of (30) vanishes, that is,
\[
\det |\bar{Q}_{pq,nm}| = f(\omega) = 0. \tag{32}
\]

This is the eigenvalue equation for the cylindrical microstrip resonator. The roots of this equation are complex numbers, indicating that the structure has complex resonance frequencies. The imaginary part of the complex resonance frequencies accounts for the radiation loss.

Now, we apply the above formulation to find the resonance frequencies of the cylindrical–rectangular microstrip patch shown in Fig. 1(a) and the wraparound patch of Fig. 1(b).

In choosing the set of basis functions for the expansion of the patch current, one has to ensure that the normal component of the current vanishes at the edge whereas the tangential component satisfies the edge condition. Thus, for the wraparound patch,
\[
\bar{K}_{nm}(\phi, z) = e^{i\omega z} \bar{\Omega}_{m}(z) \tag{33}
\]
where \(-\pi \leq \phi \leq \pi\), and

In this case we have
\[
\bar{T}_{r,nm}(k_x) = \delta_{n,m} \left[\begin{array}{cc} \frac{\pi}{2} J_0 \left(\frac{m\pi}{2} - k_x d_0 \right) + (-1)^m J_0 \left(\frac{m\pi}{2} + k_x d_0 \right) & 0 \\ 0 & 0 \end{array} \right]. \tag{35}
\]

For the cylindrical–rectangular patch,
\[
\bar{K}_{nm}(\phi, z) = \bar{\Theta}_n(\phi) \bar{\Omega}_m(z) \tag{36}
\]
where \(-\phi_0 \leq \phi \leq \phi_0\) and zero otherwise, and
\[
\bar{\Theta}_n(\phi) = \left[\begin{array}{cc} \sin \left(\frac{n\pi}{2\phi_0} (\phi + \phi_0) \right) & 0 \\ 0 & \frac{1}{\sqrt{\phi_0^2 - \phi^2}} \cos \left(\frac{n\pi}{2\phi_0} (\phi + \phi_0) \right) \end{array} \right]. \tag{37}
\]
In this case we have

\[
\mathcal{T}_{r,am}(k_z) = \frac{1}{2} i^{r+m+1} \begin{bmatrix}
\frac{n\pi}{2\phi_0} & 0 \\
\frac{n\pi}{2\phi_0} & \cdots \\
0 & \cdots \\
\{J_0\left(\frac{n\pi}{2} - r\phi_0\right) + (-1)^m J_0\left(\frac{n\pi}{2} + r\phi_0\right)\} & 0 \\
0 & \{m\pi - k_z d_0\} & \frac{m\pi - k_z d_0}{2d_0} \\
0 & \cdots \\
0 & \cdots
\end{bmatrix}.
\]

Using the explicit expressions of \(\mathcal{T}_{r}(k_x)\) given by (18) together with (35), equation (31) reduces to

\[
\mathcal{Q}_{pq,am} = \delta_{pq} \left[1 + (-1)^{p+m}\right] \int_0^{\infty} dk_z \mathcal{T}_{r,am}(k_z)
\]

for the wraparound patch.

Similarly, from (18) together with (38), equation (31) reduces to

\[
\mathcal{Q}_{pq,am} = \left[1 + (-1)^{p+m}\right] \int_0^{\infty} dk_z \sum_{r=-\infty}^{\infty} \frac{1}{1+\delta_0} \mathcal{T}_{r,am}(k_z)
\]

for the cylindrical-rectangular patch.

IV. PERTURBATION FORMULA FOR THE RESONANCE FREQUENCIES

In the limit of a thin substrate, the resonance frequencies approach that of the magnetic-wall cavity, and a perturbation approach can be used to calculate the resonance frequencies. In this limit, the cylindrical microstrip structure can be viewed as a perturbation of a cylindrical resonator with perfectly magnetic sidewalls. The resonance frequency shift of this perturbed magnetic wall cavity resonator can be computed as [4], [12]

\[
\Delta\omega = \omega_f - \omega_i = \frac{L}{4\langle W_T \rangle_i}
\]

where

\[
L = -i \int_{\Delta S} dS \mathbf{H}_f \cdot \mathbf{E}_i^* \times \mathbf{H}_i
\]

and

\[
\langle W_T \rangle_i = \frac{1}{\epsilon_0} \int_V dV|E_i|^2
\]

where \(E_i\) and \(\omega_i\) are the electric field and the resonance frequency of the unperturbed cavity; \(H_f\) and \(\omega_f\) are the magnetic field and the resonance frequency of the perturbed cavity (i.e., the open cavity); \(\langle W_T \rangle_i\) is the unperturbed time-averaged total energy stored in the cavity; and \(\Delta S\) is the surface area of the sidewalls. In the unperturbed case, the field components are independent of \(\rho\) since the substrate thickness is assumed thin. Thus, the only existing modes are the TE_{nm} modes, for which \(E_p\) is the only nonvanishing electric field component. Thus (42) can be written as

\[
L = -i \int_{\Delta S} dS \mathbf{E}_i^* \times \mathbf{H}_f
\]

where \(H_f\) and \(H_{of}\) can be expressed in terms of the patch's current spectral amplitude as

\[
H_f(\rho, \phi, z) = \frac{1}{2\pi} \sum_{r=-\infty}^{\infty} e^{ir\phi} \int_{-\infty}^{\infty} dk_z e^{i k_z z} \mathcal{R}_f(\rho, k_z)
\]

and

\[
H_{of}(\rho, \phi, z) = \frac{1}{2\pi} \sum_{r=-\infty}^{\infty} e^{ir\phi} \int_{-\infty}^{\infty} dk_z e^{i k_z z} \mathcal{R}_{of}(\rho, k_z)
\]

where

\[
\mathcal{R}_f(\rho, k_z) = \frac{1}{J_0(k_z)} \left[\frac{H_r^{(1)}(k_z \rho) - \xi J_r(k_z \rho)}{J_1(\xi k_z)} \right]
\]

and

\[
\mathcal{R}_{of}(\rho, k_z) = \frac{1}{J_1(\xi k_z)} \left[\frac{H_r^{(1)}(k_z \rho) - \xi J_r(k_z \rho)}{J_1(\xi k_z)} \right]
\]

where

\[
\mathcal{F}(k_z) = \begin{bmatrix}
\frac{i\omega_1}{k_{1\rho}} & 0 \\
0 & -\frac{k_z}{k_{1\rho}}
\end{bmatrix}
\]

and \(\mathcal{Y}_r(\rho, k_z)\) is given by (22).
Let us consider the perturbation of a TE$_{nm}$ mode whose unperturbed resonance frequency is ω_{nm} given by
\[\omega_{nm} = \frac{k_{nm}}{\sqrt{\mu_0 \varepsilon_1}} = \frac{1}{\sqrt{\mu_0 \varepsilon_1}} \left(\left(\frac{n \pi}{a} \right)^2 + \left(\frac{m \pi}{2d_0} \right)^2 \right)^{1/2} \] (49)
for the wraparound patch, and
\[\omega_{nm} = \frac{k_{nm}}{\sqrt{\mu_0 \varepsilon_1}} = \frac{1}{\sqrt{\mu_0 \varepsilon_1}} \left(\left(\frac{n \pi}{2 \phi_0 a} \right)^2 + \left(\frac{m \pi}{2d_0} \right)^2 \right)^{1/2} \] (50)
for the cylindrical-rectangular patch.

The difference between (49) and (50) when $\phi_0 = \pi$ is due to the different boundary conditions satisfied by the current at the edges of the patches. The current J_n has to vanish at $\phi = \phi_0$ for the cylindrical-patch, which is not the case for the wraparound patch.

For this mode of the wraparound patch, the unperturbed electric field is given by
\[E_{pl}(\phi, z) = E_{nm} e^{i m \phi} \cos \left[\frac{m \pi}{2d_0} (z + d_0) \right] \] (51)
and the patch current is given by
\[J_p(\phi, z) = \frac{1}{i \omega_{nm} \mu_0} E_{nm} e^{i m \phi} \overline{E}_m(z) \cdot \tau_{nm} \] (52a)
where
\[\tau_{nm} = \begin{bmatrix} -i n \\ \frac{a}{m \pi} \\ \frac{2d_0}{b} \end{bmatrix} = \begin{bmatrix} -i n \\ \frac{a}{m \pi} \\ \frac{2d_0}{b} \end{bmatrix} \] (52b)

The unperturbed time-averaged total energy stored in the wraparound cavity can be obtained as
\[\langle W_T \rangle \approx \pi a c \varepsilon_0 |E_{nm}|^2 (1 + \delta_{nm}) \omega_{nm} h d_0 \] (53)
where $h = b - a$.

For the cylindrical-rectangular patch, the unperturbed electric field is given by
\[E_{pl}(\phi, z) = E_{nm} \cos \left[\frac{n \pi}{2 \phi_0} (\phi + \phi_0) \right] \cos \left[\frac{m \pi}{2d_0} (z + d_0) \right] \] (54)
and the patch current has the form
\[J_p(\phi, z) = \frac{1}{i \omega_{nm} \mu_0} E_{nm} \overline{\Omega}_m(\phi) \cdot \overline{E}_m(z) \cdot \tau_{nm} \] (55a)
where
\[\tau_{nm} = \begin{bmatrix} \frac{n \pi}{2 \phi_0 b} \\ \frac{a}{m \pi} \\ \frac{2d_0}{2d_0} \end{bmatrix} = \begin{bmatrix} \frac{n \pi}{2 \phi_0 b} \\ \frac{a}{m \pi} \\ \frac{2d_0}{2d_0} \end{bmatrix} \] (55b)

The unperturbed time-averaged total energy stored in the cylindrical-rectangular cavity can be represented by the following expression:
\[\langle W_T \rangle \approx \frac{1}{2} \varepsilon_0 |E_{nm}|^2 (1 + \delta_{nm}) (1 + \delta_{nm}) \phi_0 a h d_0. \] (56)

In both the wraparound and the cylindrical-rectangular case, the Fourier transform of the patch's current in the unperturbed state is given by
\[J_p^{(0)}(k_z) = \frac{1}{i \omega_{nm} \mu_0} E_{nm} \overline{J}_m(k_z) \cdot \tau_{nm}. \] (57)

In the limit when $h/a \to 0$, the patch current can be approximated by its value in the unperturbed state and hence
\[J_p(k_z) \approx J_p^{(0)}(k_z). \] (58)

Thus, in the thin substrate limit, using (51), approximate expressions for the magnetic field components H_{pl} and H_{pl} can be obtained.

For the wraparound patch, using (44) we can get
\[L = \frac{2iab}{\pi \omega_{nm} \mu_0} \int_{-\infty}^{\infty} dk_z e^{-ik_zd_0} \mathbf{R}_{pl}^{(p)}(k_z) \cdot \overline{\mathbf{F}}(k_z) \cdot \overline{Y}_n(k_z) \cdot \overline{J}_m(k_z) \cdot \tau_{nm} \] (59)
where
\[R_{nm}(k_z) = \frac{\pi}{2i b} \int_0^a dp \mathbf{R}_{nm}(p, k_z) \]

It can be easily shown that
\[\mathbf{F}(k_z) = (-1)^n \overline{F}_n(k_z) \cdot \overline{Y}_n(k_z) \cdot \overline{J}_m(k_z) \] (61)

Hence (59) can be written as
\[L = -(-1)^n \frac{8 a h}{\pi \omega_{nm} \mu_0} |E_{nm}|^2 \mathbf{S}_{nm}^{(p)} \cdot \tau_{nm} \] (62)
where
\[\mathbf{S}_{nm}^{(p)} = \int_{-\infty}^{\infty} dk_z \sin \left(\frac{m \pi}{2} k_z d_0 \right) R_{pl}^{(p)}(k_z) \cdot \overline{F}(k_z) \cdot Y_n(k_z) \cdot T_{n,m}(k_z). \] (63)

Finally, we get the perturbational expression for the reso-
nance frequency of the wraparound cavity as
\[\omega_f = \omega_{nm} \left[1 - (-i)^{m+n} \left(\frac{2}{\pi} \right)^2 \frac{1}{(1 + \delta_{\nu_0}) d_0 k_{nm}^2 S_{\nu_\nu_0}^r \tau_{nm}} \right]. \]
(64)

For the cylindrical-rectangular patch, using (50) we obtain
\[L = (-i)^{m+n} \left(\frac{2}{\pi} \right)^2 \frac{ah}{\omega_{nm} \rho_0} |E_{nm}|^2 V_{nm} \tau_{nm} \]
(65)

where
\[V_{nm} = U_{nm} + \frac{1}{a} U_{nm} \]
(66)

\[U_{nm} = \sum_{r=1}^{\infty} \frac{\sin \left(\frac{\pi r}{2} - r \phi_0 \right)}{r^2} \]
\[\int_0^\infty dk_r \sin \left(\frac{\pi r}{2} - k_r d_0 \right) R^{r_0}(k_r) \]
\[\cdot \overline{F}(k_r) \cdot \overline{Y}(k_r) \cdot \overline{T_{r,nm}}(k_r) \]
\[U_{nm} = \int_0^\infty dk_r \frac{\sin \left(\frac{\pi r}{2} - k_r d_0 \right)}{k_r^2 - \left(\frac{\pi}{2d_0} \right)^2} R^{r_0}(k_r) \cdot \overline{V}(k_r) \cdot \overline{T_{r,nm}}(k_r) \]
(67)

and
\[R_{r_0}(k_r) = \frac{i \pi}{2h} \int_0^b d_r R_{r_0}(\rho, k_r) \]
\[= \left[\begin{array}{ccc} 0 & 1 & 1 \\ 1 & k_{r_0} & J_1(k_{r_0} a) J_1(k_{r_0} a) \end{array} \right] \]
(68)

where we have employed the symmetrical properties of the integrands.

Finally, we get the perturbational expression for the resonance frequency of the cylindrical-rectangular cavity as
\[\omega_f = \omega_{nm} \left[1 + 2(-i)^{m+n} \left(\frac{2}{\pi} \right)^2 \right. \]
\[\cdot \frac{1}{(1 + \delta_{\nu_0} + \delta_{\nu_0}) \phi_0 d_0 k_{nm}^2 S_{\nu_\nu_0}^r \tau_{nm}} \].
(69)

Thus (64) and (69) provide a perturbational approximation of the resonance frequencies of the wraparound and the cylindrical-rectangular cavity, respectively.

V. NUMERICAL RESULTS

The resonance in wraparound and cylindrical-rectangular microstrip patch resonators is presented using two different approaches: Galerkin’s method (GM) and the perturbation approach (PA).

In applying Galerkin’s method and evaluating the matrix elements \(\{Q_{r_0, nm}\} \) given by (39) or (40), the path of integration in the complex \(k_r \) plane has to be defined. Since the resonance frequencies are complex due to the radiation loss, the branch point and pole singularities can move below the real axis of the complex \(k_r \) plane. Therefore, the integration path is deformed below the real axis so that it does not cross the migration path of the singularities [9], [13].

Numerical results presented in this paper show the real and imaginary parts of the resonance frequencies for the
wraparound and cylindrical-rectangular microstrip patches. The quality factor and the fractional bandwidth can be directly computed using the following expressions [14]:

\[Q = \frac{\omega'}{2\omega''} \]

\[\text{B.W.} = \frac{1}{Q} \]

where \(\omega' \) and \(\omega'' \) are the real part and the imaginary part of the resonance frequency, respectively.

In Fig. 2(a) and (b), the real and imaginary parts of the normalized resonance frequency of the TE_{01} mode for the wraparound resonator are displayed as a function of \(h/d_0 \). The normalization is with respect to \(\omega_1 \) of the magnetic-wall cavity. In the calculation using Galerkin's method, the basis functions with \(n = -1, 0, 1 \) and \(m = 0, 1, 2 \) are employed. Basis functions without edge condition have been used, and the computed results for the resonance frequency are found to differ by at most 0.3 percent. The results using the perturbation approach and Galerkin's method are shown to be asymptotic to each other for a thin dielectric layer.

Fig. 3(a) and (b) shows the real and imaginary parts of the complex resonance frequencies of the HE_{10} mode for the wraparound resonator for a substrate with a dielectric constant of 2.3. Fig. 4(a) and (b) shows the real and imaginary parts of the complex resonance frequencies of
the HE_{11} mode for the wraparound resonator for a substrate with a dielectric constant of 2.3.

For the cylindrical-rectangular resonators, basis functions with \(m = 0, 1, 2 \) and \(n = 0, 1, 2 \) are employed in Galerkin's method. Eleven terms for the summation over \(r \) in (40), (66), and (67) are found to be sufficient to obtain convergent results.

Fig. 5(a) and (b) shows the resonance frequencies of the HE_{01} mode of the cylindrical rectangular microstrip resonator using a dielectric constant of 2.3. It is also found that the results using basis functions without edge singularity differ from that with edge singularity by at most 0.5 percent.

In Fig. 6, a comparison of the imaginary parts of the resonance frequency for three different modes of the wraparound patch is displayed. Results indicate that the TE_{01} mode and the HE_{11} mode are the efficient radiating modes, having about the same radiating loss, and that the HE_{10} mode is more appropriate for resonator applications.

In Fig. 7, a comparison of the imaginary parts of the resonance frequency for three different modes of the cylindrical-rectangular patch is displayed. Results indicate that the HE_{01} mode is the most efficient radiating mode among these three modes, and that the HE_{10} mode is more appropriate for resonator applications. The radiation loss of the HE_{10} mode of the cylindrical-rectangular patch is
larger than that of the \(HE_{10} \) mode of the wraparound patch.

VI. CONCLUSIONS

A rigorous analysis of the resonance frequency problem of both the cylindrical-rectangular and the wraparound microstrip structure is presented using two different methods: an integral equation formulation and a perturbation approach. Using Galerkin's method in solving the integral equations, the complex resonance frequencies are studied and their accuracy of the results. Furthermore, it is shown that the \(HE_{10} \) modes of the cylindrical-rectangular and wraparound patches are more appropriate for resonator applications. The \(HE_{01} \) and \(TE_{01} \) modes of the cylindrical-rectangular and wraparound patches, respectively, are efficient radiating modes.

REFERENCES

Sami M. Ali (M’79–SM’86) was born in Egypt on December 7, 1938. He received the B.S. degree from the Military Technical College, Cairo, Egypt, in 1965, and the Ph.D. degree from the Technical University of Prague, Prague, Czechoslovakia, in 1975, both in electrical engineering. He joined the Electrical Engineering Department, Military Technical College, Cairo, in 1975. In 1985, he became a Professor and head of the Basic Electrical Engineering Department there. From 1981 to 1982 he was a visiting scientist at the Research Laboratory of Electronics, MIT, Cambridge, MA. Since 1987, he has again been a visiting scientist there. His current research interests deal with microwave integrated circuits and microstrip antenna applications.

Jean-Fu Kiang was born in Taipei, Taiwan, R.O.C., on February 2, 1957. He received the B.S. and M.S. degrees in electrical engineering from National Taiwan University in 1979 and 1981, respectively. In 1983, he became a research and teaching assistant in the Department of Electrical Engineering and Computer Science at M.I.T., where he obtained the M.S. and Ph.D. degrees in 1985 and March 1989, respectively.

Since then, he has been working at IBM Research, Yorktown Heights, N.Y. His research interests are electromagnetic theory and applications and numerical analysis.

Dr. Kiang is a member of Sigma Xi.

Tarek M. Habashy (S’79–M’83) was born in Cairo, Egypt. He received the B.Sc. degree from Cairo University, Egypt, and the M.Sc. and Ph.D. degrees from the Massachusetts Institute of Technology, Cambridge, MA, in 1976, 1980, and 1983, respectively, all in electrical engineering. During the academic year 1982–1983, he was a Postdoctoral Research Associate in the Department of Electrical Engineering and Computer Science at MIT. Since September 1983, he has been with Schlumberger-Doll Research, Ridgefield, CT, as a member of the professional staff and is now the program leader of the Applied Electromagnetics Program, conducting research on inverse scattering and electromagnetic well-logging techniques.

Dr. Habashy currently serves as a member of the editorial board of the Journal of Electromagnetic Waves and Applications (JEWA). He is a member of AGU and Commission B of URSI.

Jin Au Kong (S’65–M’69–SM’74–F’85) is Professor of Electrical Engineering, Chairman of Area IV on Energy and Electromagnetic Systems in the Department of Electrical Engineering and Computer Science, and Director of the Center for Electromagnetic Theory and Applications (CETA) in the Research Laboratory of Electronics (RLE) at the Massachusetts Institute of Technology, Cambridge, MA.

During the years 1977–1980 he served the United Nations as a High-Level Consultant to the Under-Secretary-General on science and technology, and as an Inter-

His research interest is in the area of electromagnetic wave theory and applications. He has published five books and over 200 refereed journal articles and conference papers and has supervised over 90 theses. He has been reviewer for numerous journals, government organizations, and book companies. He is the Editor for the Wiley Series in Remote Sensing, the Editor-in-Chief of the Journal of Electromagnetic Waves and Applications (JEEWA), and the Chief Editor for the Elsevier book series on Progress in Electromagnetics Research (PIER).