# Logic Synthesis \& Verification, Fall 2010 <br> National Taiwan University 

## Problem Set 6

Due on 2010/12/22 before lecture

## 1 [Technology Mapping]

Process circuit s444.blif with the following ABC steps.
abc 01> read ./examples/s444.blif
abc 02> cone -0 10
abc 03> strash
abc 04> show
Now perform technology mapping on this AIG with the following steps.
(a) Perform exhaustive cut enumeration on the AIG with cut filtering to remove dominated cuts.
(b) Compute the area flows of the 4 -feasible cuts of the AIG node closest to the primary output.
(c) What is the best FPGA technology mapping with 4-input LUTs on this example?

## 2 [SDC and ODC]

Consider the Boolean network of Figure 1.
(a) Write down a Boolean formula for the SDC of the entire network.
(b) Write down a Boolean formula for the satisfiability don't cares $S D C_{4}$ of Node 4. Since $S D C_{4}$ is imposed by the fanins of Node 4, the formula should depend on variables $x_{1}, \ldots, x_{4}, y_{1}, \ldots, y_{3}$. How can you make $S D C_{4}$ only depend on $y_{1}, y_{2}, y_{3}$ such that we can minimize Node 4 directly?
(c) Compute the observability don't cares $O D C_{4}$ of Node 4.

## 3 [Don't Cares in Local Variables]

Consider the Boolean network of Figure 1. Suppose the XDC for $z_{1}$ is $\neg x_{1} \neg x_{2} \neg x_{3} \neg x_{4}$ and that for $z_{2}$ is $x_{1} x_{2} x_{3} x_{4}$.
(a) Compute the don't cares $D_{4}$ of Node 4 in terms of its local input variables $y_{1}$, $y_{2}$, and $y_{3}$. (Note that in general the computation of ODC may be affected by XDC especially when there exist different XDCs for different primary outputs.)
(b) Based on the computed don't cares, what is the best implementable function for Node 4 (in terms of the literal count and cube count)?


Fig. 1. A Boolean network, where $f_{1}=x_{1} x_{2}, f_{2}=x_{2} \vee x_{3}, f_{3}=\neg\left(x_{3} x_{4}\right), f_{4}=$ $\neg y_{1} \neg y_{2} y_{3} \vee y_{1} y_{2} \neg y_{3}, f_{5}=y_{1} \vee y_{4}$, and $f_{6}=y_{3} y_{4}$.

## 4 [Complete Flexibility]

Consider the Boolean network of Figure 1. Let $Y=\left\{y_{1}, y_{2}, y_{3}\right\}$.
(a) Suppose the XDC for $z_{1}$ is $\neg x_{1} \neg x_{2} \neg x_{3} \neg x_{4}$ and that for $z_{2}$ is $x_{1} x_{2} x_{3} x_{4}$. Write down the specification relation $S(X, Z)$.
(b) What is the influence relation $I\left(X, y_{4}, Z\right)$ of Node 4?
(c) What is the environment relation $E(X, Y)$ of Node 4?
(d) What is the complete flexibility $C F_{4}\left(Y, y_{4}\right)$ of Node 4?
(e) Is the previously computed don't care set $D_{4}$ of Node 4 subsumed by $C F_{4}$ ?

