Computer-Aided VLSI System Design
EC Lab : Design Verification (Fall, Nov. 2010)

Motivation and Importance of Equivalence Checking

As a golden model is constructed, we prefer to check the equivalence between golden model
and the revised model, which may be a modification of golden model and more probable to be a
different abstraction level design from design flow synthesis, instead of running simulation on it.
This prevent from contiguously simulation on these designs throughout the design flow, which may
cost extremely large time and delay the design closure. Therefore, we may expect to perform
equivalence checking between design versions throughout the design flow to enhance the efficiency
of consistency check instead of simulation on every revised version.

Main Objectives of this Lab :

To understand how to use Conformal LEC to formally check the equivalence between your
VLSI designs in the design flow. This Lab includes :

1. Check the equivalence between two VLSI designs in different abstraction levels.

2. Find the reason of non-equivalence and fix the problem from LEC supplements.

Lab 1. RTL Verilog v.s. Synthesized Gate-Level Verilog Designs

Objectives :
1. Understanding LEC basic interface (modes) and command format.

2. Setup environment for simple equivalence checking task.
3. Run LEC in shell mode / script mode.

Related Files :

In this Lab, we intend to perform equivalence checking between Verilog designs from your
HW, which are written and generated by yourselves before. These mandatory files are listed here:

File Name Description

Icd_ctrl.v Your Verilog Code in HW2

Icd_ctrl.vg Your Synthesized Gate-Level Verilog in HW5
tsmcl8.v TSMC Cell Library Verilog File

In case you have little confidence to your HW designs, you can do this Lab with the designs in
~cvsd/CUR/Verify/LEC_Lab.tar.gz. But we strongly recommend you to use your own designs so
that you can see whether your design remains functionally correct after synthesis.

Note: If you don’t want to operate on GUI mode, you can type commands after LEC prompt instead.
For commands, you can refer to Command within the following descriptions.
Generate a directory, named “LEC_Lab1” for all three files to put if it is not ready.

Step 0.

Step 1.

Step 2.

Step 3.

Linux Shell Command : mkdir LEC Labl
cp <file> LEC_Labl

Set current directory to LEC_Labl.
Source LEC licence file : csh; source /usr/cadence/CIC/confrml.csh

Start Cadence Conformal LEC from GUI mode.

Linux Shell Command : lec&
Don’t forget to start X-window before GUI mode.
Command-Line LEC: lec —nogui
Setup Log File. (Optional)

LEC Command : set log file LEC_Lab1.log
Read RTL Verilog design as Golden Model.

From the GUI window, click on the icon

will pop out as shown below:

r

[%

. Then “Read Design” dialog window

. Read Design =[S S
Cancel Help
File List:

— File Selection:

Lirectaries: [Files:

|uSD_LEc_LabfLEc_Lab1 ﬂ ||cd_ctr|_u

Add Selected
H e saeces |

| Add Al |

B/ F Icel_ctrl.y
7= hnime /| TEmeray
I~ [~

List Files of Type:

|Verilog (*.u *W *wpx)

3

Double click your Icd_ctrl.v as golden design, press OK and leave.
Note: You can see some warning and information messages from LEC standard output,
and make sure your design has been read successfully.

Command: read design Icd_ctrl.v —golden

Step 4.

Step 5.

Step 6.

Read Gate-Level Verilog design as Revised Model.

T

From the GUI window, click on the icon =) again. Then “Read Design” dialog

window will pop out as shown above.

: . Revised —
Now, select your Icd_ctrl.vg as revised design, press OK and leave. &I

However, you may found some error message outputs from LEC RTL checker. What’s
the problem?!

Have you ever specified cell libraries instantiated in your gate-level design to LEC?!
Command: read des Icd_ctrl.vg —revised

Read Verilog Library File for Gate-Level Revised Model.

¥
From the GUI window, click on the icon =D Then “Read Library” dialog window

will pop out as shown below:

~

‘r. Read Design =NECN X
Cancel Help
File List:

— File Selection:
Lirectories: ! Eiles: add Selectad
[WSD_LEC_Lah/LEC_Lahi ﬂ [=upx ﬂ —l
CYoD_CEC_Lan lcd cirly Add Al |

| I (B LEC_Lah1 |Kf ts el & |

P~ Il

List Files of Type:

JWerilog (*v =W * vpx) ﬂ

[%

Double click tsmc18.v as the library file, which must correspond to the library used in

synthesis before. Note that you can either read the library for ml Revised

Model only or for kl Both Models in this Lab. (Why?!)

Command: read library tsmc18.v —verilog —both

Read Gate-Level Verilog design as Revised Model again.

As the library file has been read in, we may expect to successfully read in the
synthesized Verilog now. Please perform Step 4 again and your design should be read
successfully now.

Step 7.

Step 8.

Modes in LEC:
LEC has two modes : Setup Mode and LEC Mode for enabling different operations:

1. | ¥ | setyp Mode -
Mainly for design / constraints / rename / black box setup before compare.
2. [XEC] LEC Mode :

Compare mode for adding compare points and report compare results.
Some commands are available in both modes; you can type help to see all commands.
As all setup constraints has been applied, for this is a basic and simple Lab. Now we’re
going to change current mode from Setup to LEC for further compare:

LEC

Click on the icon at the right-top of the GUI window.

Command: set system mode lec

You can see LEC start automatically find compare points and makeup constraints from
setup mode specifications, and finally output the statistical information of mapped
points to the output window, as shown below.

SETUP> =zet system mode lec

/¢ Command: set system mode lec

/¢ Processing Golden ...

/¢ Modeling Golden ..

A4 Warning: Conwverted 120 ¥ assigrment{s=} as don’t carsis}
/¢ Processing Revised ...

/¢ Modeling Revised ...

/4 Mapping key points ...,

Mapped points: SYSTEM class

Mapped points PI FO IFF Total
Golden 14 10 =] 593
Revised 14 10 669 593

SETUP> read design Ahome/raid2_2/userd7r7921023/CVSD_LEC Lab/LEC_Labl/lcd_ctrl.v —Verilog -Golden —zenzitive
SETUP> read likbrary —Both —zenzitive “Verilog /homedraidZ_2/user97 Ar7921023/CVSD_LEC _Lab/LEC Labl/temcl8 v
SETUP> read design AJhomesraid2_ 2 userd? 7921023 /CVSD_LEC _LabALEC Labliled_ctrl ,vg -Verilog —Revized -—senzitive
SETUP> =set system mode lec

LEC:

Add Compare Points:

File Setup Repor Preferences MWindows

=

Compare | Cancell

E B LCO_CTRL

T B 224 library cells and _| Stop after I rdismatch

1 Stop atter I Abort

1 Display Mon-equivalent Points

II_ add all Compare Points I

We should tell LEC what are the points in both designs that we want to compare. In
general, we may specify all PO and DFF to be compared. However, you can manually
add or delete compare points for LEC on your purpose. In this Lab, we simply add all

PO and DFF as compare points.
Click Run > Compare at the top function button list, and a compare window will pop
out as shown above.
Command: add compare points —all
Step 9. Compare:
For we’ve set up all indications to LEC currently, we are now starting to perform EC.

Press the compare icon in the GUI window to start compare. Compare

Command: compare
For designs in our Lab is very small and simple, you may found LEC compare results
shown directly on the screen, as shown below:

LEC> add compared points -all

A4 Command: add compared points —all

Af 79 compared points added to compare list
LEC> compare

A4 Command: compare

Did you see any non-equivalent point?! What’s the message about?!
Step 10. Exit LEC.
As your result is equivalent, you’ve completely prove that your synthesis is sound and
the functionalities of synthesized design is the same as original Verilog.
Now, you can click on File = Exit = Yes to exit LEC forcedly.
Command: exit —f

What have you learnt from this Lab?!
What are the improvements of applying equivalence checking compared to repeated simulation
that you’ve found in this Lab?!

In case you’ve set the log file in Step 2, you can see all messages on your screen output in that file.

For script generation, you can click File - Save Dofile, and all commands related to what you’ve
done will be stored in that dofile.
Command: save dofile LEC_Lab1.script
Next time you can simply run that script by File - Do Dofile.
Command: dofile LEC_Lab1.script
If you want to run script only, you can also pass dofile as parameter for LEC in Step 1.
Linux Shell Command : lec -dofile LEC_Labl.script& (GUI Mode)
lec —nogui -dofile LEC_Labl.script (SHELL Mode)

Lab 2: Synthesized Gate-Level Verilog Design v.s. Scan-chain

Inserted DFT Design

Objectives :

1. Understanding how to perform EC between scan-chain insertion before and after circuits.
2. Perform simple diagnosis functionalities supported by LEC to fix the non-equivalence.

Related Files :

Extend from previous Lab, now we’re going to perform equivalence checking between
Synthesized gate-level Verilog design and DFT design, which are generated by yourselves before.
As we’ve checked that your synthesized design is equivalent to your Verilog design, we expect to
continue on checking the equivalence of scan-chain inserted design to one of the previous
equivalent designs. (Here, we take gate-level one for better analysis later.) All mandatory files are
listed here:

File Name Description

Icd_ctrl.v Your Verilog Code in HW2

Icd_ctrl.vg Your Synthesized Gate-Level Verilog in HW5

Icd_ctrl_dft.vg Your Synthesized Verilog after DFT (scan-chain insertion) in HW5
tsmc18.v TSMC Cell Library Verilog File

The setup and compare of the two designs in this Lab is similar to that in the previous Lab;
hence, the following procedure will not be explained in detail. You can refer to steps in the previous
Lab and concerned with differences only. However, we also expect you to operate on your designs.
Step 0. Generate a directory, named “LEC_Lab2” for all three files to put if it is not ready.

Linux Shell Command : mkdir LEC _Lab2
cp <file> LEC_Lab2
Set current directory to LEC_Lab2
Source LEC licence file : csh; source /usr/cadence/CIC/confrml.csh
Step 1. Start LEC, read golden design as lcd_ctrl.vg and revised design as lcd_ctrl_dft.vg. Note
that all of them rely on the Library file tsmc18.v, which must be read in prior to the two
designs. Is there any error message?! Hint: Both of them need the library file in this Lab.
Step 2. As all designs and library have been successfully read in, change to LEC Mode for design
compare. Similarly, you should add compare points and perform compare then. However,
you may see some error messages and un-mapped points after change to LEC Mode, as
shown below. Please ignore them at this moment.

Step 3.

SETUP> =et system mode lec

A4 Command: set system mode lec
/¢ Processing Golden ...

£ Modeling Golden ...,

/¢ Processing Revized ...,

A Modeli i

Jf Reviszed key points = 700
i oints L.,

nE Revised .
S8 Warning: Golden and Fevized have different numbers of ey pnéntszl
77 LoLden EEH points = Bos

barning:

Primary input "test_=zil” in Reviszed has no correspondence in Golden
A Harning: Primary input “test_=si2” in Revized has no correspondence in Golden
A4 Harning: Primary input “test_si3” in Revised has no correspondence in Golden
£f Harning: Primary input “test_=sid” in Revised hasz no correspondence in Golden
A8 Warning: Primary input “test_se” in Fevized haz no correspondence in Golden

A4 Warning: Primary output “test_szoZ” in Fevized haz no correspondence in Golden
A4 Warning: Primary output “test_szo3” in Fevized haz no correspondence in Golden

Mapped point=i SYSTEM class

Mapped points PI FO OFF Total
Golden 14 10 (S5 B93
Fevized 14 10 (S5 593

rmapped points:

evized:
mmapped points PI PO Total
xtra 5 2 7

The comparison result contains non-equivalent points, as shown below. Hence, two

designs are found non-equivalent!

LEC: compare
A Command: compare

Compared points PO OFF Total
Equivalent 10 0] 10
Hon—eguivalent 4] (=154 21t

A Warning: There are extra Pls in Revised

We can see all PO are equivalent, while all DFF are non-equivalent! Note that even if all
PO are equivalent cannot imply that two designs are equivalent! (For LEC view DFF as
cut points, and compare PO within a smaller cut cone with inputs to be Pl or DFF as
boundary. So it’s easy to prove the equivalence of some (and maybe all) PO pairs while

the two designs are strictly different.)
Can you figure out some problems here?!
Try Fixing the Non-equivalence.

Hint: From warning messages.

Firstly, we resort to some exist debugging functionalities supported by LEC to have a first

perspective of the problem. Click button

LrEY)
Py
S

for opening mapping manager, then a

mapping manager window will pop out, as shown below:

Compared Points Support Size E.E $y | Class > E\If5|

@ PO 15 dataout[7] (+} PO 20 dataout[7] SppElEm
& i+y PO 16 dataout[E] (+3 PO 21 dataoutlf] Inverted-Equivalent
O+ PO 17 dataout[5] (+) FO 22 dataout[5]
O (+x PO 18 datzout.C4] {(+3 PO 23 dataout.[4] Abort
O (+» PO 19 dataout[3] {+} PO 24 dataout[3] Mot- Compared
O {+x PO 20 datzout[2] +) PO 25 dataout[2] all
D+ PO 21 dataout.[1] +) PO 26 dataout[1] I Disable Al I
O {+» PO 22 datzout[0] i+ PO 27 datsout[0]
O (+» PO 23 output_valid {+) PO 2B output_valid
O+ PO 24 buzy +) PO 29 sy
@ (+» IFF 25 zoomout_reg 0061 {+) OFF 32 zoomout_reg T0/U$1
@ i+ DFF 25 output_buf _reglBIL71AI0A0E: (+) DOFF 33 output_buf _regl8][71/I0/Us1
@ {+» IFF 27 output_buf _reg[81C61/ 100 | (+) OFF 34 output_buf _rez[BI106]/T00%1
@ (+» IFF 228 output_buf _reg[81C51/ 10/ | (+} OFF 35 output_bof _rez[B105]/T0/0s1
s s TIET Lalr] kel T e e FOTIE AT AT A - oy T - —rkeme ke e T e FOIT AT AT A LA
7

At the bottom table, please firstly disable all compare points listed here and next assign
non-equivalent points for debug only. For all DFF are non-equivalent, we may infer their
reasons should be similar. Please select one of the DFF, for instance, zoom_out_reg in the
example file, and click on right mouse button to select schematic view for debug. Both
golden and revised schematics will be shown as follows:

i

BEEL- - AEE|

Eile Miew Trace Preferences Window Eile Miew Trace Preferences Window |
L e »T L i T T L

= 6‘@ f@ i + DB B‘i: A: '7 KL * *‘@ *‘@ S ¥ DB’ Eg 1%: '5/ HE

Ohject: Ohject:

cmd[1]=>

Selected: ISeIected: Met - test_sel

From their schematic views of corresponding DFF, we can found that in the revised
schematic, an extra input test_se is found at the input cone of that DFF. Recall that this
input is added for test mode in DFT design, with fixed value 1 to enabling scan mode
instead of function mode of the design. What happened once LEC set this input to be 1?!
Will the two DFF report the same result?! Will they be proved equivalent?! Why?!

Are there more signals that may also result to the same problem?!

Step 4.

Step 4.

Refine Settings:

The biggest difference between the two designs is the 1/O number: for DFT circuit,
we may add scan-inputs as Pl and scan-outputs as PO at the design boundary.
However, LEC should not know these. So we must tell LEC by commands as settings.

1.

Scan outputs: For we’ve added all PO and DFF as mapping points previously, and
we’re now desire to remove this output in DFT design (revised design). Therefore,
LEC will not report this PO as un-mapped point.

Now, type command: add ignored outputs test_so* —revised at the command input after
prompt to ignore all scan outputs in both the mapping list and the compare point list.
However, you may see the error message of “This command is not allowed in current
system mode”. That’s because the command add ignored output can only be specified
in setup stage of LEC, but we’re now intend to add this constraint after compare error.

Therefore, you should firstly change mode back to Setup by clicking the icon, and

then type this command to ignore scan outputs from mapping.
Command: set system mode setup

. Scan inputs: There should be multiple scan in and scan enable inputs in DFT design

for scan-chain functionalities in test mode; however, in golden design, it does not
support scan-chain enabled mode. But we have no idea to remove those pins from the
model, and they will not be mapping points. However, they affect the compare results.
Note that when scan enable signal is tied to zero, the design after DFT works the
same as original circuit, i.e. not in scan mode. Based on this concept, we can add the
command to set fixed values for those scan input pins.

The command is: add pin constraints O test_si* test_se -revised

Continue on comparison:
Supposedly, commands for setup refinements are properly added to LEC, we can

continue on compare now. Change system mode back to LEC then add all compare points

again followed by compare. Note that you can see all pins are mapped successfully. Now,

the two designs will be checked equivalent. A sample output result is shown below:

SETUP> =set suystem mode lec

A4 Command: =set system mode lec
£ Processing Golden ...

df Modeling Golden ...

£ Processing Revised ...

£ Modeling Revized ...

£f Mapping key points ., .,

IHappEd point=z: SYSTEM class

IHappEd points FI FO OFF Total

IGDldEh 14 10 (=123 E92

IEeuised 14 10 (=123 £92

Step 5.

LEC> add compare points -all
£ Command: add compare points —all

Af 679 compared points added to compare list
LEC> compare

A Command: compare

I:-:um pared points

'—:qui valent

Exit LEC.

As your result is equivalent, you’ve completely prove that the functionality of scan-chain
inserted DFT design is equivalent to that in synthesized gate-level design, and also to the
original Verilog written by yourself.

Now, you can click on File & Exit = Yes to exit LEC forcedly.

Command: exit —f

What have you learnt from this Lab?!

1% Version: 2010.11.29 by Cheng-Yin Wu, NTUGIEE and Yu-Fu Yeh, NTUGIEE

