
1

Logic Synthesis and
Verification

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Fall 2010

2

Boolean Function
Representation & Reasoning

Reading:
Logic Synthesis in a Nutshell

Section 2

most of the following slides are by
courtesy of Andreas Kuehlmann

3

Assumption

Unless otherwise said, from now on we
are concerned with two-element Boolean
algebra (i.e. B = {0,1})

4

Boolean Space
 B = {0,1}
 B2 = {0,1}{0,1} = {00, 01, 10, 11}

Karnaugh Maps: Boolean Lattices:

BB00

BB11

BB22

BB33

BB44

5

Boolean Function
 For B = {0,1}, a Boolean function f: Bn  B over variables

x1,…,xn maps each Boolean valuation (truth assignment) in
Bn to 0 or 1

Example
f(x1,x2) with f(0,0) = 0, f(0,1) = 1, f(1,0) = 1, f(1,1) = 0

0
0
1

1
x2

x1

x1

x2

6

Boolean Function
 Onset of f, denoted as f1, is f1= {v  Bn | f(v)=1}

 If f1 = Bn, f is a tautology
 Offset of f, denoted as f0, is f0= {v  Bn | f(v)=0}

 If f0 = Bn, f is unsatisfiable. Otherwise, f is satisfiable.
 f1 and f0 are sets, not functions!
 Boolean functions f and g are equivalent if v Bn. f(v) =

g(v) where v is a truth assignment or Boolean valuation
 A literal is a Boolean variable x or its negation x (or x, x)

in a Boolean formula

x3

x1

x2

x1

x2

x3

f(x1, x2, x3) = x1 f(x1, x2, x3) = x1

7

Boolean Function

 There are 2n vertices in Bn

 There are 22
n

distinct Boolean functions
 Each subset f1  Bn of vertices in Bn forms a

distinct Boolean function f with onset f1

x1x2x3 f
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0  1
1 0 1 0
1 1 0 1
1 1 1 0

x1

x2

x3

8

Boolean Operations
Given two Boolean functions:

f : Bn  B
g : Bn  B

 h = f  g from AND operation is defined as
h1 = f1  g1; h0 = Bn \ h1

 h = f  g from OR operation is defined as
h1 = f1  g1; h0 = Bn \ h1

 h = f from COMPLEMENT operation is defined as
h1 = f0; h0 = f1

9

Cofactor and Quantification
Given a Boolean function:

f : Bn  B, with the input variable (x1,x2,…,xi,…,xn)

 Positive cofactor on variable xi
h = fxi is defined as h = f(x1,x2,…,1,…,xn)

 Negative cofactor on variable xi
h = fxi is defined as h = f(x1,x2,…,0,…,xn)

 Existential quantification over variable xi

h = xi. f is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)

 Universal quantification over variable xi

h = xi. f is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)

 Boolean difference over variable xi
h = f/xi is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)

10

Representation of Boolean Function

 Represent Boolean functions for two reasons
 to represent and manipulate the actual circuit we are

implementing
 to facilitate Boolean reasoning

 Data structures for representation
 Truth table
 Boolean formula

Sum of products (Disjunctive “normal” form, DNF)
Product of sums (Conjunctive “normal” form, CNF)

 Boolean network
Circuit (network of Boolean primitives)
And-inverter graph (AIG)

 Binary Decision Diagram (BDD)

11

Boolean Function Representation
Truth Table
 Truth table (function table for multi-valued

functions):
The truth table of a function f : Bn  B is a
tabulation of its value at each of the 2n

vertices of Bn.

In other words the truth table lists all mintems
Example: f = abcd + abcd + abcd +

abcd + abcd + abcd +
abcd + abcd

The truth table representation is
- impractical for large n
- canonical
If two functions are the equal, then their
canonical representations are isomorphic.

abcd f
0 0000 0
1 0001 1
2 0010 0
3 0011 1
4 0100 0
5 0101 1
6 0110 0
7 0111 0

abcd f
8 1000 0
9 1001 1
10 1010 0
11 1011 1
12 1100 0
13 1101 1
14 1110 1
15 1111 1

12

Boolean Function Representation
Boolean Formula

 A Boolean formula is defined inductively as an expression
with the following formation rules (syntax):

formula ::= ‘(‘ formula ‘)’

| Boolean constant (true or false)

| <Boolean variable>

| formula “+” formula (OR operator)

| formula “” formula (AND operator)

|  formula (complement)

Example

f = (x1  x2) + (x3) + ((x4  (x1)))

typically “” is omitted and ‘(‘, ‘)’ and ‘’ are simply reduced by priority,

e.g. f = x1 x2 + x3 + x4 x1

13

Boolean Function Representation
Boolean Formula in SOP

 A cube is defined as a conjunction of literals, i.e. a product
term.

Example
C = x1x2’x3 represents the function with onset: f1 =
{(x1=1,x2=0,x3=1)} in the Boolean space spanned by
x1,x2,x3, or f1 = {(x1=1,x2=0,x3=1, x4=0),
(x1=1,x2=0,x3=1,x4=1)} in the Boolean space spanned
by x1,x2,x3,x4, or …

x1

x2

x3

f = x1

x1

x2

x3

f = x1x2

x1

x2

x3

f = x1x2x3

14

Boolean Function Representation
Boolean Formula in SOP

 If C  f1, C the onset of a cube c, then c is an
implicant of f

 If C  Bn, and c has k literals, then |C|= 2n-k, i.e.,
C has 2n-k elements

Example
c = xy (c:B3  B), C = {100, 101}  B3

k = 2 , n = 3 |C| = 2 = 23-2

 An implicant with n literals is a minterm

15

Boolean Function Representation
Boolean Formula in SOP

 A function can be represented by a sum-of-cubes (products):
f = ab + ac + bc

Since each cube is a product of literals, this is a sum-of-products
(SOP) representation or disjunctive normal form (DNF)

 An SOP can be thought of as a set of cubes F
F = {ab, ac, bc}

 A set of cubes that represents f is called a cover of f.
F1={ab, ac, bc} and F2={abc, abc, abc, abc}

are covers of
f = ab + ac + bc.

 Mainly used in circuit synthesis; seldom used in Boolean reasoning

16

Boolean Function Representation
Boolean Formula in POS

 Product-of-sums (POS), or conjunctive normal form (CNF),
representation of Boolean functions
 Dual of the SOP representation

Example
 = (a+b+c) (a+b+c) (a+b+c) (a+b+c)

 A Boolean function in a POS representation can be derived
from an SOP representation with De Morgan’s law and the
distributive law

 Mainly used in Boolean reasoning; rarely used in circuit
synthesis (due to the asymmetric characteristics of NMOS
and PMOS)

17

Boolean Function Representation
Boolean Network

 Used for two main purposes
 as target structure for logic implementation which gets

restructured in a series of logic synthesis steps until
result is acceptable

 as representation for Boolean reasoning engine

 Efficient representation for most Boolean problems
 memory complexity is similar to the size of circuits that

we are actually building

 Close to the input and output representations of logic
synthesis

18

Boolean Function Representation
Boolean Network

A Boolean network is a directed graph C(G,N)
where G are the gates and N  GG) are the
directed edges (nets) connecting the gates.

Some of the vertices are designated:
Inputs: I  G
Outputs: O  G
I  O = 

Each gate g is assigned a Boolean function fg
which computes the output of the gate in terms
of its inputs.

19

Boolean Function Representation
Boolean Network

 The fanin FI(g) of a gate g are the predecessor gates of g:
FI(g) = {g’ | (g’,g)  N} (N: the set of nets)

 The fanout FO(g) of a gate g are the successor gates of g:
FO(g) = {g’ | (g,g’)  N}

 The cone CONE(g) of a gate g is the transitive fanin (TFI) of
g and g itself

 The support SUPPORT(g) of a gate g are all inputs in its
cone:
SUPPORT(g) = CONE(g)  I

20

Boolean Function Representation
Boolean Network

Example

I

O

6

FI(6) = {2,4}

FO(6) = {7,9}

CONE(6) = {1,2,4,6}

SUPPORT(6) = {1,2}

1

5

3

4

7
8

9

2

21

Boolean Function Representation
Boolean Network

 Circuit functions are defined recursively:

If G is implemented using physical gates with positive (bounded)
delays for their evaluation, the computation of hg depends in
general on those delays.

Definition
A circuit C is called combinational if for each input assignment of
C for t the evaluation of hg for all outputs is independent of
the internal state of C.

Proposition
A circuit C is combinational if it is acyclic. (converse not true!)

h
gi


x
i
 if g

i
 I

f
gi

(h
g j

,...,h
gk

), g
j
,...,g

k
FI (g

i
) otherwise







22

General Boolean network:
 Vertex can have an arbitrary finite number of inputs and outputs

 Vertex can represent any Boolean function stored in different
ways, such as:
 SOPs (e.g. in SIS, a logic synthesis package)
 BDDs (to be introduced)
 AIGs (to be introduced)
 truth tables
 Boolean expressions read from a library description
 other sub-circuits (hierarchical representation)

 The data structure allows general manipulations for insertion and
deletion of vertices, pins (connection ports of vertices), and nets
 general but far too slow for Boolean reasoning

Boolean Function Representation
Boolean Network

23

Boolean Function Representation
Boolean Network

Specialized Boolean network:
 Non-canonical representation in general

 computational effort of Boolean reasoning is due to this
non-canonicity (c.f. BDDs)

 Vertices have fixed number of inputs (e.g. two)

 Vertex function is stored as label (e.g. OR, AND, XOR)

 Allow on-the-fly compaction of circuit structure
 Support incremental, subsequent reasoning on multiple

problems

24

Boolean Function Representation
And-Inverter Graph

 AND-INVERTER graphs (AIGs)
vertices: 2-input AND gates
edges: interconnects with (optional) dots representing INVs

 Hash table to identify and reuse structurally isomorphic
circuits

f

g g

f

25

Boolean Function Representation
And-Inverter Graph

 Data structure for implementation
 Vertex:

pointers (integer indices) to left- and right-child and fanout
vertices

collision chain pointer
other data

 Edge:
pointer or index into array
one bit to represent inversion

 Global hash table holds each vertex to identify isomorphic
structures

 Garbage collection to regularly free un-referenced vertices

26

Boolean Function Representation
And-Inverter Graph

 Data structure

0456
left

right
next

fanout
1345
….

8456
….

6423
….

7463
….

0
1

hash value

left pointer

right pointer

next in collision chain

array of fanout pointers

complement bits

Constant

One Vertex

zero

one

0456
0455

0457

...

...

Hash Table

0456
left

right
next

fanout

0
0

27

Boolean Function Representation
And-Inverter Graph

 AIG package for Boolean reasoning
Engine application:

- traverse problem data structure and build Boolean problem using the interface

- call SAT to make decision

Engine Interface:

void INIT()

void QUIT()

Edge VAR()

Edge AND(Edge p1,

Edge p2)

Edge NOT(Edge p1)

Edge OR(Edge p1

Edge p2)

...

int SAT(Edge p1)

Engine Implementation:

...

...

...

...

External reference pointers attached

to application data structures

28

Boolean Function Representation
And-Inverter Graph

 Hash table look-up

Algorithm HASH_LOOKUP(Edge p1, Edge p2) {
index = HASH_FUNCTION(p1,p2)
p = &hash_table[index]
while(p != NULL) {
if(p->left == p1 && p->right == p2) return p;
p = p->next;

}
return NULL;

}

 Tricks:
 keep collision chain sorted by the address (or index) of p
 use memory locations (or array indices) in topological order for

better cache performance

29

Boolean Function Representation
And-Inverter Graph

 AND operation

AND(Edge p1,Edge p2){
if(p1 == const1) return p2
if(p2 == const1) return p1
if(p1 == p2) return p1
if(p1 == p2) return const0
if(p1 == const0 || p2 == const0) return const0

if(RANK(p1) > RANK(p2)) SWAP(p1,p2)

if((p = HASH_LOOKUP(p1,p2)) return p
return CREATE_AND_VERTEX(p1,p2)

}

30

Boolean Function Representation
And-Inverter Graph

 NOT operation

NOT(Edge p) {

return TOOGLE_COMPLEMENT_BIT(p)

}

OR operation

OR(Edge p1,Edge p2){

return (NOT(AND(NOT(p1),NOT(p2))))

}

31

Boolean Function Representation
And-Inverter Graph
 Cofactor operation

POSITIVE_COFACTOR(Edge p,Edge v){
if(IS_VAR(p)) {

if(p == v) {
if(IS_INVERTED(v) == IS_INVERTED(p)) return const1
else return const0

}
else return p

}
if((c = GET_COFACTOR(p,v)) == NULL) {

left = POSITIVE_COFACTOR(p->left, v)
right = POSITIVE_COFACTOR(p->right, v)
c = AND(left,right)
SET_COFACTOR(p,v,c)

}
if(IS_INVERTED(p)) return NOT(c)
else return c

}

32

Boolean Function Representation
And-Inverter Graph

 Similar algorithm for NEGATIVE_COFACTOR

 Existential and universal quantifications can be
built from AND, OR and COFACTORS

Exercise: Prove (f  g)v = fv  gv and (f) v = (fv)

Question: What is the worst-case complexity of
performing quantifications over AIGs?

