Overview

Introduction (1) Problems in logic synthesis
to — Representations and computations

Logic Synthesis with ABC (2) And-lnverter G_raphs .(AlGS) |
— The foundation of innovative synthesis
(3) AlG-based solutions
— Synthesis, mapping, verification
(4) Introduction to ABC
— Differences, fundamentals, programming
(5) Programming assignment

Alan Mishchenko

UC Berkeley

(1) Problems In Synthesis Terminology

What are the objects to be “synthesized™? « Logic function (e.g. F = ab+cd)
— Logic structures Variabl b. '
— Boolean functions (with or without don’t-cares) — Variables (e.g. b)

— State machines, relations, sets, etc — Minterms (e.g. abcd)
How to represent them efficiently? — Cube (e.g. ab) Primary outputs

— Depends on the task to be solved

* Logic network

Ll 1]l

— Depends on the size of an object _ _ \\ TFO//

How to create, transform, minimize the representations? — Primary inputs/outputs @' Fanouts

— Multi-level logic synthesis — Logic nodes .

~ : _ 2Ny Fani
Technology mapping _ — Fanins/fanouts e \\amns

How to verify the correctness of the design? _ Transitive fanin/fanout cone S7TRE O

— Gate-level equivalence checking _ _ T T T T T T T T TTTT ]

— Property checking — Cut and window (defined later) Primary inputs

— etc




Logic (Boolean) Function

Relations

ab
00 01 11 10
« Completely specified d wloTo T * Relation (al1,a2) — (b1,b2) Characteristic function
. . 01 0 0 1 0
logic function N e EnER - (0,0) - (0,0) ala2
wlo|o|1]o0 - (O,l)—)(l,O)(O,l) bl b2 00 01 11 10
ab - (1,00 > (1,2) Zj ; <1> 2 2
. 00 01 11 10 _ 1’1 N 110
« Incompletely specified o [oToTr o 1)~ 1O wfofofols
. . onflo|-|=1|-= wflo|1|1]o0
logic function N CEEEEE
wlo|of1]o0 * FSM
Current
state
00 01 11 10
00 01 11 10 00 01 11 10 00 01 11 10 @ @ ’S\:;(é op1|1|(-]0
ojlo|o|1]o0 oofl1f1|o]f1 cojojojo fo orf1|1|-|1
otfolofofo ool1lofo]o oo |f1(1]1 myl - - - =
mfl1fl1]1]|o0 1mjolo|o|o mwfpojojof1 wr1|1o0f-10
w0fo 0 1 0 0f1 1 0 1 wlo 0 0 0 @
5 6
On-set Off-set DC-set
Find each of these representations? . ol |F « TT are the natural representation of logic functions
* Truth table (TT) ; 9000 | 0 — Not practical for large functions
*  Sum-of-products (SOP) é 222(1) g — Still good for functions up to 16 variables
: P.rOdUCEOfTS!JmZ.(POS) F wn s e SOP is widely used in synthesis tools since 1980’'s
* Binary decision ﬁgram (BDD) Q R — More compact than TT, but not canonical
) And.-lnverter graph (AIG) oor 1o — Can be efficiently minimized (SOP minimization by Espresso, ISOP
* Logic network (LN) B 8 computation) and translated into multi-level forms (algebraic factoring)
€ gi(l’ (1) e BDD is a useful representation discovered around 1986
000 1o — Canonical (for a given function, there is only one BDD)
] 001 1 — Very good, but only if (a) it can be constructed, (b) it is not too large
F = ab+cd — Unreliable (non-robust) for many industrial circuits
ap+C 1010 | 0 s ) )
o 11 e AIG is an up-and-coming representation!
@ 00 12 — Compact, easy to construct, can be made “canonical” using a SAT solver
o1 12 — Unifies the synthesis/mapping/verification flow
— The main reason to give this talk ©
= (a+ + + + 1110 | 1
F = (a+c)(a+d)(b+c)(b+d) &l b il R
7




Historical Perspective

Problem Size

ABC
100000
SIS, VIS,
MVSIS
100
Espresso,
50 MIS, SIS
AIG
16 sop BDD CNF
T
1950-1970 1980 1990 2000  Time

What Representation to Use?

For small functions (up to 16 inputs)
— TT works the best (local transforms, decomposition, factoring, etc)
For medium-sized functions (16-100 inputs)
— In some cases, BDDs are still used (reachability analysis)
— Typically, it is better to represent as AIGs
« Translate AIG into CNF and use SAT solver for logic manipulation
— Interpolate or enumerate SAT assignments
For large industrial circuits (>100 inputs, >10,000 gates)
— Traditional LN representation is not efficient
— AIGs work remarkably well
« Lead to efficient synthesis
« Are a natural representation for technology mapping
« Easy to translate into CNF for SAT solving
. etc

10

What are Typical Transformations?

» Typical transformations of representations
— For SOP, minimize cubes/literals
— For BDD, minimize nodes/width
— For AIG, restructure, minimize nodes/levels
— For LN, restructure, minimize area/delay

11

Algorithmic Paradigms

Divide-and-conquer

— Traversal, windowing, cut computation
Guess-and-check

— Bit-wise simulation
Reason-and-prove

— Boolean satisfiability

12




Traversal

e Traversal is visiting nodes in
the network in some order

Primary outputs

» Topological order visits
nodes from Pls to POs

— Each node is visited after its
fanins are visited

» Reverse topological order visits
nodes from POs to Pls

— Each node is visited after its
fanouts are visited

FTTTTTTTTTTT T
Primary inputs

Traversal in a topological order
13

Windowing

+ Definition
— A window for a node is the
node’s context, in which an
operation is performed
* A window includes
— k levels of the TFI
— m levels of the TFO

— all re-convergent paths
between window Pls and
window POs

14

Structural Cuts in AIG

A cut of a node n is a set of
nodes in transitive fan-in

such that
every path from the node to Pls
is blocked by nodes in the cut.

A k-feasible cut means the size

of the cut must be k or less. The set {p, b, c} is a 3-feasible cut of

node n. (It is also a 4-feasible cut.)

k-feasible cuts are important in FPGA mapping because the logic between
root n and the cut nodes {p, b, c} can be replaced by a k-LUT
15

Cut Computation

{{n}, }
Q"
ﬂ (o) (2 b} {{ah (0. )} k[ cuts per

; D q \ node

Computation is /.\ ’\ 4 6
done bottom-up 5 20
{{a}} {{b}} {fc}} 6 80

‘ ) 7 150

a b c

The set of cuts of a node is a ‘cross product’ of the sets of cuts of its children.
Any cut that is of size greater than k is discarded.

(P. Pan et al, FPGA '98; J. Cong et al, FPGA '99)

16




Bitwise Simulation

Assign particular (or random)
values at the primary inputs
— Multiple simulation patterns are
packed into 32- or 64-bit strings
Perform bitwise simulation at
each node

— Nodes are ordered in a
topological order

Works well for AIG due to
— The uniformity of AND-nodes
— Speed of bitwise simulation

— Topological ordering of memory
used for simulation information

o

52w N R

[o]-]o]°]

=

17

Boolean Satisfiability

» Given a CNF formula ¢(x), satisfiability problem is
to prove that ¢(x) = 0, or to find a counter-example

x"such that o(x’) =1

Why this problem arises?

— If CNF were a canonical representation (like BDD), it would be

trivial to answer this question.

— But CNF is not canonical. Moreover, CNF can be very
redundant, so that a large formula is, in fact, equivalent to 0.

— Looking for a satisfying assignment can be similar to searching

for a needle in the hay-stack.

— The problem may be even harder, if there is no needle there!

18

Example (Deriving CNF)

CNF

0 010
o

0@ ] 0
wilo\y

19

SAT Solver

SAT solver types

— CNF-based, circuit-based
— Complete, incomplete

— DPLL, saturation, etc.

Applications in EDA

— Verification
« Equivalence checking
* Model checking

— Synthesis
« Circuit restructuring
« Decomposition
« False path analysis

— Routing

A lot of magic is used to build an
efficient SAT solver
— Two literal clause watching

— Conflict analysis with clause
recording

— Non-chronological backtracking
— Variable ordering heuristics
— Random restarts, etc

The best SAT solver is MiniSAT
(http://minisat.se/)
— Efficient (won many competitions)
— Simple (600 lines of code)
— Easy to modify and extend
— Integrated into ABC 20




Example (SAT Solving)

(2) And-Inverter Graphs (AIG)

Definition and examples

a+b+c . .
o | ) » Several simple tricks that make AlGs work
2 B(@+ b+ -0) ]
» Sequential AlGs
3 (ma + b+ —c) o ]
[ ]
4 M@ +c+a) / \ / Unifying representation
5 M(-a +c + d) c » A typical synthesis application: AIG rewriting
6 B(-a+c+-d) / \ ‘ \ / \
7 N(=b + -c + -d) d d d d
o oo rcva | L N A
21 22
AIG Definition and Examples Three Simple Tricks
AlG is a Boolean network composed of two-input ANDs and inverters.
ab e Structural hashing
2 00 01 11 10 — Makes sure AIG is stored in a compact form
— Is applied during AIG construction
00] O 0 &\ « Propagates constants _
o1l o 0 O</ « Makes each node structurally unique
[ ) / /O\ 6 nodes + Complemented edges
110 [ ] 0 a b d 4 levels — Represents inverters as attributes on the edges
10l o 0 0 \‘\ ¢ Leads to fast, uniform manipulation ) .
— / /O\  Does not use memory for inverters Without hashing
a c b ¢  Increases logic sharing using DeMorgan’s rule
ab e Memory allocation
c 00 01 11 10 — Uses fixed amount of memory for each node
« Can be done by a simple custom memory manager
010 0 @ Jf « Even dynamic fanout manipulation is supported!
o1l o [ o L J //O\\ ; — Allocates memory for nodes in a topological order
— O 0 nodes » Optimized for traversal in the same topological order
11| O ( j 0 / 3 levels « Small static memory footprint for many applications
10l o @ 0 /Q\ — Computes fanout information on demand
a ¢ b db ca d 23 With hashing®*




Sequential AIGs

» Sequential networks have memory elements in
addition to logic nodes
— Memory elements are modeled as D-flip-flops
— Initial state {0,1,x} is assumed to be given
» Several ways of representing sequential AIGs
— Additional Pls and POs in the combinational AIG
— Additional register nodes with sequential structural hashing
» Sequential synthesis (in particular, retiming)
annotates registers with additional information
— Takes into account register type and its clock domain

25

AIG: A Unifying Representation

An underlying data structure for various computations

— Reuwriting, resubstitution, simulation, SAT sweeping,
induction, etc are based on the same AIG manager

A unifying representation for the whole flow
— Synthesis, mapping, verification use the same data-structure
— Allows multiple structures to be stored and used for mapping
The main functional representation in ABC
— A foundation of new logic synthesis

26

(3) AlG-Based Solutions

» Synthesis
« Mapping
 Verification

27

What Is Berkeley ABC?

A system for logic and

— Fast

— Scalable

— High quality results (industrial strength)

— Exploits between synthesis and verification

A programming environment

— Open-source
— Evolving and improving over time

28




Design Flow

‘ System Specification ‘

‘ Logic synthesis

|

‘ Technology mapping ‘

uonedYLIdA

(: ’ Physical synthesis

I } __________ —_

‘ Manufacturing ‘

29

Screenshot

TEST'abc.exe"

UC Berkeley, ABC 1.01 (compiled Aug 3 2008 09:41:23)

abc 01> read wb2\blif\cloud.blif

Warning: The network contains hierarchy.

Hierarchy reader flattened 48190 instances of logic hoxes and left 9839 black boxes.

Hierarchy reader converted 9839 instances of hlackboxes.

abc 02>

abc 02> ps; st; ps; I ps; time

cloud 1 1/0 = 27926/13552 lat = 36862 nd = 92798 edge = 267760 cube = 164666 lev = 23
: i/Q’u = 27526/13552 lat = 36862 and = 227678 (exor = 9964) (mux = 34186) (pure and =

: i/o = 27526/13552 lat - | N odge - 23659 aig 273622 lev = 8
elapse JINIEE:-conds, total: 16.57 seconds
abc 04>
abc 04> read wb2\blif\cloud.blif
Warning: The network contains hierarchy.

Hierarchy reader flattened 48190 instances of logic boxes and left 9839 black boxes.
Hierarchy reader converted 9839 instances of blackboxes.

ol vs: if K 6 ps; time
27526/13552 lat = 36862 nd = 92798 edge = 267760 cube = 164666 lev = 23
27526713552 lat = 2394 and = 163840 (exor = 8825) (mux = 25584) (pure and =

ifo
42
: i/0 = 27526/13552 lat = nd NN cdoe = 174861 aig = 199632 lev =
ellapa(;_seconds. total: 33.27 seconds
abc > -

;osts )

ABC vs. Other Tools

Industrial

black-box, push-button, no source code, often expensive

SIS

data structures / algorithms outdated, weak sequential synthesis

VIS

not meant for logic synthesis, does not feature the latest SAT-based
implementations

MVSIS

not meant for binary synthesis, lacking recent implementations

31

How Is ABC Different From SIS?

N )
) o

d a b c d e
AlG is a Boolean network of 2-input
AND nodes and invertors (dotted Iineé”f

TN




One AIG Node — Many Cuts

Combinational AIG « Manipulating AlIGs in ABC

f — Each node in an AIG has many cuts
— Eachcutis a SIS node

— No a priori fixed boundaries

* Implies that AIG manipulation with
cuts is equivalent to working on
Boolean networks at the
same time

33

Comparison of Two Syntheses

Boolean network

Network manipulation
(algebraic)

— Elimination

— Factoring/Decomposition
— Speedup

Node minimization

— Espresso

— Don't cares computed using
BDDs

— Resubstitution
Technology mapping
— Tree based

AIG network
DAG-aware AIG rewriting (Boolean)
— Several related algorithms
* Rewriting
« Refactoring
« Balancing
¢ Speedup
Node minimization
— Boolean decomposition

— Don't cares computed using
simulation and SAT

— Resubstitution with don’t cares

Technology mapping
— Cut based with choice nodes  ,,

Existing Capabilities (2005-2008)

Cut-based, heuristic, good

Fast, scalable, good quality area/delay. flexible

Integrated, interacts with Innovative, scalable,
synthesis verifiable

35

Combinational Synthesis

minimizes the number of AIG nodes without
increasing the number of AIG levels

— Consider function f = abc

Subgraph 1 Subgraph 2 Subgraph 3

tnh h

a b a

Rewriting AIG subgraphs

* Pre-computing AIG subgraphs Rewriting node A

QRQ\ - ﬁ@

ab ac b ¢

Rewriting node B

(B) By

= N\

ﬁg =g
a a ¢ b e a b ac

In both cases 1 node is saved
36




AlG-Based Solutions (Synthesis)

¢ Restructures AIG or logic network by the following transforms
Algebraic balancing

Rewriting/refactoring/redecomposition

— Resubstitution

Minimization with don't-cares, etc

D1 D2 D3 D4

D1
D2 HAIG D4

D3 37

AlG-Based Solutions (Mapping)

Input: A Boolean network Output: A netlist of K-LUTs implementing
(And-Inverter Graph) AIG and optimizing some cost function
f
f
o~
Technology
Mapping

ab cde

e

The subject graph The mapped netlist 38

Formal Verification

Equivalence checking
— Takes two designs and makes

a miter (AIG) Q
0
— Takes design and property and D1 b2
makes a miter (AIG)

The goals are the same: to -
transform AIG until the Property checking
output is proved constant O A

p
Breaking News: ABC won a D1 0

model checking competition
at CAV in August 2010

39

Model Checking Competition

) Hardware Model Checking Competition 2010 - Mozilla Firefos: -10J x|
File Edit Wiew Higtory Bookmarks Yshoo!  Tooks  Help
@ - (ar |t .t hemec 1 Dfresus.btml i e P, h:a
J 1 Hardware Model Checking Competiti... | = F
‘ ’N Results
wcc The results have been presented at HWAWW' 0 with the following slides
The winners are
HWMCC 10 ALL abcsuperprove  Universily of California, Berkelay
Benchmarks SAT abchmc2 Universily of California, Berkelay
ER-VEH UNSAT potray Politecnico di Taring
Results
Bules For more information on the set-up please consult the slides of the HWW\A 10
More details can be found in the following files: table xls, table csv, details 4, and checked bd
Done v

40




Cactus all Instances 2226

Further Reading: ABC Tutorial

900 abcsupég]rﬁ\és m L T T ; :_ :3 7
800 |- abcdprt;\cfg é o © A -

tipind . a . .
Wl bl % » For more information, please refer to

bipzzime g _

bp 4o iR

tiplhd  « - -
600 mesti o . 7 *

mcaigerin 3 2 H 1]
- R * R. Brayton and A. Mishchenko, "ABC: An
500 | = . . g . "
N e oo L academic industrial-strength verification tool",

W MEdms 2 8 2ox, Proc. CAV'10, Springer, LNCS 6174, pp. 24-40.

T T
100 nusmvi 8 A.g;g

g Sas . . .
200 § » http://www.eecs.berkeley.edu/~alanmi/publicatio
o § ns/2010/cav10_abc.pdf
0 0 100 200 400 500 600 700 800
42
Summary Assignment: Using ABC

Introduced problems in logic synthesis
— Representations and computations
Described And-Inverter Graphs (AIGS)
— The foundation of innovative synthesis
Overviewed AlG-based solutions

— Synthesis, mapping, verification
Introduced ABC

— Differences, fundamentals, programming

43

» Using BLIF manual
http://www.eecs.berkeley.edu/~alanmi/publicatio
ns/other/blif.pdf

create a BLIF file representing a 2-bit full-adder

» Perform the following sequence:
— read the file into ABC (command "read")
— check statistics (command "print_stats")
— visualize the network structure (command "show")
— convert to AIG (command "strash")
— visualize the AIG (command "show")
— convert to BDD (command "collapse")

— visualize the BDD (command "show_bdd")
44




Assignment: Programming ABC

Write a procedure in ABC environment to iterate over the objects of
the network and list each object ID number and type on a separate
line. Integrate this procedure into ABC, so that running command
"test" would invoke your code, and print the result. Compare the
print-out of the new command "test" with the result of command
"show" for the full-adder example above

Comment 1: For commands "show" and "show_bdd" to work, please
download the binary of software "dot" from GraphVis webpage and
put it in the same directory as the ABC binary or anywhere else in
the path: http://www.graphviz.org

Comment 2: Make sure GSview and Ghostscript are installed on
your computer. http://pages.cs.wisc.edu/~ghost/gsview/

45

Programming Help

» Example of code to iterate over the objects

* Example of code to create new command “test”

Call the new procedure (say, Abc_NtkPrintObjs) from
Abc_CommandTest() in file “abc\src\base\abci\abc.c”

46




