Logic Synthesis and Verification

Jie－Hong Roland Jiang
江介宏
Department of Electrical Engineering National Taiwan University

Fall 2010

Reading：
Logic Synthesis in a Nutshell
Section 2
most of the following slides are by courtesy of Andreas Kuehlmann

Assumption

\square Unless otherwise said，from now on we are concerned with two－element Boolean algebra（i．e． $\mathbf{B}=\{0,1\}$ ）

Boolean Function
 Representation \＆Reasoning

Boolean Space

$\square B=\{0,1\}$
$\square B^{2}=\{0,1\} \times\{0,1\}=\{00,01,10,11\}$

Boolean Function

```
\(\square\) For \(\mathbf{B}=\{0,1\}\), a Boolean function \(\mathrm{f}: \mathbf{B}^{\mathrm{n}} \rightarrow \mathbf{B}\) over variables \(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\) maps each Boolean valuation (truth assignment) in \(\mathbf{B}^{n}\) to 0 or 1
```

Example
$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ with $\mathrm{f}(0,0)=0, \mathrm{f}(0,1)=1, \mathrm{f}(1,0)=1, \mathrm{f}(1,1)=0$

Boolean Function

\square There are 2^{n} vertices in \mathbf{B}^{n}There are $2^{2^{n}}$ distinct Boolean functions
\square Each subset $f^{1} \subseteq \mathbf{B}^{n}$ of vertices in \mathbf{B}^{n} forms a distinct Boolean function f with onset f^{1}

$\left.\mathrm{x}_{3}\right\|_{\underset{\mathrm{x}_{1}}{0}} ^{\bullet}{ }^{\circ}{ }^{0}{ }_{\mathrm{x}_{2}}^{0}$	$\mathrm{x}_{1} \mathrm{X}_{2} \mathrm{x}_{3}$ 000 000	f 1
	001	0
	010	1
	011	0
	100	$\Rightarrow 1$
	101	0
	110	1
	111	0

Boolean Function

\square Onset of f, denoted as f^{1}, is $f^{1}=\left\{v \in \mathbf{B}^{n} \mid f(v)=1\right\}$ - If $\mathrm{f}^{1}=\mathbf{B}^{\mathrm{n}}, \mathrm{f}$ is a tautology
\square Offset of f, denoted as f^{0}, is $f^{0}=\left\{v \in \mathbf{B}^{n} \mid f(v)=0\right\}$ ■ If $f 0=\mathbf{B}^{n}$, f is unsatisfiable. Otherwise, f is satisfiable

- f^{1} and f^{0} are sets, not functions!
\square Boolean functions f and g are equivalent if $\forall v \in \mathbf{B}^{n} . f(v)=$ $g(v)$ where v is a truth assignment or Boolean valuation
\square A literal is a Boolean variable x or its negation $x^{\prime}($ or $x, \neg x)$ in a Boolean formula

6

Boolean Operations

Given two Boolean functions:

$$
\begin{aligned}
& \mathrm{f}: \quad \mathbf{B}^{\mathrm{n}} \rightarrow \mathbf{B} \\
& \mathrm{~g}: \mathbf{B}^{\mathrm{n}} \rightarrow \mathbf{B}
\end{aligned}
$$

$\square h=f \wedge g$ from AND operation is defined as

$$
h^{1}=f^{1} \cap g^{1} ; h^{0}=B^{n} \backslash h^{1}
$$

$\square h=f \vee g$ from OR operation is defined as
$h^{1}=f^{1} \cup g^{1} ; h^{0}=B^{n} \backslash h^{1}$
$\square \mathrm{h}=\neg \mathrm{f}$ from COMPLEMENT operation is defined as

$$
h^{1}=f^{0} ; h^{0}=f^{1}
$$

Cofactor and Quantification

Given a Boolean function:
$f: \mathbf{B}^{\mathrm{n}} \rightarrow \mathbf{B}$, with the input variable $\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)$
\square Positive cofactor on variable x_{i}
$h=f_{x i}$ is defined as $h=f\left(x_{1}, x_{2}, \ldots, 1, \ldots, x_{n}\right)$

- Negative cofactor on variable x_{i} $h=f_{-x i}$ is defined as $h=f\left(x_{1}, x_{2}, \ldots, 0, \ldots, x_{n}\right)$
- Existential quantification over variable x^{\prime} $h=\exists x_{i} . f$ is defined as $h=f\left(x_{1}, x_{2}, \ldots, 0, \ldots, x_{n}\right) \vee f\left(x_{1}, x_{2}, \ldots, 1, \ldots, x_{n}\right)$
- Universal quantification over variable x $h=\forall x_{i} . f$ is defined as $h=f\left(x_{1}, x_{2}, \ldots, 0, \ldots, x_{n}\right) \wedge f\left(x_{1}, x_{2}, \ldots, 1, \ldots, x_{n}\right)$
- Boolean difference over variable x_{i} $h=\partial f / \partial x_{i}$ is defined as $h=f\left(x_{1}, x_{2}, \ldots, 0, \ldots, x_{n}\right) \oplus f\left(x_{1}, x_{2}, \ldots, 1, \ldots, x_{n}\right)$

Representation of Boolean Function

\square Represent Boolean functions for two reasons

- to represent and manipulate the actual circuit we are implementing
- to facilitate Boolean reasoningData structures for representation
- Truth table
- Boolean formula
- Sum of products (Disjunctive "normal" form, DNF)
- Product of sums (Conjunctive "normal" form, CNF)

■ Boolean network
-Circuit (network of Boolean primitives)
-And-inverter graph (AIG)

- Binary Decision Diagram (BDD)

Boolean Function Representation Truth Table

Boolean Function Representation Boolean Formula

\square Truth table (function table for multi-valued functions):
tabulation table of a function $f: \mathbf{B}^{n} \rightarrow \mathbf{B}$ is a vertices of \mathbf{B}^{n}

In other words the truth table lists all mintems Example: $f=a^{\prime} b^{\prime} c^{\prime} d+a^{\prime} b^{\prime} c d+a^{\prime} b c^{\prime} d+$ $a b^{\prime} c^{\prime} d+a b^{\prime} c d+a b c^{\prime} d+$ abcd' + abcd

The truth table representation is
impractical for large n
canonical
If two functions are the equal, then their
canonical representations are isomorphic

	abcd		abcd
0	0000	8	1000
1	0001	9	1001
2	0010	10	1010
3	0011	11	1011
4	0100	12	1100
5	0101	13	1101
6	0110	14	1110
	0111		111

- A Boolean formula is defined inductively as an expression with the following formation rules (syntax):

formula $::=$	(' formula ')' Boolean constant <Boolean variable>	(true or false)
	formula " + " formula	(OR operator)
	formula "." formula	(AND operator)
	\neg formula	(complement)

Example
$\mathrm{f}=\left(\mathrm{x}_{1} \cdot \mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)+\neg\left(\neg\left(\mathrm{x}_{4} \cdot\left(\neg \mathrm{x}_{1}\right)\right)\right)$
typically "." is omitted and '(', ')' and ' \neg ' are simply reduced by priority, e.g. $f=x_{1} x_{2}+x_{3}+x_{4} \neg x_{1}$

Boolean Function Representation Boolean Formula in SOP

\square A cube is defined as a conjunction of literals, i.e. a product term.

Example

$$
\begin{aligned}
& \mathrm{C}=\mathrm{x}_{1} \mathrm{x}_{2}{ }^{\prime} \mathrm{x}_{3} \text { represents the function with onset: } \mathrm{f}^{1}= \\
& \left\{\left(\mathrm{x}_{1}=1, \mathrm{x}_{2}=0, \mathrm{x}_{3}=1\right)\right\} \text { in the Boolean space spanned by } \\
& \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \text { or } \mathrm{f}_{1}=\left\{\left(\mathrm{x}_{1}=1, \mathrm{x}_{2}=0, \mathrm{x}_{3}=1, \mathrm{x}_{4}=0\right)\right. \text {, } \\
& \left.\left(\mathrm{x}_{1}=1, \mathrm{x}_{2}=0, \mathrm{x}_{3}=1, \mathrm{x}_{4}=1\right)\right\} \text { in the Boolean space spanned } \\
& \mathrm{by} \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \text { or } \ldots
\end{aligned}
$$

Boolean Function Representation

 Boolean Formula in SOP\square If $C \subseteq f^{1}, C$ the onset of a cube c, then c is an implicant of f
\square If $C \subseteq B^{n}$, and c has k literals, then $|C|=2^{n-k}$, i.e., C has 2^{n-k} elements

Example

$$
\begin{aligned}
& c=x y^{\prime}\left(c: B^{3} \rightarrow \mathbf{B}\right), C=\{100,101\} \subseteq \mathbf{B}^{3} \\
& k=2, n=3 \quad|C|=2=2^{3-2}
\end{aligned}
$$

\square An implicant with n literals is a minterm

Boolean Function Representation Boolean Formula in SOP

Boolean Function Representation Boolean Formula in POS

- Product-of-sums (POS), or conjunctive normal form (CNF), representation of Boolean functions
- Dual of the SOP representation

Since each cube is a product of literals, this is a sum-of-products (SOP) representation or disjunctive normal form (DNF)

- An SOP can be thought of as a set of cubes F

$$
F=\{a b, a c, b c\}
$$

\square A set of cubes that represents f is called a cover of f.
$F_{1}=\{a b, a c, b c\}$ and $F_{2}=\left\{a b c, a b c^{\prime}, a b^{\prime} c, a^{\prime} b c\right\}$
are covers of

$$
f=a b+a c+b c .
$$

- Mainly used in circuit synthesis; seldom used in Boolean reasoning

Example
$\varphi=\left(a+b^{\prime}+c\right)\left(a^{\prime}+b+c\right)\left(a+b^{\prime}+c^{\prime}\right)(a+b+c)$

- A Boolean function in a POS representation can be derived from an SOP representation with De Morgan's law and the distributive law
- Mainly used in Boolean reasoning; rarely used in circuit synthesis (due to the asymmetric characteristics of NMOS and PMOS)

Boolean Function Representation Boolean Network

\square Used for two main purposes

- as target structure for logic implementation which gets restructured in a series of logic synthesis steps until result is acceptable
- as representation for Boolean reasoning engine
\square Efficient representation for most Boolean problems
- memory complexity is similar to the size of circuits that we are actually building
\square Close to the input and output representations of logic synthesis

Boolean Function Representation Boolean Network

A Boolean network is a directed graph C(G,N) where G are the gates and $N \subset(G \times G)$ are the directed edges (nets) connecting the gates.

Some of the vertices are designated:

```
nputs: \(\quad 1 \subseteq G\)
Outputs: \(\mathrm{O} \subseteq \mathrm{G}\)
\(\mathrm{I} \cap \mathrm{O}=\varnothing\)
```

Each gate g is assigned a Boolean function f_{g} which computes the output of the gate in terms of its inputs.

Boolean Function Representation Boolean Network

\square The fanin $\mathrm{Fl}(\mathrm{g})$ of a gate g are the predecessor gates of g : $\mathrm{Fl}(\mathrm{g})=\left\{\mathrm{g}^{\prime} \mid\left(\mathrm{g}^{\prime}, \mathrm{g}\right) \in \mathrm{N}\right\}$ ($\mathrm{N}:$ the set of nets)
\square The fanout $\mathrm{FO}(\mathrm{g})$ of a gate g are the successor gates of g : $\mathrm{FO}(\mathrm{g})=\left\{\mathrm{g}^{\prime} \mid\left(\mathrm{g}, \mathrm{g}^{\prime}\right) \in \mathrm{N}\right\}$
\square The cone $\operatorname{CONE}(\mathrm{g})$ of a gate g is the transitive fanin (TFI) of g and g itself
\square The support $\operatorname{SUPPORT}(\mathrm{g})$ of a gate g are all inputs in its cone:
SUPPORT(g) $=$ CONE $(\mathrm{g}) \cap \mathrm{I}$

Boolean Function Representation Boolean Network

Example

Boolean Function Representation Boolean Network

\square Circuit functions are defined recursively:

$$
h_{g_{i}}=\left\{\begin{array}{lc}
x_{i} & \text { if } g_{i} \in I \\
f_{g_{i}}\left(h_{g_{j}}, \ldots, h_{g_{k}}\right), g_{j}, \ldots, g_{k} \in F I\left(g_{i}\right) & \text { otherwise }
\end{array}\right.
$$

If G is implemented using physical gates with positive (bounded) delays for their evaluation, the computation of h_{g} depends in general on those delays.

Definition

A circuit C is called combinational if for each input assignment of C for $\mathrm{t} \rightarrow \infty$ the evaluation of h_{g} for all outputs is independent of the internal state of C

Proposition
A circuit C is combinational if it is acyclic. (converse not true!)

Boolean Function Representation Boolean Network

General Boolean network:

\square Vertex can have an arbitrary finite number of inputs and outputs
\square Vertex can represent any Boolean function stored in different ways, such as:

- SOPs (e.g. in SIS, a logic synthesis package)
- BDDs (to be introduced)
- AIGs (to be introduced)
- truth tables
- Boolean expressions read from a library description
- other sub-circuits (hierarchical representation)
\square The data structure allows general manipulations for insertion and deletion of vertices, pins (connection ports of vertices), and nets - general but far too slow for Boolean reasoning

Boolean Function Representation Boolean Network

Specialized Boolean network:

\square Non-canonical representation in general

- computational effort of Boolean reasoning is due to this non-canonicity (c.f. BDDs)
\square Vertices have fixed number of inputs (e.g. two)
\square Vertex function is stored as label (e.g. OR, AND, XOR)
\square Allow on-the-fly compaction of circuit structure
- Support incremental, subsequent reasoning on multiple problems

Boolean Function Representation And-Inverter Graph

\square AND-INVERTER graphs (AIGs)
vertices: 2 -input AND gates
edges: interconnects with (optional) dots representing INVs
\square Hash table to identify and reuse structurally isomorphic circuits

Boolean Function Representation And-Inverter Graph

Boolean Function Representation And-Inverter Graph

\square Data structure for implementation

- Vertex:
\square pointers (integer indices) to left- and right-child and fanout vertices
\square collision chain pointer
\square other data
■ Edge:
\square pointer or index into array
\square one bit to represent inversion
- Global hash table holds each vertex to identify isomorphic structures
- Garbage collection to regularly free un-referenced vertices

Boolean Function Representation And-Inverter Graph

\square AIG package for Boolean reasoning

Engine application:

- traverse problem data structure and build Boolean problem using the interface - call SAT to make decision

Engine Interface: void INIT()
void QUIT()
Edge VAR()
Edge AND(Edge p1, Edge p2)
Edge NOT(Edge p1)
Edge OR(Edge p1 Edge p2)
int SAT(Edge p1)

Boolean Function Representation And-Inverter Graph

ㅁ Hash table look-up

```
Algorithm HASH_LOOKUP(Edge p1, Edge p2) {
    index = HASH_FUNCTION(p1,p2)
    p = &hash_table[index]
    while(p != NULL) {
        if(p->left == p1 && p->right == p2) return p;
            p = p->next;
        }
    return NULL;
}
```

- Tricks:
- keep collision chain sorted by the address (or index) of p
- use memory locations (or array indices) in topological order for better cache performance

```
Boolean Function Representation
And-Inverter Graph
\(\square\) AND operation
AND(Edge p1,Edge p2)\{
    if(p1 == const1) return p2
    if(p2 == const1) return p 1
    if(p1 == p2) return p1
        if(p1 == \(\neg\) p2) return const0
        if(p1 == const0 || \(22==\) const0) return const0
        if(RANK(p1) > RANK(p2)) SWAP(p1,p2)
    if((p = HASH_LOOKUP(p1,p2)) return p
        return CREATE_AND_VERTEX(p1, p2)
\}
```

Boolean Function Representation
And-Inverter Graph

Boolean Function Representation And-Inverter Graph

```
\square Cofactor operation
}
```

```
    POSITIVE_COFACTOR(Edge p,Edge v){
```

 POSITIVE_COFACTOR(Edge p,Edge v){
 if(IS_VAR(p)) {
 if(IS_VAR(p)) {
 if(p == v) {
 if(p == v) {
 if(IS_INVERTED(v) == IS_INVERTED(p)) return const1
    ```
```

 if(IS_INVERTED(v) == IS_INVERTED(p)) return const1
    ```
```



```
```

 else
    ```
```

 else
 }
 }
 if((c = GET_COFACTOR(p,v)) == NULL) {
 if((c = GET_COFACTOR(p,v)) == NULL) {
 left = POSITIVE_COFACTOR(p->left, v)
 left = POSITIVE_COFACTOR(p->left, v)
 right = POSITIVE_COFACTOR(p->right, v)
 right = POSITIVE_COFACTOR(p->right, v)
 c = AND(left,right)
 c = AND(left,right)
 SET_COFACTOR(p,v,c)
 SET_COFACTOR(p,v,c)
 }
 }
 if(IS_INVERTED(p)) return NOT(c)
 if(IS_INVERTED(p)) return NOT(c)
 else return c
 else return c
    ```
                return p
```

```
                return p
```

Boolean Function Representation
And-Inverter Graph
\square Similar algorithm for NEGATIVE_COFACTOR

