
Computer-Aided VLSI System Design

EC Lab : Design Verification (Fall, Nov. 2010)
==

Motivation and Importance of Equivalence Checking

As a golden model is constructed, we prefer to check the equivalence between golden model

and the revised model, which may be a modification of golden model and more probable to be a

different abstraction level design from design flow synthesis, instead of running simulation on it.

This prevent from contiguously simulation on these designs throughout the design flow, which may

cost extremely large time and delay the design closure. Therefore, we may expect to perform

equivalence checking between design versions throughout the design flow to enhance the efficiency

of consistency check instead of simulation on every revised version.

Main Objectives of this Lab :

 To understand how to use Conformal LEC to formally check the equivalence between your

VLSI designs in the design flow. This Lab includes :

 1. Check the equivalence between two VLSI designs in different abstraction levels.

 2. Find the reason of non-equivalence and fix the problem from LEC supplements.

Lab 1: RTL Verilog v.s. Synthesized Gate-Level Verilog Designs

Objectives :

1. Understanding LEC basic interface (modes) and command format.

 2. Setup environment for simple equivalence checking task.

 3. Run LEC in shell mode / script mode.

Related Files :

In this Lab, we intend to perform equivalence checking between Verilog designs from your

HW, which are written and generated by yourselves before. These mandatory files are listed here:

File Name Description

lcd_ctrl.v Your Verilog Code in HW2

lcd_ctrl.vg Your Synthesized Gate-Level Verilog in HW5

tsmc18.v TSMC Cell Library Verilog File

 In case you have little confidence to your HW designs, you can do this Lab with the designs in

~cvsd/CUR/Verify/LEC_Lab.tar.gz. But we strongly recommend you to use your own designs so

that you can see whether your design remains functionally correct after synthesis.

Note: If you don’t want to operate on GUI mode, you can type commands after LEC prompt instead.

For commands, you can refer to Command within the following descriptions.

Step 0. Generate a directory, named “LEC_Lab1” for all three files to put if it is not ready.

Linux Shell Command : mkdir LEC_Lab1

 cp <file> LEC_Lab1

Set current directory to LEC_Lab1.

Source LEC licence file : csh; source /usr/cadence/CIC/confrml.csh

Step 1. Start Cadence Conformal LEC from GUI mode.

Linux Shell Command : lec&

Don’t forget to start X-window before GUI mode.

Command-Line LEC: lec –nogui

Step 2. Setup Log File. (Optional)

LEC Command : set log file LEC_Lab1.log

Step 3. Read RTL Verilog design as Golden Model.

From the GUI window, click on the icon . Then “Read Design” dialog window

will pop out as shown below:

Double click your lcd_ctrl.v as golden design, press OK and leave.

Note: You can see some warning and information messages from LEC standard output,

and make sure your design has been read successfully.

Command: read design lcd_ctrl.v –golden

Step 4. Read Gate-Level Verilog design as Revised Model.

From the GUI window, click on the icon again. Then “Read Design” dialog

window will pop out as shown above.

Now, select your lcd_ctrl.vg as revised design, press OK and leave.

However, you may found some error message outputs from LEC RTL checker. What’s

the problem?!

Have you ever specified cell libraries instantiated in your gate-level design to LEC?!

Command: read des lcd_ctrl.vg –revised

Step 5. Read Verilog Library File for Gate-Level Revised Model.

From the GUI window, click on the icon . Then “Read Library” dialog window

will pop out as shown below:

Double click tsmc18.v as the library file, which must correspond to the library used in

synthesis before. Note that you can either read the library for Revised

Model only or for Both Models in this Lab. (Why?!)

Command: read library tsmc18.v –verilog –both

Step 6. Read Gate-Level Verilog design as Revised Model again.

As the library file has been read in, we may expect to successfully read in the

synthesized Verilog now. Please perform Step 4 again and your design should be read

successfully now.

Step 7. Modes in LEC:

LEC has two modes : Setup Mode and LEC Mode for enabling different operations:

1. Setup Mode :

Mainly for design / constraints / rename / black box setup before compare.

2. LEC Mode :

Compare mode for adding compare points and report compare results.

Some commands are available in both modes; you can type help to see all commands.

As all setup constraints has been applied, for this is a basic and simple Lab. Now we’re

going to change current mode from Setup to LEC for further compare:

Click on the icon at the right-top of the GUI window.

Command: set system mode lec

You can see LEC start automatically find compare points and makeup constraints from

setup mode specifications, and finally output the statistical information of mapped

points to the output window, as shown below.

Step 8. Add Compare Points:

We should tell LEC what are the points in both designs that we want to compare. In

general, we may specify all PO and DFF to be compared. However, you can manually

add or delete compare points for LEC on your purpose. In this Lab, we simply add all

PO and DFF as compare points.

Click Run Compare at the top function button list, and a compare window will pop

out as shown above.

Command: add compare points –all

Step 9. Compare:

For we’ve set up all indications to LEC currently, we are now starting to perform EC.

Press the compare icon in the GUI window to start compare.

Command: compare

For designs in our Lab is very small and simple, you may found LEC compare results

shown directly on the screen, as shown below:

Did you see any non-equivalent point?! What’s the message about?!

Step 10. Exit LEC.

As your result is equivalent, you’ve completely prove that your synthesis is sound and

the functionalities of synthesized design is the same as original Verilog.

Now, you can click on File Exit Yes to exit LEC forcedly.

Command: exit –f

What have you learnt from this Lab?!

What are the improvements of applying equivalence checking compared to repeated simulation

that you’ve found in this Lab?!

In case you’ve set the log file in Step 2, you can see all messages on your screen output in that file.

For script generation, you can click File Save Dofile, and all commands related to what you’ve

done will be stored in that dofile.

Command: save dofile LEC_Lab1.script

Next time you can simply run that script by File Do Dofile.

Command: dofile LEC_Lab1.script

If you want to run script only, you can also pass dofile as parameter for LEC in Step 1.

Linux Shell Command : lec -dofile LEC_Lab1.script& (GUI Mode)

 lec –nogui -dofile LEC_Lab1.script (SHELL Mode)

Lab 2: Synthesized Gate-Level Verilog Design v.s. Scan-chain

Inserted DFT Design

Objectives :

1. Understanding how to perform EC between scan-chain insertion before and after circuits.

 2. Perform simple diagnosis functionalities supported by LEC to fix the non-equivalence.

Related Files :

Extend from previous Lab, now we’re going to perform equivalence checking between

Synthesized gate-level Verilog design and DFT design, which are generated by yourselves before.

As we’ve checked that your synthesized design is equivalent to your Verilog design, we expect to

continue on checking the equivalence of scan-chain inserted design to one of the previous

equivalent designs. (Here, we take gate-level one for better analysis later.) All mandatory files are

listed here:

File Name Description

lcd_ctrl.v Your Verilog Code in HW2

lcd_ctrl.vg Your Synthesized Gate-Level Verilog in HW5

lcd_ctrl_dft.vg Your Synthesized Verilog after DFT (scan-chain insertion) in HW5

tsmc18.v TSMC Cell Library Verilog File

 The setup and compare of the two designs in this Lab is similar to that in the previous Lab;

hence, the following procedure will not be explained in detail. You can refer to steps in the previous

Lab and concerned with differences only. However, we also expect you to operate on your designs.

Step 0. Generate a directory, named “LEC_Lab2” for all three files to put if it is not ready.

Linux Shell Command : mkdir LEC_Lab2

 cp <file> LEC_Lab2

Set current directory to LEC_Lab2

Source LEC licence file : csh; source /usr/cadence/CIC/confrml.csh

Step 1. Start LEC, read golden design as lcd_ctrl.vg and revised design as lcd_ctrl_dft.vg. Note

that all of them rely on the Library file tsmc18.v, which must be read in prior to the two

designs. Is there any error message?! Hint: Both of them need the library file in this Lab.

Step 2. As all designs and library have been successfully read in, change to LEC Mode for design

compare. Similarly, you should add compare points and perform compare then. However,

you may see some error messages and un-mapped points after change to LEC Mode, as

shown below. Please ignore them at this moment.

The comparison result contains non-equivalent points, as shown below. Hence, two

designs are found non-equivalent!

We can see all PO are equivalent, while all DFF are non-equivalent! Note that even if all

PO are equivalent cannot imply that two designs are equivalent! (For LEC view DFF as

cut points, and compare PO within a smaller cut cone with inputs to be PI or DFF as

boundary. So it’s easy to prove the equivalence of some (and maybe all) PO pairs while

the two designs are strictly different.)

Can you figure out some problems here?! Hint: From warning messages.

Step 3. Try Fixing the Non-equivalence.

Firstly, we resort to some exist debugging functionalities supported by LEC to have a first

perspective of the problem. Click button for opening mapping manager, then a

mapping manager window will pop out, as shown below:

At the bottom table, please firstly disable all compare points listed here and next assign

non-equivalent points for debug only. For all DFF are non-equivalent, we may infer their

reasons should be similar. Please select one of the DFF, for instance, zoom_out_reg in the

example file, and click on right mouse button to select schematic view for debug. Both

golden and revised schematics will be shown as follows:

From their schematic views of corresponding DFF, we can found that in the revised

schematic, an extra input test_se is found at the input cone of that DFF. Recall that this

input is added for test mode in DFT design, with fixed value 1 to enabling scan mode

instead of function mode of the design. What happened once LEC set this input to be 1?!

Will the two DFF report the same result?! Will they be proved equivalent?! Why?!

Are there more signals that may also result to the same problem?!

Step 4. Refine Settings:

The biggest difference between the two designs is the I/O number: for DFT circuit,

we may add scan-inputs as PI and scan-outputs as PO at the design boundary.

However, LEC should not know these. So we must tell LEC by commands as settings.

1. Scan outputs: For we’ve added all PO and DFF as mapping points previously, and

we’re now desire to remove this output in DFT design (revised design). Therefore,

LEC will not report this PO as un-mapped point.

 Now, type command: add ignored outputs test_so* –revised at the command input after

prompt to ignore all scan outputs in both the mapping list and the compare point list.

However, you may see the error message of “This command is not allowed in current

system mode”. That’s because the command add ignored output can only be specified

in setup stage of LEC, but we’re now intend to add this constraint after compare error.

Therefore, you should firstly change mode back to by clicking the icon, and

then type this command to ignore scan outputs from mapping.

 Command: set system mode setup

2. Scan inputs: There should be multiple scan in and scan enable inputs in DFT design

for scan-chain functionalities in test mode; however, in golden design, it does not

support scan-chain enabled mode. But we have no idea to remove those pins from the

model, and they will not be mapping points. However, they affect the compare results.

 Note that when scan enable signal is tied to zero, the design after DFT works the

same as original circuit, i.e. not in scan mode. Based on this concept, we can add the

command to set fixed values for those scan input pins.

The command is: add pin constraints 0 test_si* test_se -revised

Step 4. Continue on comparison:

Supposedly, commands for setup refinements are properly added to LEC, we can

continue on compare now. Change system mode back to LEC then add all compare points

again followed by compare. Note that you can see all pins are mapped successfully. Now,

the two designs will be checked equivalent. A sample output result is shown below:

Step 5. Exit LEC.

As your result is equivalent, you’ve completely prove that the functionality of scan-chain

inserted DFT design is equivalent to that in synthesized gate-level design, and also to the

original Verilog written by yourself.

Now, you can click on File Exit Yes to exit LEC forcedly.

Command: exit –f

What have you learnt from this Lab?!

1st Version: 2010.11.29 by Cheng-Yin Wu, NTUGIEE and Yu-Fu Yeh, NTUGIEE

