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Propagation Properties of Striplines 
Periodically Loaded with 

Crossing Strips 
JEAN-FU KIANG, SAMI M. ALI, SENIOR MEMBER, IEEE, AND JIN AU KONG, FELLOW, IEEE 

Abstract -A rigorous dyadic Green’s function formulation in the spec- 
tral domain is used to study the dispersion characteristics of signal 
striplines in the presence of metallic crossing strips. 

A set of coupled vector integral equations for the current distribution on 
the conductors is derived. Galerkin’s method is then applied to derive the 
matrix eigenvalue equation for the propagation constant. The dispersion 
properties of the signal lines are studied for the two cases of finite and 
infinite length crossing strips. 

The effects of the structure dimensions on the passband and stopband 
characteristics are investigated. For crossing strips of finite length, the 
stopband is mainly affected by the period, the crossing strip length, and the 
separation between the signal and the crossing strips. For crossing strips of 
infinite length carrying traveling waves, attenuation along the signal line 
exists over the whole frequency range of operation. 

I. INTRODUCTION 
N MICROELECTRONIC computer packaging, a prob- I lem of practical interest is the study of propagation 

characteristics of microstrip lines embedded in a layered 
medium in the presence of periodic crossing metallic strips. 

The analysis of striplines and finlines, with periodic 
stubs has been studied by Kitazawa and Mittra 111, where 
a technique based on the network-analytical formulation is 
used. A slow-wave coplanar waveguide on periodically 
doped semiconductor substrate has been carried out by 
Fukuoka and Itoh [2]. Gu and Kong [3] used a quasi-static 
approach to study single and coupled lines with capaci- 
tively loaded junctions. The propagation characteristics of 
signal lines in a mesh-plane environment has been pre- 
sented by Rubin [4]. More recently, the propagation char- 
acteristics of signal lines in the presence of periodically 
perforated ground plane was studied by Chan and Mittra 

An analysis of a width-modulated microstrip periodic 
structure using a quasi-static approach is presented in [6]. 
A hybrid spectral-domain analysis for similar periodic 
structures has been carried out in [7]. 

In this paper, a hybrid-mode analysis is used to study 
the propagation characteristics of striplines periodically 
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loaded with crossing metallic strips. The periodic crossing 
strips are assumed to have finite or infinite length. A 
dyadic Green’s function formulation for the periodically 
loaded structure is derived. A coupled set of vector integral 
equations for the surface current distribution is formu- 
lated. Galerkin’s method is then applied to transform the 
resulting set of integral equations for the current distribu- 
tion into a determinantal equation from which the disper- 
sion characteristics are obtained. 

The propagation properties of one signal line and two 
coupled lines in the presence of periodic crossing strips are 
investigated. Numerical results for the passband and stop- 
band characteristics are presented. 

11. DYADIC GREEN’S FUNCTION FORMULATION 
The geometrical configuration of the problem is shown 

in Fig. 1, where M signal striplines located at z = z,, 
m = 1,2,. . . , M ,  are periodically loaded with crossing 
metallic strips having a period p .  The crossing strips are of 
width w, and length L,, and are located in the plane 
z = z ~ + ~ .  Both the signal lines and the crossing strips are 
embedded in the same layer ( I )  having parameters ( E / ,  po). 

In general, the electric field can be expressed in terms of 
the dyadic Green’s function and the current distribution 
on the strip surfaces as [8] 

where c/,(F, r’) is the dyadic Green’s function when both 
the observation point r and the source point r’ are located 
in the Zth layer of the stratifield medium. For z > z’, 
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Fig. 1. Geometrical configuration of signal striplines periodically loaded with crossing metallic strips embedded in layer ( I )  
of a stratified medium. 

- - 

where 

z I  = z + d,, z; = z'+ d,, and 
k s  = i k ,  + j k ,  

k: = k t  + k: ks  = lksl 
i k y  - j k ,  

f i ( & k l z ) =  . 
kS 

rs = i x  + j y  r,' = id+ j y ' .  (3) 
In (2), R;Y and RFl are the reflection coefficients of 

the TM mode and the TE mode at the upper boundary of 
the Ith layer, and RT,h: and RF, are the reflection coeffi- 
cients of the TM mode and the TE mode at the lower 
boundary of the Ith layer. They can be obtained recur- 
sively as 
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where R:(,-l) and R:(,+,, are the Fresnel reflection coeffi- 
cients of the a mode across the interfaces at z = - d,-l 
and z = - d,, respectively. The explicit forms are 

( 5 )  

For our problem, only transverse currents J ,  having no 
z component exist; the transverse electric field (to z )  E,, in 
layer (I)  is thus given by 

E,,(?)  = i w c , j j s d r i ~ T ( r , . ( ) . J , ( r i ) d s '  ( 6 )  

where Gz(r, r') is the (2 X 2) transverse (to z )  part of the 
dyadic Green's function; it can be expressed in the k ,  
domain as 

- 

- 

where for z > z', 

z ,  z') 
i 

8?r2klz 
=- 

Floquet harmonic representation in the y direction as 

- 
where Gip(r,  r') is given by 

* g l ( k , ,  k y n ,  z ,  z') (10) 

where k,, = k,, + 2n?r/p, and k,, is the propagation con- 
stant of the dominant harmonic in the Floquet representa- 
tion. We assume that we have M signal striplines and one 
crossing strip within one period. Thus, J ,  can be expressed 
as 

J,(x, y ) ,  x ,  - w,/2 Q x Q x ,  + w,/2, 
z = z ,  

elsewhere. 
I o ,  (11) 

4 ( x ,  Y )  = 

Substituting (11) into (9), we have 
M + l  bo 

E , ~ ( ? )  = i0p,(2?r)2 eikyny 
m = l  , = - b o  

The electric field E,, given by (12) satisfies the boundary 
conditions at the interfaces between the dielectric layers of 
the stratified medium. Imposing the final boundary condi- 
tion that the tangential electric fields vanish on the metal- 
lic surfaces of the signal striplines and the crossing strips, 
we obtain a set of vector integral equations for the current 
distribution on all the metallic strips. Thus, we have 

m = l  n = - - 0 0  J - W  

*I,( k,, k,,) = 0,  x q  - wq/2 Q x Q x q  + wq/2, 

- p / 2 g y < p / 2 ,  z = z q ,  q = l ; * .  , M  (144 

M f l  f eik.vny (" dk,eikxxil(k,, k y n ,  Z ,  z,) 
m = l  n = - w  J - W  

.J,,(k,, k,,,) = 0 ,  - L,/2 x < Lc /2 ,  

- wc/2 Q y < WJ2, z = Z M + 1  (14b) 

where (14a) satisfies the boundary condition on the M 
The transverse electric field can be expressed using signal strips, and (14b) satisfies the-boundary condition on 
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the crossing strip. The task is to solve this set of vector 
integral equations using the moment method to get the 
dispersion relation. 

111. NUMERICAL SOLUTION FOR THE 
DISPERSION RELATION 

A. One Signal Stripline Loaded with Crossing Metallic Strips 
In this section, we study the case of one signal stripline 

in the presence of periodical crossing strips as shown in 
Fig. 2. The signal stripline and the crossing strips are 
located in a dielectric layer bounded by two ground planes 
and placed, respectively, at z = zl and z = z2.  

To apply the moment method, we choose an appropriate 
set of basis functions to represent the surface current 
J d X ,  Y )  and Y )  as 

N2 N2 

J 1 ( x ,  Y )  =' c a , f l J ( x ,  Y ) +  9 b , f 2 J ( x ,  
] = - N I  J =  - NI 

(154 
N3 N4 

J 2 ( x 9  y )  = ' c , f 3 ] ( x ,  Y ) +  9 d J f 4 , ( x ?  y )  
J = 1  J = o  

where Jl(x ,  y )  is the surface current on the signal stripline; 
J2(x,  y )  is the surface current on the crossing strip; a,, b,, 
c,, and d, are the expansion coefficients; and f l , (x,  y ) ,  
f2,(x,  y ) ,  f3,(x, y ) ,  and f4,(x, y )  are the basis functions. 
The explicit forms of the basis functions are as follows: 

f i , ( X ,  Y )  = P,(x,  W l ) e t k y j Y  (164 

f 2 , ( x ,  Y )  = To(x,  Wl)etkyJY (16b) 

f 3 , ( W )  = P,(x,L,)(P/2n)To(Y7wc) (164 

f 4 ,  ( x ,  Y )  = ( x ,  L,) Q(  Y 9 wC) ( 1 6 4  

where ( :/v) sin ( 2 j ~ t / v ) ,  
P , k  1)) = - q /2  d E d q /2  (174 

Q(E,q )  = - 4/2 d E d q / 2  0 7 b )  

elsewhere 

elsewhere 

elsewhere. 

The surface current on the signal stripline is basically of 
the traveling wave type. Due to the periodic loading, the 
basis functions on the signal stripline are chosen as a 
superposition of space harmonic modes. On the crossing 
strips, the surface current is basically of the standing wave 
type, and the phase variation along the y direction on the 
crossing strips can be neglected. 

Let p,(kx, q), Q ( k y n ,  q) ,  and q ( k x , q )  be the Fourier 
transforms of Pj(x,  q), Q ( y ,  q), and T,(x,  q), respectively; 

z 

a signal strip b crossing strip 
Fig. 2. Geometrical configuration of one signal stripline periodically 

loaded with crossing strips embedded in a one-layer medium. 

we have 

1 
= - [ J ~ ~ ~ , ~ / ~ - ~ ~ ~ + J ~ ~ ~ , ~ / ~ + ~ ~ ~ I  4 

= q ( - k,, 17) (184 

where J0(a)  is the Bessel function o! the zeroth order, 
f',(kx,q) is an odd function of k,, T,(kx,q) is an even 
function of k,, and Q(kyn,  q) is an even function of ky,. 
When k,q/2 approaches f j r ,  P,(k, ,q).  approaches 
+1/(4ni); when k,,q approaches f n, Q(ky,, q) ap- 
proaches 1/(4m). 

With these basis functions, the Fourier transform of the 
surface current &(kx,  k Y n )  can be derived as 

N2 

J;(kx7 k y , )  = ' c a,F1,(L k y , )  
/ = - N I  

N2 

+ 9  c b,F2,(k,Jyn) (194 

J;(L k",) = ' c c,4,(kx,  k y J +  9 c d,F4,(kx7 k y f l )  

(19b) 

J = - y  
N3 N4 

J = 1  J = o  
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where q J ( k x , k y n )  is the Fourier transform of f i J ( x ,  y ) ,  
i = 1,2,3,4. The explicit forms are 

F I J ( k X ' k y ? I )  = 6 J f l I ? , ( k X ,  w l )  (204 

' 2 J (  k X ,  k y n )  = ' J f l ' o ( k X ~  w l )  (20b) 

F 3 J ( k X ,  k y f l )  ='O(kyfl, w C ) F , ( k X ?  L C )  (20c) 

F 4 J ( k X > k y n )  = Q ( k y ? 1 3 w C ) < ( k X ? L C )  (20d) 

where aJ,, is the Kronecker delta function. Substituting 
(20) into (14), we have 

T '  
d x  

- x c  Y 2, 

W 

elkyny j--M a signal strip b crossing strip 
W n = - - M  Fig. 3 .  Geometrical configuration of two signal striplines periodically 

loaded with crossing strips embedded in a one-layer medium. I of the elements is 

N2 N2 

a J F I J ( k X '  k y f l ) +  9 b J F . J ( k X ,  k ) 'n)  
] = - N I  / = - N I  

00 where 

C eik-ynY/-m W dkxeikxxi;(kx,  kyn ,  z 2 ,  zl) z1 f o r r = 1 , 2  z1 for q = 1 , 2  
z2 for r = 3 , 4  zrn= { z2 for q = 3 , 4  

n = - w  

1 

(234  

The determinantal equation for the propagation con- 
stant k y ,  can be solved by setting the determinant of the 
coefficient matrix of (22) equal to zero: 

1 N4 

CjF3j(kx,kyf l )+9 C dJF4j(kx,kyn)  =o,  
;=l j = O  

- Lc/2  Q x Q Lc/2, 

- wC/2 < y < wC/2, z = z 2 .  (21b) 

Applying Galerkin's method, we choose 2e-rkykYPl(x, wl) 
( k  = - N,, * . . , N 2 )  and je-ikykYT,(x, w l )  ( k  = - N,, 
. - . , N 2 )  as testing functions for the signal stripline. Tak- 

ing the inner product with (21a), we obtain 2( N1 + N2 + 1) 
equations. Similarly, taking the inner product of .?f3i(x, y )  

we obtain another N3 + N4 + 1 equations. 

tion: 

( i=l , .  . . , N3) and jj4k(x, y )  ( k  = 0,. . e, N4) with (21b), 

After arrangement, we obtain the following matrix equa- 

Each entity Zj,"jq) in (22) is a submatrix; the explicit form 

det [ Z (  a, kyO)]  = 0. (26) 

B. Two Symmetrical Signal Striplines Loaded with 
Crossing Strips 

In this section, we consider the case where two identical 
signal striplines of width w1 are located symmetrically at 
(+ xc, zl) as shown in Fig. 3. 

For the even modes, Jrnx(x, y )  is an odd function of x ,  
and Jrny(x, y )  is an even function of x. Therefore, the 
surface currents can be expanded as 
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where the basis functions are 

j , ( , . ) (x ,  y )  = [ P , ( X  - x , ,  wl) + P , ( X  + x , ,  w,)] elk,y 

(284 

f2(/e)( x ,  y )  = [ T,( x - x , ,  w l )  + T,( x + x , ,  w , ) ]  erk,y 
(28b) 

f 3 y x 9  Y )  = P J ( X l  L , ) ( P / 2 4 T O ( Y , W C )  (28c) 

fd , ' ) (x ,  Y )  = T , ( x 9 L , ) Q ( ~ , w c ) -  ( 2 8 4  

Following the same procedure as in the case of one 
signal stripline by applying the Galerkin method, a deter- 
minantal equation similar to (26) is obtained. 

For the odd modes, J,,(x, y )  is an even function of x ,  
and Jm,(x,  y )  is an odd function of x .  Therefore, the 
surface currents are expanded as 

N2 N2 

J 1 ( x ,  y )  = ' a J f i ( / o ) ( X '  y > +  b J f 2 ( / o ) ( x ?  y )  
J = - y  J =  - 

(294 
N3 N4 

J 2 ( x ? y ) = 2  c J f $ Y ' ( x , y ) + 9  dJ fd ," ' (x , y )  (29b) 
/ = I  J = o  

where the basis functions are 

f,lP)( x ,  y )  = [ P,( x - x , ,  w l )  - P,( x + x , ,  w , ) ]  erkvJy 

f J : ) ( x ,  y )  = [ ~ ~ ( x - x , ,  ~ ~ ) - ~ ~ ( x + x , , w , ) ] e ~ ~ ~ ~ ~  

(304 

(30b) 

(304 

(304  

f31p')(x7 r) = q x 9  Lc)(P/2m)To(Y, w,) 

fidp)(x, Y )  = v J ( x 7  ~ ) Q ( Y ,  w,) 

where 

{r [ ( 2 j  - ~ ) ~ w v I / / ( v / ~ ) ~ -  t2  
q t ,  d = -17/2<t<q/2  (31b) 

elsewhere. 

Let q ( k , , q )  and q ( k , , q )  be the Fourier transform of 
V,( x ,  q )  and V,  ( x ,  7); then 

When kxq/2 approaches + ( j  - 1/2)7r, q ( k x ,  71) ap- 
proaches 1 /(4 m ). 

C. One Signal Stripline Loaded with Crossing Strips of 
Infinite Length 

In this section, we consider the case where one signal 
line is loaded by infinitely long crossing strips as shown in 
Fig. 2 with L, + 00. When the crossing strips are very long 
such that reflections from the ends can be neglected, we 
can assume traveling waves along it. So, we investigate the 
possibility of the existence of such a mode of operation 
and its effect on the propagation characteristics of the 
signal line. 

The surface current on the signal strip is of the same 
form as in the case discussed in subsection A of finite 
crossing strips. For the crossing strips, we choose traveling 
wave basis functions [9], [lo] and some local basis func- 
tions on the center to account for the effect of the presence 
of the signal line. Hence, the surface currents are expanded 
as 

where the basis functions f / j ) ( x ,  y )  and f j j ) ( x ,  y )  are the 
same as f l , ( x ,  y )  and f 2 j ( x ,  y ) ,  respectively. The func- 
tional forms of f3(:)(x, y )  and fI ,!)(x,  y )  are 

where k, is assumed to be the propagation constant of a 
single crossing strip of infinite length in the absence of the 
signal line, R j ( x ,  h )  is the local basis function with width 
2h, and S , ( t )  is the traveling wave basis function with 
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a 4 , ( k x )  = { 

travelliw wave basis function local basis function 

' k V ) ( k x ,  h ) ,  

21?-5"(kx, h ) ,  

k , [ n ( k , 2 - k , Z ) ] - 1 [ - ( - l ) m  

j = O  

l < j < N 4 - l  

~ c o s [ k p ( r n + 1 / 2 ) / k e ]  

+ i( - 1) 
~ c o s ( r n ~ r ~ , / ~ , ) + c o s ( ~ , n / ~ ~ , ) -  i ] ,  

\ j =  N4 

where 

' 2ky7) (kX,  h ) ,  

k ,  [ 77( k,2 - k ; ) ]  -'[ ( -  Q r n  

1 6  j < N 3 - l  

.isin[k,r(rn +1/2)/k ,]  (394 

+ (- 1) sin ( rnak, /k , )  
- i sin ( kX77/2k,)], 

Jzv 

Fig. 4. The basis functions used for infinitely long crossing strips, 
m = 4, N3 = N4 = 6.  

m / 2  periods as shown in Fig. 4. The explicit forms are 
sink,(h - Ix - jh()/sink,h, 

elsewhere 
( j - l ) h g x <  ( j + l ) h  (354 R , ( x ,  h )  = 

(35b) 
sin[, O g t ' g m l r  

It will be shown that only a finite number of periods of the 
traveling wave basis functions are sufficient for the conver- 
gence of the solution. Any increase in the number of 
periods of these basis functions will have a neghgible effect 
on the ymerical results. 

Let R,(k , ,  w )  and Sm(k,) be the Fourier transform of 
R , ( x ,  h )  and Sm([) ;  then 

elsewhere. s m ( [ )  = { o, 

\ j = N3 

(36a) 

' 1 .  (36b) 

When the value of k ,  approaches f k,, k J ( k x ,  h )  and 

tively. 

surface current &(k,, kYn)  can be derived as 

where f i y ) ( k x ,  h )  and I?S")(k,, h )  are the even part and 
the odd part of k , ( k X ,  h ) ,  respectively. It is observed that 

Applying the Galerkin procedure with the following 

kee-fkxJh(cosk,h -cosk,h) 
Irsink,h(k:-k:) k , ( k , , h )  = - 

[ (- 1) m e - l ( m n / k , ) k x  - A"& k, )  = - A",,(k,), and A"4,(- k, )  = 24,(kx)- 

wl,(x, y )  = P,(x, wl)e-fkyiY 

w , , (x ,  y )  =T,(x, wl)e-fkviY 

w4,(x, Y )  = R,(x, h ) Q ( v , w c )  

testing functions: 

gm(k,) approach (h/277)e ' l k < J h  and T im/4ke,  respec- (404 

(40b) With these basis functions, the Fourier transform of the 

N2 w 3 , k  Y )  = R,(x, h) (P /2dTo( .Y ,  wc) (404 

W,? kY")  = .? , = - y  c ql(;)(kx? kyrJ (404  
N2 

+ 9 c bjF2:"(kx, k."J (37a) the matrix eigenvalue equation is obtained. 
j = - N ,  

N. 
IV. NUMERICAL RESULTS AND DISCUSSION 

- J  

By utilizing the symmetry properties of the dyadic 
Green's function, the basis functions, and the testing func- 
tions, each matrix element in (22) can be reduced to an 
integral over 0 < k ,  < 00. In computing the integrals (23) 
numerically, the path of integration in the complex k ,  

m,, k y n )  = 2 c c , q ; ) ( k x 7  k y , )  
/ = I  

N4 

J = o  
+ 9 ~,FJ;)( k, ,  k y n )  (37b) 
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Fig. 5 .  Dispersion relation of one signal stripline periodically loaded 
with crossing strips of finite length, < , = l o ,  tl = t , = t 3 = 0 . 2  mm, 
p = O S m m ,  w , = w c = 0 . 1 2 5 m m ,  L C = 2 . 3 m m ,  N l = l ,  N 2 = 0 ,  N 3 = 4 ,  
N4 = 3, X : Nl = 1, N2 = 0, N3 = 6 ,  N4 = 5 ,  0”: upper bound of the 
first stopband, wL: lower bound of the first stopband. 

first higher order 
waveguide mode 

-4 -2 0 2 4 

Fig. 6. Interaction of Floquet modes with TE, (TM,) parallel-plate 
waveguide mode, k = 0 6 ,  d = t ,  + t2 + t3.  

plane is deformed below the real axis to avoid the poles 
corresponding to the waveguide modes [ll]. 

Fig. 5 shows the dispersion relation for a single signal 
line with crossing strips. Numerical computations were 
performed with two different numbers of basis functions, 
and the results were found to be the same up to three 
decimal points. The basis functions used are given by (15). 
For L, = 2.3 mm, the first stopband occurs in the fre- 
quency range when 0.3162 < kop/lr  < 0.3203. 

Fig. 6 shows the interaction of an n = - 1 Floquet mode 
with a TE, (TM,) parallel-plate waveguide mode, For 
frequencies above f*, k, starts to have a large imaginary 
part, giving rise to a higher order stopband. However, we 
are interested in operating frequencies where k, is real 
within the passbands below f*, and thus the region above 
f* is of no practical importance. 

Next, the effects of crossing strip length L, on the lower 
and upper frequency bounds of the stopband are investi- 
gated. The normalized frequency for the two bounds of the 

0.33 1 
3 0.32 
Y 

0.31 1 
0.30 1 
0.28 0.29 l-----J 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

LC(-) 
(a) 

0.35 1 

0.33 0.34 I 
\ 3 0.32 
Y 

0.29 :::I 
\ 

0.28 ‘ 1 I I I I I I 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Lc(-) 
(b) 

Fig. 7. (a) The effects of L, on the upper and lower bounds of the 
stopband, c, = 10, t ,  = r2 = t j  = 0.2 mm, p = 0.5 rnm, w, = w, = 
0.125 mm, Nl = 1, N2 = 0, N3 = 5 ,  N4 = 4.  (b) The effects of L, on the 
upper and lower bounds of the stopband, e r  = 10, tl = t2 = t3 = 0.2 mm, 
p = l . O m m ,  w 1 = w , = 0 . 1 2 5 m m ,  N , = l ,  N 2 = 0 ,  N 3 = 5 ,  N4=4. 

stopband is presented as a function of L,. The result for 
p = 0.5 mm is plotted in Fig. 7(a). It is observed that both 
bounds of the stopband are very sensitive to the crossing 
strip length L,. This behavior is repeated when L, changes 
by an approximately integral number of wavelengths. This 
can be explained in the following way: The crossing strips 
behave like open-circuited stubs periodically loading the 
signal line. The crossing strips will have capacitive or 
inductive behavior depending on its length. At a certain 
length of crossing strips, the behavior switches from being 
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4 320 
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- 
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inductive (or capacitive) to capacitive (or inductive). This 
switching occurs at L, = nh,, where A, is the wavelength 
in the dielectric medium calculated at the center frequency. 
At these lengths, the stopbands become very wide. 

In Fig. 7(b), the normalized frequency of the bounds of 
the stopband is plotted as a function of L, with the period 
p =1.0 mm. Behavior similar to that in Fig. 7(a) is ob- 
served, but the values of L, at which the switching of 
frequency occurs are doubled. 

In Fig. 8, the effects of the crossing strip width w, on the 
stopband frequency bounds are investigated. The normal- 
ized frequency at the bounds of the stopband is presented 
for L, = 2.7 mm. As the crossing strip width becomes 
smaller, the stopband becomes narrower. 

In Fig. 9, we investigate the effect of the separations t ,  
and t 3  on the stopband while keeping t ,  constant. It is 
observed that the stopband becomes smaller when the 
separation is decreased, and when the separation is larger 
than 0.2 mm, the upper frequency bound of the stopband 
reaches a constant. 

In Fig. 10, the bounds of the first stopband are plotted 
as a function of the distance t ,  while fixing the separation 
t ,  = t ,  = constant. It is observed that for L,=l.O mm, the 
separation t ,  affects the upper bound of the first stopband 
significantly. 

Fig. 11 shows the case of two coupled signal striplines in 
the presence of periodic crossing strips of finite length. 
The frequency bounds of the stopband are presented in 
Fig. ll(a) and (b) for the even mode and the odd mode, 
respectively, with p = 0.5 mm and L,  = 1.7 mm. The basis 
functions used are given by (27) and (29) for the even and 
the odd mode, respectively. When the separation becomes 
larger than L,, the stopband width of the even mode 
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Fig. 10. The effects of t2  on the upper and lower bounds of the 
stopband, tr =lo, tl = t j  = 0.2 mm, p = 0.5 mm, w1 = W~ = 0.125 mm, 
L,=I.Omm, N,=l, N , = O ,  N3=2, N4=l. 

approaches zero, but the stopband width of the odd mode 
is still finite. This is because the odd mode has stronger 
coupling between two signal lines than the even mode. 

Fig. 12 shows the dispersion relation of a single stripline 
in the presence of crossing strips of infinite length. The 
basis functions used are given by (33). We choose the 
traveling wave basis functions to have three periods. The 
results using seven periods are also shown for comparison, 
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flowing away from the signal stripline. This traveling wave 
surface current guides some power away from the signal 
line and hence reduces the guided power along the signal 
line. 

characteristic of periodic structures does not appear. The 
wavenumber k,, has a nonzero imaginary part over all 
frequencies. This is due to the power guided by the travel- 
ing wave along the crossing strips. Around k,, = n?r/p,  
the separation between two neighboring crossing strips is 

power carried by the crossing strips at these frequencies is 
very small because the current on the signal line has 
opposite phase on the two sides of the crossing strip. Also, 

- 

In this case, the passband-stopband behavior which is - - W L  

- - 

- - n X / 2 ,  where X is the wavelength of the guided mode. The 
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Fig. 11. (a) The effects of x ,  on the upper and lower bounds of the 
stopband, for two signal striplines, cr = 10, tl = t2 = t j  = 0.2 rnm, p = 
0.5 mrn, w1 = w, = 0.125 rnm, L, =1.7 mrn, NI =1, N2 = 0, N, = 3, 
N4 = 2. (b) The effects of x ,  on the upper and lower bounds of the 
stopband, for two signal striplines, E ,  = 10, tl = t2 = t, = 0.2 rnm, p = 

0.5 mm, wi=w,=0.125 mm, L,=1.7 rnm, N i = l ,  N 2 = 0 ,  N , = 3 ,  
N4 = 2. 

and it is found that the traveling wave basis function of 
three periods is sufficient. The imaginary part of the 
propagation constant is approximately a linear function of 
frequency, and the magnitude can be as high as 1 percent 
of the real part. This is due to the assumption that the 
surface current along the crossing strips is a traveling 
wave. Part of the power along the signal line couples to the 
crossing strips, exciting a traveling wave surface current 

V. CONCLUSIONS 
A rigorous dyadic Green’s function formulation for the 

periodic structure is derived to study the dispersion prop- 
erties of single and coupled signal lines periodically loaded 
with crossing strips. The passband and stopband character- 
istics are investigated when crossing strips are of finite or 
infinite length. 

For crossing strips of finite length, the stopband proper- 
ties are mainly affected by the period, the length of cross- 
ing strips, and the separation between the signal and 
crossing strips. Also, at higher frequencies, hlgher order 
stopbands occur. For crossing strips of infinite length, 
attenuation along the signal line exists over the whole 
frequency range due to the power guided by the traveling 
wave along crossing strips. 
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