Logic Synthesis and
Veritication I

Jie-Hong Roland Jiang
NI

/\\
Department of Electrical Engineering ‘\
National Taiwan University

Fall 2010

Boolean Function

Representation & Reasoning I
I

Reading:
Logic Synthesis in a Nutshell
Section 2

most of the following slides are by
courtesy of Andreas Kuehlmann

2

Assumption

CdUnless otherwise said, from now on we
are concerned with two-element Boolean

algebra (i.e. B = {0,1})

Boolean Space

OB=4{0,1}
O B® = {0,1}x{0,1} = {00, 01, 10, 11}
Karnaugh Maps: Boolean Lattices:
BO |:| ®
B[]]
B2 ?

aT>
B3

B4

Boolean Function

O For B = {0,1}, a Boolean function f: B —» B over variables
X4,---,X, Maps each Boolean valuation (truth assignment) in
BrtoOorl

Example
f(x,,x,) with f(0,0) = 0O, f(0,1) =1, f(1,0) =1, f(1,1) =0

x
2
~|o
ol || x
N
><
N
—

Boolean Function

OO0 Onset of f, denoted as f1, is f'={v € B" | f(v)=1}

® If f1 = B", fis a tautology
O Offset of f, denoted as f°, is = {v € B" | f(v)=0}

m If fO = Bn, fis unsatisfiable. Otherwise, f is satisfiable.
O

O Boolean functions f and g are equivalent if Yve B". f(v) =
g(v) where v is a truth assignment or Boolean valuation

O A literal is a Boolean variable x or its negation x’ (or X, —X)
in a Boolean formula

f(X1) Xo1 X3) = Xy f(Xy, Xa0 X5) =%

Boolean Function

0 There are 2" vertices in B"
n . . .
0 There are 22 distinct Boolean functions

B Each subset f1 < B" of vertices in B" forms a
distinct Boolean function f with onset f!

X X,Xg f
000 1
001
010 1
. 100 =1
=
A'z 101
X 110 1
111

Boolean Operations

Given two Boolean functions:
f: B> B
g:B">B

O h =f A g from AND operation is defined as
ht=flng!; ho=B"\ ht

O h =fv gfrom OR operation is defined as
ht=flu gt ho=B"\ ht

O h = —f from COMPLEMENT operation is defined as
ht =f0; ho =f1

Cofactor and Quantification

Given a Boolean function:
f : B" - B, with the input variable (x;,X,,..., Xiyees Xq)

O Positive cofactor on variable x;
h =1, is defined as h = f(xy,X,,..., 1,..., Xn)

O Negative cofactor on variable x;
h =f_ is defined as h = f(xy,X,,...,0,...,X,,)

O Existential quantification over variable x;
h = 3x;. f is defined as h = f(Xy,X,,...,0,...,X,) v f(X{,X5,...,1,...,X;)

O Universal quantification over variable x;
h = Vx;. f is defined as h = f(xy,X,,..., o,..., X)) A F(Xq,X0, .0 1,..., X))

O Boolean difference over variable x;
h = of/ox; is defined as h = f(x;,X5,...,0,...,X,) @ f(X{,X5,...,

=

..... Xn)

Representation of Boolean Function

0 Represent Boolean functions for two reasons
B to represent and manipulate the actual circuit we are
implementing
M to facilitate Boolean reasoning

[0 Data structures for representation
B Truth table
B Boolean formula
O Sum of products (Disjunctive “normal” form, DNF)
OProduct of sums (Conjunctive “normal” form, CNF)
B Boolean network
O Circuit (network of Boolean primitives)
O And-inverter graph (AIG)
M Binary Decision Diagram (BDD)

10

Boolean Function Representation

Truth Table

|
O Truth table (function table for multi-valued
functions):
The truth table of a function f : B" - B is a
tabulation of its value at each of the 2"
vertices of B". abcd f abcd f
0 0000 O 8 1000 O
In other words the truth table lists all mintems 1 0001 1 9 1001 1
Example: f = a’b’c’d + a'b’cd + a’bc’'d + 2 0010 O 10 1010 O
ab’c’'d + ab’cd + abc'd + 3 0011 1 11 1011 1
abced’ + abed 4 0100 O 12 1100 O
5 0101 1 13 1101 1
The truth table representation is 6 0110 0 14 1110 1
7 0111 O 15 1111 1
If two functions are the equal, then their
canonical representations are isomorphic.
11
Boolean Function Representation
Boolean Formula
|

OO0 A Boolean formula is defined inductively as an expression
with the following formation rules (syntax):

formula ::= ‘(‘ formula *y’
| Boolean constant (true or false)
| <Boolean variable>
| formula “+” formula (OR operator)
| formula “” formula (AND operator)
| — formula (complement)
Example

F= Xy Xp) + (Xg) + =(=(X4 - (=X1)))
typically “-” is omitted and ‘(', ©)’ and ‘=" are simply reduced by priority,
e.g. f=X; X, + X3+ X, =X,

12

Boolean Function Representation
Boolean Formula in SOP

O A cube is defined as a conjunction of literals, i.e. a product
term.

Example

C = X;X,'X3 represents the function with onset: f! =
{(X;=1,x,=0,x5;=1)} in the Boolean space spanned by
X1,X5,X3, OF f1 = {(x,;=1,%x,=0,x;=1, x,=0),
(x,=1,%x,=0,%3=1,%x,=1)} in the Boolean space spanned
by X;,X5,X3,X4, OF ...

f=x, f=x;%, f=X;X,Xg
X3 X3 X3
A’z A'Z A'z
— — —
X, X X1 13

Boolean Function Representation
Boolean Formula in SOP

O If C < f1, C the onset of a cube c, then c is an
implicant of f

O If C < B", and c has k literals, then |C|= 2"k, i.e.,
C has 2"k elements

Example
c =xy' (c:B3-> B), C = {100, 101} c B3
k=2,n=3 |IC]| =2 = 232

0 An implicant with n literals is a minterm

14

Boolean Function Representation
Boolean Formula in SOP

O

A function can be represented by a sum-of-cubes (products):
f=ab + ac + bc

Since each cube is a product of literals, this is a sum-of-products
(SOP) representation or disjunctive normal form (DNF)

An SOP can be thought of as a set of cubes F
F = {ab, ac, bc}
A set of cubes that represents f is called a cover of f.
F,={ab, ac, bc} and F,={abc, abc’, ab’c, a’bc}
are covers of
f=ab + ac + bc.

Mainly used in circuit synthesis; seldom used in Boolean reasoning

15

Boolean Function Representation
Boolean Formula in POS

O Product-of-sums (POS), or conjunctive normal form (CNF),

representation of Boolean functions
B Dual of the SOP representation

Example
¢ = (a+b'+c) (a'+b+c) (a+b’'+c") (a+b+c)

0 A Boolean function in a POS representation can be derived

from an SOP representation with De Morgan’s law and the
distributive law

Mainly used in Boolean reasoning; rarely used in circuit
synthesis (due to the asymmetric characteristics of NMOS
and PMOS)

16

Boolean Function Representation
Boolean Network

[0 Used for two main purposes

M as target structure for logic implementation which gets
restructured in a series of logic synthesis steps until
result is acceptable

B as representation for Boolean reasoning engine

O Efficient representation for most Boolean problems

B memory complexity is similar to the size of circuits that
we are actually building

O Close to the input and output representations of logic
synthesis

17

Boolean Function Representation
Boolean Network

A Boolean network is a directed graph C(G,N)
where G are the gates and N c (GxG) are the
directed edges (nets) connecting the gates.

Some of the vertices are designated:
1 <G
OcG

1IN0 =0

Each gate g Is assigned a Boolean function f
which computes the output of the gate in terms
of its inputs.

18

Boolean Function Representation
Boolean Network

O The fanin FI(g) of a gate g are the predecessor gates of g:
FI(g) = {g’ | (@',9) € N} (N: the set of nets)

O The fanout FO(g) of a gate g are the successor gates of g:
FO(9) = {9’ | (9.9) € N}

0 The cone CONE(g) of a gate g is the transitive fanin (TFI) of
g and g itself

OO0 The support SUPPORT(g) of a gate g are all inputs in its
cone:

SUPPORT(g) = CONE(g) N |

19

Boolean Function Representation
Boolean Network

Example

FI(6) = {2,4} O
FO(6) = {7,9}
CONE(6) = {1,2,4,6}

SUPPORT(6) = {1,2}
20

Boolean Function Representation
Boolean Network

OO0 Circuit functions are defined recursively:

) X if g el
6 fgi(hgj,---,hgk), 910, e FI(g,) otherwise

If G is implemented using physical gates with positive (bounded)
delays for their evaluation, the computation of hy depends in
general on those delays.

Definition
A circuit C is called combinational if for each input assignment of

C for t—»o the evaluation of h for all outputs is independent of
the internal state of C.

Proposition
A circuit C is combinational if it is acyclic. (converse not true!)

21

Boolean Function Representation
Boolean Network

General Boolean network:
OO0 Vertex can have an arbitrary finite number of inputs and outputs

O Vertex can represent any Boolean function stored in different
ways, such as:

B SOPs (e.g. in SIS, a logic synthesis package)

B BDDs (to be introduced)

B AIGs (to be introduced)

B truth tables

B Boolean expressions read from a library description
B other sub-circuits (hierarchical representation)

O The data structure allows general manipulations for insertion and
deletion of vertices, pins (connection ports of vertices), and nets

B general but far too slow for Boolean reasoning

22

Boolean Function Representation
Boolean Network

Specialized Boolean network:
0 Non-canonical representation in general

B computational effort of Boolean reasoning is due to this
non-canonicity (c.f. BDDs)

0 Vertices have fixed number of inputs (e.g. two)
O Vertex function is stored as label (e.g. OR, AND, XOR)

0 Allow on-the-fly compaction of circuit structure

B Support incremental, subsequent reasoning on multiple
problems

23

Boolean Function Representation

And-Inverter Graph

O AND-INVERTER graphs (AIGs)
vertices: 2-input AND gates
edges: interconnects with (optional) dots representing INVs

O Hash table to identify and reuse structurally isomorphic
circuits

}

Boolean Function Representation

And-Inverter Graph

O Data structure for implementation
B Vertex:
O pointers (integer indices) to left- and right-child and fanout
vertices
I collision chain pointer
Oother data
B Edge:
O pointer or index into array
Clone bit to represent inversion
B Global hash table holds each vertex to identify isomorphic
structures
B Garbage collection to regularly free un-referenced vertices
25
Boolean Function Representation
And-Inverter Graph
] Data structure
Hash Table
0455
0456
Constant 0457
One Vertex

hash value

\

v

| left pointer

complement bits —* 7]
5 «+— right pointer 0456
““—— next in collision chain 0 !eft
«|— array of fanout pointers ~—0/right

next —_|_

26

Boolean Function Representation

And-Inverter Graph

0 AIG package for Boolean reasoning
Engine application:
- traverse problem data structure and build Boolean problem using the interface
- call SAT to make decision

Engine Interface: External reference pointers attached
void INITQO to application data structures

void QUITQ k

Edge VARQ) >

Edge AND(Edge p1,

Edge p2)

Edge NOT(Edge pl)
Edge OR(Edge pl
Edge p2)

R

int SAT(Edge pl) - ; 27

Boolean Function Representation

And-Inverter Graph

0 Hash table look-up

Algorithm HASH_LOOKUP(Edge pl, Edge p2) {

index = HASH_FUNCTION(p1,p2)

p = &hash_table[index]

while(p = NULL) {
if(p->left == pl && p->right == p2) return p;
p = p->hext;

by

return NULL;

}

O Tricks:
B keep collision chain sorted by the address (or index) of p

B use memory locations (or array indices) in topological order for
better cache performance

28

Boolean Function Representation

And-Inverter Graph

0 AND operation

AND(Edge pl,Edge p2){
1T(pl == constl) return p2
1T(p2 == constl) return pl
1T(pl == p2) return pl
1IT(pl == —p2) return constO
1IT(pl == constO || p2 == const0) return constO

i F(RANK(p1) > RANK(p2)) SWAP(p1l,p2)

1IT((p = HASH_LOOKUP(p1,p2)) return p
return CREATE_AND_VERTEX(p1,p2)

29

Boolean Function Representation

And-Inverter Graph
0 NOT operation

NOT(Edge p) {
return TOOGLE_COMPLEMENT_BIT(p)

}

0 OR operation

OR(Edge pl,Edge p2){
return (NOTCAND(NOT(p1),NOT(p2))))
}

30

Boolean Function Representation

And-Inverter Graph

O Cofactor operation

POSITIVE_COFACTOR(Edge p,Edge v){
iF(IS_VAR(P)) {

if(p == v) {
iT(IS_INVERTED(V) == IS_INVERTED(p)) return constl
else return constO
}
else return p

}

iT((c = GET_COFACTOR(p,Vv)) == NULL) {
left = POSITIVE_COFACTOR(p->left, v)
right = POSITIVE_COFACTOR(p->right, v)
c = AND(left,right)
SET_COFACTOR(p,V,C)

b
if(IS_INVERTED(p)) return NOT(c)
else return c

31

Boolean Function Representation

And-Inverter Graph

0 Similar algorithm for NEGATIVE_COFACTOR

0 Existential and universal quantifications can be
built from AND, OR and COFACTORS

Exercise: Prove (f-g), =f, - g, and (=) , = —(f,)

Question: What is the worst-case complexity of
performing quantifications over AIGs?

32

