Logic Synthesis \& Verification, Fall 2010
 National Taiwan University

Problem Set 1

Due on $2010 / 10 / 6$ before lecture

1 [Deduction from Axioms]

Apply only the five postulates (axioms) of Boolean algebra to show that

$$
a+a^{\prime} \cdot b=a+b
$$

holds in all Boolean algebra $(\mathbb{B},+, \cdot, 0,1)$, for $a, b \in \mathbb{B}$.
(Specify clearly in your solution which postulate is applied in each step.)

2 [Relation over Boolean Algebra]

Define the relation \leq in a Boolean algebra with carrier \mathbb{B} as follows

$$
a \leq b \text { if and only if } a \cdot b^{\prime}=0
$$

for all $a, b \in \mathbb{B}$, where b^{\prime} is the inverse element of b. Prove that the following properties hold for all $a, b, c \in \mathbb{B}$:
(a) $a \cdot b \leq a \leq a+c$
(b) $a \leq b$ and $a \leq c$ if and only if $a \leq b \cdot c$

3 [Boolean Functions]

Let $f(x, y)$ be a Boolean function for $\mathbb{B}=\left\{0,1, a, a^{\prime}\right\}$ with the following partial function table.
(a) How many Boolean functions are consistent with the above function table? Please explain.
(b) Please complete the above function table and list all possibilities if more than one.

Fig. 1. Mux implementation of Boolean functions

4 Boolean Algebra Application

Let Boolean function $f(x, y, z)=x y^{\prime}+x^{\prime} y+y^{\prime} z^{\prime}$ for $\mathbb{B}=\{0,1\}$.
(a) Consider the multiplexor implementation of f in Figure 1 (a). What are the values of D_{i} ?
(b) Consider implementing $f(x, y, z)$ by another Boolean function $g(y, z)$ using the multiplexor of Figure 1 (b).

- What is the new Boolean algebra? Please define the five-tuple $(\mathbb{B},+, \cdot, \underline{0}, \underline{1})$.
- What are the possible values of variables y and z ? Why the multiplexor assumes y and z have only values $\{0,1\}$?
- Please explain in what sense $f(x, y, z)$ and $g(y, z)$ can be equivalent. What should the values D_{i}^{\prime} be?
(c) Consider implementing $f(x, y, z)$ by yet another Boolean function $h(z)$ using the multiplexor of Figure 1 (c). What is the new Boolean algebra? Please define the the five-tuple $(\mathbb{B},+, \cdot, \underline{0}, \underline{1})$. What are the values $D_{i}^{\prime \prime}$?

