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Resonance in Cylindrical-Rectangular and 
Wrap around Micros trip Structures 
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Abstract -A rigorous analysis of the resonance frequency problem of 
both the cylindrical-rectangular and the wraparound microstrip structure is 
presented. The problem is formulated in terms of a set of vector integral 
equations. Using Galerkin’s method to solve the integral equations, the 
complex resonance frequencies are studied with sinusoidal basis functions 
which incorporate the edge singularity. Furthermore, the complex reso- 
nance frequencies are computed using a perturbation approach. Modes 
suitable for resonator or antenna applications are investigated. 

I. INTRODUCTION 
YLINDRICAL microstrip structures are important C in many applications where they can be flush- 

mounted on curved surfaces such as space vehicles, mis-  
siles, and boosters [l]. The microstrip antenna elements 
that are commonly used on these surfaces are of either the 
wraparound or the cylindrical-rectangular type. 

The resonance frequencies of microstrip patches placed 
on planar structures have been studied extensively [2]-[9]. 
On the other hand, the resonance frequencies of microstrip 
patches placed on curved surfaces have attracted less at- 
tention. The resonance frequencies of cylindrical-rectan- 
gular microstrip patch were calculated using a magnetic 
wall cavity model [lo], thus ignoring the fringing field 
effects and the radiation loss. In such an analysis, the 
resonance frequencies obtained are purely real, thus limit- 
ing the validity of the obtained results. In [ll] the mi- 
crostrip antennas on cylindrical structures were consid- 
ered, but no useful results for the resonance problem have 
been presented. 

In this paper, we rigorously analyze the resonance fre- 
quency problem of both the cylindrical-rectangular and 
the wraparound structure using a full-wave approach. The 
formulation leads to a set of vector integral equations for 
the current distribution on the conducting patches. This 
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Geometrical configuration of (a) a cylindrical-rectangular mi- 
crostrip patch and (b) a wraparound microstrip patch. 

Fig. 1. 

set of vector integral equations is then solved using 
Galerlun’s method. Two different sets of basis functions 
are used to expand the current distribution, one of whch 
takes into account the edge singularity condition. The 
resulting nonlinear eigenvalue equation is then solved nu- 
merically. Both the real and the imaginary part of the 
complex resonance frequencies are computed as functions 
of the dielectric substrate thckness. To ascertain the re- 
sults obtained from the Galerlun method, a perturbation 
approach based on the single-mode approximation is also 
used to compute the complex resonance frequencies of the 
cylindrical-rectangular and wraparound resonators. Dif- 
ferent plots for the real and imaginary parts of the reso- 
nance frequencies of TEol, HE,,, HE,,, and HE,, are 
presented. 

11. VECTOR INTEGRAL EQUATION FORMULATION 
The geometry of the problem is shown in Fig. 1. An 

infinitely long metallic cylinder of radius a is covered with 
a dielectric substrate (region 1) of outer radius b, electric 
permittivity c,, and magnetic permeability po.  Region 2 is 
free space with parameters c 2  and p,. A metallic patch is 
printed on the surface of the dielectric substrate. The 
metallic cylinder and the patch are assumed to be perfectly 
conducting. 
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For an arbitrary distribution of currents on the metallic 
patch which vary harmonically as e-'w', the z components 
of the electric and magnetic fields are given by 

and 

where the field spectral amplitudes Aie),  A Y ) ,  Bl'), Aih) ,  
Aih) ,  and Blh) are functions of the harmonic order n and 
the spectral variable k ,  and 

k: - k:P = k 2  = k2 - k 2  
2 2 2p '  

By imposing the boundary conditions on the tangential 
components of the electric field ( E ,  and E,) at the per- 
fectly conducting inner cylinder ( p  = a ) ,  we obtain the 
following relationships between the spectral amplitudes: 

( 2 4  

E,Ajh' (2b) 

Ble) = - v1Aie) 
Bjh) = - 

where 

€1 
€ r =  - 

€ 2  

We notice from (4) that cross-polarization occurs. With 
the exception of the n = 0 case, the normal modes are no 
longer pure TE or TM. These hybrid modes are commonly 
classified as HE,, or EH,,, which, respectively, tend to 
TE,, and TM,, for vanishingly t h n  substrate. 

Next we will derive an expression whch relates the 
current on the patch to the spectral amplitudes of the 
fields. To do so, we match the discontinuity in the tangen- 
tial components of the magnetic field ( H ,  and H , )  to the 
current on the patch. Then, applying the orthogonality 
relationships on the Fourier series expansion with respect 
to 9 and the Fourier transform with respect to z ,  and 
using (2) and (4), we obtain a relationship between the 
surface current and the field spectral amplitudes as fol- 
lows: 

J,(k,) = X , ( k 2 ) . a 2  ( 6 )  

where 

(7) 

By matching the tangential components of the electric field 
( E ,  and E,) across the boundary at p = b, we get 

and 

i w r ,  k n 1 
H,!1)(k2pb) 1 x11= - (  c r - 1 ) - 2 - - - r ( h )  

( 4 4  k2p k2p klpP B Aie)  = -A(') 
J f l ( k l p b )  90-91 

k a  x = - 1- ' P - r ( h )  

l 2  [ k2p P 1 Aih)  = 

where 

I€:')'( k l p b )  

J,,'(klpb) 
E o =  

90  - E ,  ( 5 ~ )  r ( h ) =  - 
Eo - E l  

E o  - 9; (5d) , ( e ) =  - 
9 0  - 9' 
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On the other hand, the Fourier transforms of the tan- 
gential components of the electric field at p = b are related 

the field spectral amplitudes in region 1 can be obtained as 

(20) to the field spectral amplitudes as follows: a1 = ~ , ( k 2 ) - J f l ( k 2 )  
- where 

E,,(',) = % ( k z ) * a 2  (12) A(') 
where '1 = [ J f I  ( k l p b )  (21) 

E,,(',) = (22) 

(234 

(14) y = - 1- - , . ( h )  ~ (23b) 

1 
= -1 1 n  d + e - ' " + / m  dze-'kz'Es(+,z) (13) y 11 1 k  n = - - 2 - [ 1 - - - ~ ( h ) ] -  k2p ff 

l 2  :[ k2p P 

A k2p kzpb  kl ,  P 90-711 277 - n  - m  

k a  1 

k n  s =--i- 
k2p k2,b 

imp0 

k2P 

1 1  

(234 

(234  
1 I'm2 k n 1 1 

s ---ff 

12 - 

s2, = 1 (154 
y -1)--L--- 

A bp klpb  P E o - E l  
s2, = 0. ( 1 5 4  22 

Thus from (6) and (12), we obtain the following relation- 
ship between the patch current and the electric field on the 
patch represented in the spectral domain: 

where A is given by (19). 
= b on 

the tangential components of the electric field E,(+, z )  
and on the current density J ( + , z ) ,  we obtain a set of 
vector integral equations given by 

Imposing the mixed boundary conditions at 

(16) - Es , (k , )  = T , ( k , ) - J , ( k , )  
where Fn(k,)  can be obtained from (10) and (15) as 1 "  m 
follows: E,( +, z )  = effl+/ - m  d k , e f k ~ z ~ f l (  k , ) . J n (  k , )  = 0 

n = - m  

(17) on the patch (24) rll r 1 2  

l M  

277 00 
J( +, z )  = - dkZe"z2J,,( k , )  = 0 

n = - -  

outside the patch. (25) 

The next step is to solve this set of vector integral 
equations using the Galerkin method. 

111. GALERKIN'S METHOD 

1 k ,  n k2p ff r = r  =--I- 
A k Z p  k2,b [i - 12 21 Br("]  Now we solve the set of dual integral equations (24) and 

(25) by using Galerkin's method. We expand the current 
J(+ ,  z )  in terms of a set of basis functions which is 
complete over the support of the patch: 

J ( + ,  z )  = z ) . A , ,  on the patch 

(18b) 

- (W 
n ,  m - 

and A is the determinant of x,( k , ) ,  given by = O  outside the patch. 

(26) 
ff - , , k Z . , ( e )  1 - - - , . (h)  

k2P The spectral components of this current distribution are 
A=5[{  k l p  } (  i:i } given by 

2 k2' 1 7 T  

+ ( e , - l )  -[$)2( kIpk2, & j 2 ; r ( " ) ] .  (19) J,( k , )  = - 277 1 - n  d+ e - ' r+ /dn  ~ dn dze-'kz'J( 4, z )  

- 

Note that the matrix T, (k , )  is symmetric (T21= r12), 
which is a consequence of reciprocity. Using (4) and (6), 
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where 

Substituting (27) into (24), we obtain 
- - 00 u 

dk, eik='Fr( k , )  * 1 c,flm( k , )  .Af lm = 0 
n , m  

c e y ,  
r = - u  

on the patch. (29) 

Next, the above equation is tested by the same set of 
basis functions that was used in the expansion of &e patch 
current. This is done by premultiplying (29) by z )  
and integrating over the patch area. Thus we get 

n . m  

where 

Nontrivial solutions can exist if the determinant of (30) 
vanishes, that is, 

This is the eigenvalue equation for the cylindrical mi- 
crostrip resonator. The roots of this equation are complex 
numbers, indicating that the structure has complex reso- 
nance frequencies. The imaginary part of the complex 
resonance frequencies accounts for the radiation loss. 

Now, we apply the above formulation to find the reso- 
nance frequencies of the cylindrical-rectangular microstrip 
patch shown in Fig. l(a) and the wraparound patch of 
Fig. l(b). 

In choosing the set of basis functions for the expansion 
of the patch current, one has to ensure that the normal 
component of the current vanishes at the edge whereas the 
tangential component satisfies the edge condition. Thus, 
for the wraparound patch, 

(31) where - T =S + G I T ,  and 

In this case we have 

For the cylindrical-rectangular patch, 

where - +o Q + < cp0 and zero otherwise, and 

1 
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In this case we have 
n r  

0 
1 
2 

- - 
T,,,,,( k , )  = - i n i m + '  

0 

1 { J o (  
- k , d o )  + ( -  1)"J0 

0 

- 
Using the explicit expressions of T , ( k , )  given by (18) 

together with (35) ,  equation (31) reduces to 
- - 
Qpq,, , , ,  = S,,,2[1+ (-1) q + m  1 Jo"'dk,?,f lq(k:)  

- - 
* r, ( k ,  1 . E ,  nm ( k ,  ) ( 39) 

for the wraparound patch. 

reduces to 
Similarly, from (18) together with (38), equation (31) 

- - 
Qpq,  ,, = [ 1 + ( - [ 1 + ( - 1) 

0 1 

magnetic field and the resonance frequency of the per- 
turbed cavity (i.e., the open cavity); (WT)i  is the unper- 
turbed time-averaged total energy stored in the cavity; and 
AS is the surface area of the sidewalls. In the unperturbed 
case, the field components are independent of p since the 
substrate thickness is assumed thin. Thus, the only existing 
modes are the TE,, modes, for which E, is the only 
nonvanishing electric field component. Thus (42) can be 
written as 

where Hzr and H+/ can be expressed in terms of the 1 =  
i u d k 2  f ~ T,f,,( k:) .E,,,( k,) (40) patch's current spectral amplitude as 

1 " o  00 
r = O  '+'rO 

for the cylindrical-rectangular patch. HZf(p,+,z)=- elr+/ d k , e i k ~ ' R : , ( p , k , )  
25, ,=-* -30 

Iv. PERTURBATION FORMULA FOR THE 
RESONANCE FREQUENCIES 

1 "  30 

H + , ( p , @ ,  z )  = - elr"/ d k z e I k W + , ( p ,  k , )  In the limit of a thin substrate, the resonance frequen- 
cies approach that of the magnetic-wall cavity, and a 
perturbation approach can be used to calculate the reso- 
nance frequencies. In this limit, the cylindrical microstrip 
structure can be viewed as a perturbation of a cylindrical 
resonator with perfectly magnetic sidewalls. The resonance 
frequency shift of this perturbed magnetic wall cavity 
resonator can be computed as [4], [12] 

2 r  r = - " o  - w  

. ;( k, ) Fr ( k, ) . J, ( k, ) (45b) 
where 

(46) 

L = - i / LsdS ; . (E , *  x H / )  

P T > ,  = p / / /  d W 7 l 2  (43) -- 

(42) 
iwcl 

and 1 F ( k , ) = [ T  - ",; 
k b  

where E, and w, are the electric field and the resonance - 

frequency of the unperturbed cavity; Hr and wf are the and F ( k , )  is given by (22). 

(47) 

(48) 
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Let us consider the perturbation of a TE,, mode whose The unperturbed time-averaged total energy stored in 
the cylindrical-rectangular cavity can be represented by 
the following expression: 

unperturbed resonance frequency is U,, given by 

for the wraparound patch, and 

for the cylindrical-rectangular patch. 
The difference between (49) and (50) when +o = m is due 

to the different boundary conditions satisfied by the cur- 
rent at the edge of the patches. The current J+ has to 
vanish at + = $ J ~  for tthe rectangular cylindrical patch, 
whch is not the case for the wraparound patch. 

For this mode of the wraparound patch, the unper- 
turbed electric field is given by 

and the patch current is given by 

where 

r i n 1  r i n 1  

In both the wraparound and the cylindrical-rectangular 
case, the Fourier transform of the patch's current in the 
unperturbed state is given by 

In the limit when h / a  -+ 0, the patch current can be 
approximated by its value in the unperturbed state and 
hence 

J , ( k , )  = p ( k , ) .  ( 5 8 )  

Thus, in the thin substrate limit, using (51), approximate 
expressions for the magnetic field components H,, and 
H+, can be obtained. 

For the wraparound patch, using (44) we can get 

-- 

T n m = ~ ~ ~ ~ [  6 J. (52b) where 

The unperturbed time-averaged total energy stored in 
the wraparound cavity can be obtained as 

1 1 --- (w,); z maclIEnmIz(l+ 'rn,)h'O (53) - 
k1,a J,(k,,a) 

where h = b - a. 

electric field is given by 
For the cylindrical-rectangular patch, the unperturbed 

It can be easily shown that 

1 

(54) 

and the patch current has the form 

where 
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(64) 
For the cylindrical-rectangular patch, using (50) we obtain 

where 

. dk,  sin ( - k , d o )  R&( k , )  

and 

where we have employed the symmetrical properties of the 
integrands. 

1::::: 1.02 

0.90 I I I 1 1 I I I 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 

Finally, we get the perturbational expression for the 
resonance frequency of the cylindrical-rectangular cavity 
as 

Fig. 2. (a) Real part of the normalized resonant frequency of a 
wraparound microstrip patch: €1 = 2.3~0, a = 20 cm, do = 4 cm, TEOI 
mode,-- 0 --(G~I)--A--(PA). (b) Imaginary part of the 
normalized resonant frequency of a wraparound microstrip patch: 
cl = 2.3c0, a = 20 cm, do = 4 cm, TEol mode,---.--(GM), 
-_ A - -(PA). 

Thus (64) and (69) provide a perturbational approxima- 
tion of the resonance frequencies of the wraparound and 
the cylindrical-rectangular cavity, respectively. 

V. NUMERICAL RESULTS 
The resonance in wraparound and cylindrical-rectangu- 

lar microstrip patch resonators is presented using two 
different approaches: Galerkin's method (GM) and the 
perturbation approach (PA). 

In applying salerkin's method and evaluating the ma- 
trix elements (Qpq,nml given by (39) or (40), the path of 
integration in the complex k ,  plane has to be defined. 
Since the resonance frequencies are complex due to the 
radiation loss, the branch point and pole singularities can 
move below the real axis of the complex k ,  plane. There- 
fore, the integration path is deformed below the real axis 
so that it does not cross the migration path of the singular- 
ities [9], [13]. 

Numerical results presented in this paper show the real 
and imaginary parts of the resonance frequencies for the 

- 
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h/do 
(b) 

Fig. 3. (a) Real part of the normalized resonant frequency of a 
wraparound microstrip patch: c, = 2.3c0, a = 20 cm, d ,  = 4 cm, HE,, 
mode,-- ~--(GM),---a---(PA). (b) Imaginary part of the 
normalized resonant frequency of a wraparound microstrip patch: 
c1 =2.3c,, u = 2 0  cm, d , = 4  cm, HE,, mode,---.--(GM), 
_ _  A - -(PA). 

wraparound and cylindrical-rectangular microstrip 
patches. The quality factor and the fractional bandwidth 
can be directly computed using the following expressions 
[14]: 

0’ 1 
Q = -  B.W. = - 

where 0‘ and w” are the real part and the imaginary part 
of the resonance frequency, respectively. 

In Fig. 2(a) and (b), the real and imaginary parts of the 
normalized resonance frequency of the TE,, mode for the 
wraparound resonator are displayed as a function of h /do .  
The normalization is with respect to wi of the magnetic-wall 
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-35 1 
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0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.i6 

h/do 

(b) 

Fig. 4. (a) Real part of the normalized resonant frequency of a 
wraparound microstrip patch: c, = 2.3c,, a = 20 cm, d ,  = 4 cm, HE,, 
mode,-- 0 --(GM),--A--(PA). (b) Imaginary part of the 
normalized resonant frequency of a wraparound microstrip patch: 
cl = 2 . 3 ~ ~ .  a = 20 cm, do = 4 cm, HE,, mode,-- o--(GM), 
_- A - -(PA). 

cavity. In the calculation using Galerkin’s method, the 
basis functions with n = - 1, 0, 1 and rn = 0,1,2 are em- 
ployed. Basis functions without edge condition have been 
used, and the computed results for the resonance fre- 
quency are found to differ by at most 0.3 percent. The 
results using the perturbation approach and Galerkin’s 
method are shown to be asymptotic to each other for a 
thin dielectric layer. 

Fig. 3(a) and (b) shows the real and imaginary parts of 
the complex resonance frequencies of the HE,, mode for 
the wraparound resonator for a substrate with a dielectric 
constant of 2.3. Fig. 4(a) and (b) shows the real and 
imaginary parts of the complex resonance frequencies of 
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Fig. 5 .  (a) Real part of the normalized resonant frequency of a cylindri- 
cal-rectangular microstrip patch: c, = 2 . 3 ~ ~ .  a = 20 cm, do = 4 cm, 

= 24", HE,, mode,-- ~--(GM)---a--(PA). (b) Imagi- 
nary part of the normalized resonant frequency of a cylindricd-rect- 
angular microstrip patch: c, = 2.3c,, a = 20 cm, d, = 4 cm, 

= 24". HE,, mode,-- ~--(GM),--A--(PA). 

the HE,, mode for the wraparound resonator for a sub- 
strate with a dielectric constant of 2.3. 

For the cylindrical-rectangular resonators, basis func- 
tions with m = 0,1,2 and n = 0,1,2 are employed in 
Galerkin's method. Eleven terms for the summation over r 
in (40), (66), and (67) are found to be sufficient to obtain 
convergent results. 

Fig. 5(a) and (b) shows the resonance frequencies of the 
HE,, mode of the cylindrical rectangular microstrip res- 
onator using a dielectric constant of 2.3. It is also found 
that the results using basis functions without edge singular- 
ity differ from that with edge singularity by at most 0.5 
percent. 
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Imaginary part of the normalized resonant frequency of a 
wraparound microstrip patch: c ,=2.3co,  a = 2 0  cm, d , = 4  cm, 
_- 0 --(GM). 

Fig. 6. 
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Fig. 7. Imaginary part of the normalized resonant frequency of a cylin- 
drical-rectangular microstrip patch: z, = 2.3 > Q, a = 20 cm, do = 4 
cm, = 24',-- 0 --(GM). 

In Fig. 6 ,  a comparison of the imagmary parts of the 
resonance frequency for three different modes of the 
wraparound patch is displayed. Results indicate that the 
TE,, mode and the HE,, mode are the efficient radiating 
modes, having about the same radiating loss, and that the 
HE,, mode is more appropriate for resonator applications. 

In Fig. 7, a comparison of the imaginary parts of the 
resonance frequency for three different modes of the cylin- 
drical-rectangular patch is displayed. Results indicate that 
the HE,, mode is the most efficient radiating mode among 
these three modes, and that the HE,, mode is more 
appropriate for resonator applications. The radiation loss 
of the HE,, mode of the cylindrical-rectangular patch is 
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larger than that of the HE,, mode of the wraparound 
patch. 

From 1981 to 1982 he was a visiting scientist at the Research Laboratory 
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integrated circuits and microstrip antenna applications. 

VI. CONCLUSIONS 
A rigorous analysis of the resonance frequency problem 

of both the cylindrical-rectangular and the wraparound 
microstrip structure is presented using two different meth- 
ods: an integral equation formulation and a perturbation 
approach. Using Galerlun’s method in solving the integral 
equations, the complex resonance frequencies are studied 
with sinusoidal basis functions. The edge singularity of the 
patch current is shown to have no significant effect on the 
accuracy of the results. Furthermore, it is shown that the 
HE,, modes of the cylindrical-rectangular and 
wraparound patches are more appropriate for resonator 
applications. The HE,, and TE,, modes of the cylindri- 
cal-rectangular and wraparound patches, respectively, are 
efficient radiating modes. 
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