Logic Synthesis \& Verification, Fall 2010
 National Taiwan University

Problem Set 3

Due on $2010 / 11 / 10$ before lecture

1 [Incompletely Specified Functions]

(15%) Let $\mathcal{F}_{i}=\left(f_{i}, d_{i}, r_{i}\right)$ for $i=1,2$ be incompletely specified functions, where f_{i}, d_{i}, and r_{i} are the onsets, don't care sets, and offsets, respectively. Derive the following incompletely specified functions in three-tuples.
(a) $\left(\neg \mathcal{F}_{1}\right)$
(b) $\left(\mathcal{F}_{1} \vee \mathcal{F}_{2}\right)$
(c) $\left(\mathcal{F}_{1} \wedge \mathcal{F}_{2}\right)$

2 [Generalize Cofactor]

(10\%) Prove or disprove the following equalities.
(a) $c o(f \wedge g, h)=c o(f, h) \wedge c o(g, h)$
(b) $c o(f, x)=f_{x}$

3 [Special Functions]

(25%) Prove or disprove the following statements.
(a) Any prime cover of a unate function is not necessarily a unate cover.
(b) Every prime of a unate function is an essential prime.
(c) Let f be a function symmetric on variables x and y and symmetric on variables y and z. Then f must be symmetric on variables x and z.

4 [Column Covering]

(20\%) We define the partial Max-SAT problem as follows:

Definition 1 (partial Max-SAT). Given a CNF formula $\Phi=C_{1}^{h} \wedge \cdots \wedge C_{m}^{h} \wedge$ $C_{1}^{s} \wedge \cdots \wedge C_{n}^{s}$, partial Max-SAT is the problem of finding a truth assignment that satisfies all the hard clauses $C_{1}^{h}, \ldots, C_{m}^{h}$ and simultaneously satisfies the maximum number of soft clauses $C_{1}^{s}, \ldots, C_{n}^{s}$.

Suppose we are given the following 0-1 matrix:

$$
\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

Please formulate the corresponding minimum column covering problem (namely, selecting a minimum set of columns that covers all the rows) as a partial MaxSAT problem. What are the hard and soft clauses?

5 [Prime Generation]

(15\%) Apply Unate Recursive Paradigm to generate all the prime implicants of the following cover.

$$
\left\{a^{\prime} b^{\prime} c^{\prime} d^{\prime}, a^{\prime} b c^{\prime} d^{\prime}, a b c^{\prime} d, a b c d^{\prime}, a b c d, a b^{\prime} c d, a^{\prime} b c^{\prime} d, a^{\prime} b^{\prime} c^{\prime} d\right\}
$$

6 [Quine-McCluskey]

(15%) Let $f=w^{\prime} x^{\prime} y^{\prime} z^{\prime}+w x^{\prime} z^{\prime}+w x z+w^{\prime} x^{\prime} y z$ with don't care set $d=w^{\prime} x y z^{\prime}+$ $w x^{\prime} y z+w^{\prime} x y z$. Use the Quine-McCluskey procedure to minimize f. Show results at each step (i.e. list the primes, give the matrix and show how the minimum cover is found).

