Logic Synthesis \& Verification, Fall 2010
 National Taiwan University

Problem Set 4

Due on $2010 / 12 / 1$ before lecture

1 [Smallest Cube Containing]

Prove or disprove the following statements.
(a) $\operatorname{SCC}\left(c_{1}+c_{2}\right)=\operatorname{SCC}\left(c_{1}\right)+\operatorname{SCC}\left(c_{2}\right)$, for any cubes c_{1} and c_{2}.
(b) $\operatorname{SCC}\left(c_{1} \cdot c_{2}\right)=\operatorname{SCC}\left(c_{1}\right) \cdot \operatorname{SCC}\left(c_{2}\right)$, for any cubes c_{1} and c_{2}.
(c) $\operatorname{SCC}\left(\neg c_{1} \cdot \neg c_{2}\right)=\operatorname{SCC}\left(\neg c_{1}\right) \cdot \operatorname{SCC}\left(\neg c_{2}\right)$, for any cubes c_{1} and c_{2}.
(d) $\operatorname{SCC}(c \cdot f)=c \cdot \operatorname{SCC}(f)$, for any function f and cube c.
(e) $\operatorname{SCC}\left(c \cdot f_{c}\right)=c \cdot \operatorname{SCC}\left(f_{c}\right)$, for any function f and cube c.

2 [ESPRESSO - REDUCE]

Let

$$
\begin{aligned}
& F=a^{\prime} b^{\prime} e+a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b c+b e^{\prime}+a b c^{\prime}+a b e+a b^{\prime} c, \\
& D=a^{\prime} b c^{\prime} e^{\prime}+b c e^{\prime}, \\
& R=a^{\prime} b^{\prime} c e^{\prime}+a^{\prime} b c^{\prime} e+a b^{\prime} c^{\prime},
\end{aligned}
$$

be the covers of the incompletely specified function (f, d, r), don't care function d, and offset function r, respectively. Apply REDUCE based on the unate recursive paradigm as in the lecture notes on the cubes of f in order (from left to right). Show intermediate steps.

3 [ESPRESSO - EXPAND]

Apply EXPAND (using the procedure in the lecture notes) on the reduced cover derived above by REDUCE. Show intermediate steps.

4 [ESPRESSO - IRREDUNDANT]

(a) Explain why the function $\neg g(y)$ in IRREDUNDANT can be obtained by summing over the cases of $\left[\begin{array}{c}F_{c_{i}} \\ D_{c_{i}}\end{array}\right]$, for all cubles c_{i} of cover F.
(b) Apply IRREDUNDANT (using the procedure in the lecture notes) on the cover derived above by EXPAND. Show intermediate steps.

