Logic Synthesis \& Verification, Fall 2010
 National Taiwan University

Problem Set 2

Due on 2010/10/27 before lecture

1 [Quantification and Boolean Difference]

(a) (10%) Consider the following 8 quantified Boolean formulas

$$
\begin{aligned}
& F_{1}=\exists x, \exists y \cdot f(x, y, z), \\
& F_{2}=\exists y, \exists x \cdot f(x, y, z), \\
& F_{3}=\exists x, \forall y \cdot f(x, y, z), \\
& F_{4}=\forall y, \exists x \cdot f(x, y, z), \\
& F_{5}=\forall x, \exists y \cdot f(x, y, z), \\
& F_{6}=\exists y, \forall x \cdot f(x, y, z), \\
& F_{7}=\forall x, \forall y \cdot f(x, y, z), \\
& F_{8}=\forall y, \forall x \cdot f(x, y, z) .
\end{aligned}
$$

List possible implications among them. (Implications inferred from transitivity can be omitted.)
(b) (5%) For some Boolean function f and variable x, if $\frac{\partial f}{\partial x}$ is satisfiable, we call x a functional support of f. Please establish the connection between the (structural) support mentioned in the lecture and functional support.
(c) (10%) Given two Boolean functions f_{1} and f_{2}, prove or disprove the following statements:
(1) $\frac{\partial\left(f_{1} \oplus f_{2}\right)}{\partial x}$ equals constant 0 if both $\frac{\partial f_{1}}{\partial x}$ and $\frac{\partial f_{2}}{\partial x}$ equal constant 0 .
(2) $\frac{\partial\left(f_{1} \oplus f_{2}\right)}{\partial x}$ equals constant 0 only if both $\frac{\partial f_{1}}{\partial x}$ and $\frac{\partial f_{2}}{\partial x}$ equal constant 0 .

2 [AIG and CNF]

(a) (5%) Convert the AIG of Figure 1 to a CNF ϕ_{1} with intermediate variables a, b allowed.
(b) (5%) Convert the AIG of Figure 1 to a CNF ϕ_{2} without having intermediate variables a, b.
(c) (5%) The CNFs ϕ_{1} and ϕ_{2} are certainly not functionally equivalent. Explain in what sense they are equivalent.
(d) (5%) How can we make ϕ_{1} and ϕ_{2} functionally equivalent by quantification?

Fig. 1. AIG for CNF conversion

3 [BDD Operation]

(a) (5%) To compute $\exists x . f$ for some Boolean function f and variable x, how can we achieve it using BDD ITE and COMPOSE operations?
(b) (15%) Consider the BDD of function f as shown in Figure 2. Apply the operations in (a) to derive the BDD of $\exists c . f$. Show the steps in terms of shared BDDs.

Fig. 2. BDD with variable c to be existentially quantified

4 [BDD and Functional Decomposition]

(10%) Suppose a function $f(a, b, c, d)$ can be rewritten as $h(a, b, g(c, d))$ for some functions h and g. Let the BDD of f has variable ordering c and d on top of a and b. What property the BDD must have such that $f(a, b, c, d)=h(a, b, g(c, d))$? Why?

5 [SAT Solving]

Consider SAT solving the CNF formula consisting of the following 8 clauses

$$
\begin{aligned}
C_{1}=(a+b+c), C_{2} & =\left(a+b^{\prime}+c\right), C_{3}=\left(a^{\prime}+c+d\right), C_{4}=\left(a^{\prime}+c+d^{\prime}\right), \\
C_{5}=\left(a+c^{\prime}+d^{\prime}\right), C_{6} & =\left(a^{\prime}+b+c^{\prime}\right), C_{7}=\left(a+c^{\prime}+d\right), C_{8}=\left(b^{\prime}+c^{\prime}+d\right) .
\end{aligned}
$$

(a) (10%) Apply implication and conflict-based learning in solving the above CNF. Assume the decision order follows a, b, c, and then d; assume each variable is assigned 0 first and then 1 . Whenever a conflict occurs, draw the implication graph and enumerate all possible learned clauses under the Unique Implication Point (UIP) principle. (In your implication graphs, annotate each vertex with"variable $=$ value@decision_level", e.g., " $b=0 @ 2$ ", and annotate each edge with the clause that implication happens.) If there are multiple UIP learned clauses for a conflict, use the one with the UIP closest to the conflict in the implication graph.
(b) (5%) The resolution between two clauses $C_{i}=\left(C_{i}^{*}+x\right)$ and $C_{j}=\left(C_{j}^{*}+x^{\prime}\right)$ (where C_{i}^{*} and C_{j}^{*} are sub-clauses of C_{i} and C_{j}, respectively) is the process of generating their resolvent $\left(C_{1}^{*}+C_{j}^{*}\right)$. The resolution is often denoted as

$$
\frac{\left(C_{i}^{*}+x\right)\left(C_{j}^{*}+x^{\prime}\right)}{\left(C_{1}^{*}+C_{j}^{*}\right)}
$$

A fact is that a learned clause in SAT solving can be derived by a few resolution steps. Show how that the learned clauses of (a) can be obtained by resolution with respect to their implication graphs.

6 [Unsatisfiability and Resolution]

(10%) Prove that a CNF formula is unsatisfiable if and only if an empty clause (a clause without any literal) can be derived through resolution.

