Logic Synthesis and **Boolean Function** Verification Representation & Reasoning Jie-Hong Roland Jiang Reading: 江介宏 Logic Synthesis in a Nutshell Department of Electrical Engineering Section 2 National Taiwan University Fall 2010 most of the following slides are by courtesy of Andreas Kuehlmann 1 2

3

Assumption

□ Unless otherwise said, from now on we are concerned with two-element Boolean algebra (i.e. **B** = {0,1})

Boolean Space

Boolean Function

□ For $\mathbf{B} = \{0,1\}$, a Boolean function f: $\mathbf{B}^n \rightarrow \mathbf{B}$ over variables $x_1, ..., x_n$ maps each Boolean valuation (truth assignment) in \mathbf{B}^n to 0 or 1

Example

 $f(x_1, x_2)$ with f(0, 0) = 0, f(0, 1) = 1, f(1, 0) = 1, f(1, 1) = 0

Boolean Function

- □ Onset of f, denoted as f^1 , is $f^1 = \{v \in \mathbf{B}^n \mid f(v) = 1\}$ □ If $f^1 = \mathbf{B}^n$, f is a tautology
- **D** Offset of f, denoted as f^0 , is $f^0 = \{v \in \mathbf{B}^n \mid f(v)=0\}$
- If $f^0 = \mathbf{B}^n$, f is unsatisfiable. Otherwise, f is satisfiable.
- f¹ and f⁰ are sets, not functions!
- Boolean functions f and g are equivalent if $\forall v \in \mathbf{B}^n$. f(v) = g(v) where v is a truth assignment or Boolean valuation
- □ A literal is a Boolean variable x or its negation x' (or $x, \neg x$) in a Boolean formula

Boolean Function

\Box There are 2^n vertices in \mathbf{B}^n

- \Box There are 2^{2^n} distinct Boolean functions
 - Each subset f¹ ⊆ Bⁿ of vertices in Bⁿ forms a distinct Boolean function f with onset f¹

$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3$	f
000	1
001	0
010	1
011	0
100	⇒1
101	0
110	1
111	0

5

7

Boolean Operations

Given two Boolean functions:

- f: $\mathbf{B}^n \to \mathbf{B}$ q: $\mathbf{B}^n \to \mathbf{B}$
- $g: \mathbf{B}^n \to \mathbf{B}$
- $\label{eq:h} \begin{gathered} \blacksquare \ h = f \land g \ from \ AND \ operation \ is \ defined \ as \\ h^1 = f^1 \cap g^1; \ h^0 = {\pmb B}^n \setminus h^1 \end{gathered}$
- $\label{eq:h} \begin{array}{l} \blacksquare \ h = f \lor g \ from \ OR \ operation \ is \ defined \ as \\ h^1 = f^1 \cup g^1; \ h^0 = {\bf B}^n \setminus h^1 \end{array}$
- □ $h = \neg f$ from COMPLEMENT operation is defined as $h^1 = f^0$; $h^0 = f^1$

Cofactor and Quantification

Given a Boolean function:

- f: $\mathbf{B}^n \to \mathbf{B}$, with the input variable $(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n, \mathbf{x}_n)$
- Positive cofactor on variable x. $h = f_{x_i}$ is defined as $h = f(x_1, x_2, \dots, 1, \dots, x_n)$
- Negative cofactor on variable x. $h = f_{-xi}$ is defined as $h = f(x_1, x_2, \dots, 0, \dots, x_n)$
- Existential quantification over variable x. $h = \exists x_i$. f is defined as $h = f(x_1, x_2, ..., 0, ..., x_n) \vee f(x_1, x_2, ..., 1, ..., x_n)$
- Universal quantification over variable x_i $h = \forall x_i. f$ is defined as $h = f(x_1, x_2, ..., 0, ..., x_n) \land f(x_1, x_2, ..., 1, ..., x_n)$
- **Boolean difference** over variable x_i $h = \partial f / \partial x_i$ is defined as $h = f(x_1, x_2, \dots, 0, \dots, x_n) \oplus f(x_1, x_2, \dots, 1, \dots, x_n)$

Representation of Boolean Function

Represent Boolean functions for two reasons

- to represent and manipulate the actual circuit we are implementing
- to facilitate Boolean reasoning

Data structures for representation

- Truth table
- Boolean formula □ Sum of products (Disjunctive "normal" form, DNF) Product of sums (Conjunctive "normal" form, CNF)
- Boolean network Circuit (network of Boolean primitives) ■ And-inverter graph (AIG)
- Binary Decision Diagram (BDD)

Boolean Function Representation Truth Table

Truth table (function table for multi-valued functions):						
The truth table of a function $f: \mathbf{B}^n \to \mathbf{B}$ is a tabulation of its value at each of the 2^n						
vertices of B ⁿ .		abcd	f		abcd	f
	0	0000	0	8	1000	0
In other words the truth table lists all mintems	1	0001	1	9	1001	1
Example: $f = a'b'c'd + a'b'cd + a'bc'd +$	2	0010	0	10	1010	0
ab'c'd + ab'cd + abc'd +	3	0011	1	11	1011	1
abcd' + abcd	4	0100	0	12	1100	0
	5	0101	1	13	1101	1
The truth table representation is	6	0110	0	14	1110	1
 impractical for large n canonical 	7	0111	0	15	1111	1
If two functions are the equal, then their						

canonical representations are isomorphic.

Boolean Function Representation **Boolean** Formula

A Boolean formula is defined inductively as an expression with the following formation rules (syntax):

formula ::=

- '(' formula ')'

- formula

Boolean constant <Boolean variable> formula "+" formula formula "." formula

(OR operator) (AND operator) (complement)

(true or false)

Example

$f = (x_1 \cdot x_2) + (x_3) + \neg (\neg (x_4 \cdot (\neg x_1)))$ typically " \cdot " is omitted and '(', ')' and ' \neg ' are simply reduced by priority, $f = x_1 x_2 + x_3 + x_4 \neg x_1$ e.g.

9

Boolean Function Representation Boolean Formula in SOP

■ A cube is defined as a conjunction of literals, i.e. a product term.

Example

C = $x_1x_2'x_3$ represents the function with onset: $f^1 = \{(x_1=1,x_2=0,x_3=1)\}$ in the Boolean space spanned by x_1,x_2,x_3 , or $f^1 = \{(x_1=1,x_2=0,x_3=1, x_4=0), (x_1=1,x_2=0,x_3=1,x_4=1)\}$ in the Boolean space spanned by x_1,x_2,x_3,x_4 , or ...

Boolean Function Representation Boolean Formula in SOP

- □ If $C \subseteq f^1$, C the onset of a cube c, then c is an implicant of f
- □ If $C \subseteq \mathbf{B}^n$, and c has *k* literals, then $|C| = 2^{n-k}$, i.e., C has 2^{n-k} elements

Example

c = xy' (c: **B**³ → **B**), C = {100, 101} ⊆ **B**³ k = 2, n = 3 |C| = 2 = 2³⁻²

□ An implicant with *n* literals is a minterm

Boolean Function Representation Boolean Formula in SOP

A function can be represented by a sum-of-cubes (products):
 f = ab + ac + bc
 Since each cube is a product of literals, this is a sum-of-products (SOP) representation or disjunctive normal form (DNF)

- An SOP can be thought of as a set of cubes F F = {ab, ac, bc}
- □ A set of cubes that represents f is called a cover of f. F₁={ab, ac, bc} and F₂={abc, abc', ab'c, a'bc} are covers of f = ab + ac + bc.
- Mainly used in circuit synthesis; seldom used in Boolean reasoning

Boolean Function Representation Boolean Formula in POS

- Product-of-sums (POS), or conjunctive normal form (CNF), representation of Boolean functions
 - Dual of the SOP representation

Example

 $\varphi = (a+b'+c) (a'+b+c) (a+b'+c') (a+b+c)$

- A Boolean function in a POS representation can be derived from an SOP representation with De Morgan's law and the distributive law
- Mainly used in Boolean reasoning; rarely used in circuit synthesis (due to the asymmetric characteristics of NMOS and PMOS)

Boolean Function Representation Boolean Network

- Used for two main purposes
 - as target structure for logic implementation which gets restructured in a series of logic synthesis steps until result is acceptable
 - as representation for Boolean reasoning engine
- Efficient representation for most Boolean problems
 - memory complexity is similar to the size of circuits that we are actually building
- Close to the input and output representations of logic synthesis

Boolean Function Representation Boolean Network

A Boolean network is a directed graph C(G,N)where G are the gates and $N \subseteq (G \times G)$ are the directed edges (nets) connecting the gates.

Some of the vertices are designated: Inputs: $I \subseteq G$ Outputs: $O \subseteq G$ $I \cap O = \emptyset$

Each gate g is assigned a Boolean function ${\rm f}_{\rm g}$ which computes the output of the gate in terms of its inputs.

17

Boolean Function Representation Boolean Network

- □ The fanin FI(g) of a gate g are the predecessor gates of g: $FI(g) = \{g' \mid (g',g) \in N\}$ (N: the set of nets)
- □ The fanout FO(g) of a gate g are the successor gates of g: FO(g) = {g' | (g,g') ∈ N}
- The cone CONE(g) of a gate g is the transitive fanin (TFI) of g and g itself
- □ The support SUPPORT(g) of a gate g are all inputs in its cone: SUPPORT(g) = CONE(g) ∩ I

Boolean Function Representation Boolean Network

Example

Boolean Function Representation Boolean Network

□ Circuit functions are defined recursively:

$$h_{g_i} = \begin{cases} x_i & \text{if } g_i \in I \\ f_{g_i}(h_{g_j}, \dots, h_{g_k}), g_j, \dots, g_k \in FI(g_i) \text{ otherwise} \end{cases}$$

If G is implemented using physical gates with positive (bounded) delays for their evaluation, the computation of $\rm h_g$ depends in general on those delays.

Definition

A circuit C is called combinational if for each input assignment of C for $t \rightarrow \infty$ the evaluation of h_g for all outputs is independent of the internal state of C.

Proposition

A circuit C is combinational if it is acyclic. (converse not true!)

21

Boolean Function Representation Boolean Network

Specialized Boolean network:

- Non-canonical representation in general
 - computational effort of Boolean reasoning is due to this non-canonicity (c.f. BDDs)
- Vertices have fixed number of inputs (e.g. two)
- Vertex function is stored as label (e.g. OR, AND, XOR)
- □ Allow on-the-fly compaction of circuit structure
 - Support incremental, subsequent reasoning on multiple problems

Boolean Function Representation Boolean Network

General Boolean network:

- Vertex can have an arbitrary finite number of inputs and outputs
- Vertex can represent any Boolean function stored in different ways, such as:
 - SOPs (e.g. in SIS, a logic synthesis package)
 - BDDs (to be introduced)
 - AIGs (to be introduced)
 - truth tables
 - Boolean expressions read from a library description
 - other sub-circuits (hierarchical representation)
- The data structure allows general manipulations for insertion and deletion of vertices, pins (connection ports of vertices), and nets
 - general but far too slow for Boolean reasoning

22

Boolean Function Representation And-Inverter Graph

- AND-INVERTER graphs (AIGs)
 vertices: 2-input AND gates
 edges: interconnects with (optional) dots representing INVs
- Hash table to identify and reuse structurally isomorphic circuits

Boolean Function Representation And-Inverter Graph

- Data structure for implementation
 - Vertex:

pointers (integer indices) to left- and right-child and fanout vertices
 collision chain pointer
 other data

Edge:

pointer or index into arrayone bit to represent inversion

- Global hash table holds each vertex to identify isomorphic structures
- Garbage collection to regularly free un-referenced vertices

25

27

Boolean Function Representation And-Inverter Graph

AIG package for Boolean reasoning Engine application:

traverse problem data structure and build Boolean problem using the interface
 call SAT to make decision

Boolean Function Representation And-Inverter Graph

Hash table look-up

```
Algorithm HASH_LOOKUP(Edge p1, Edge p2) {
  index = HASH_FUNCTION(p1,p2)
  p = &hash_table[index]
  while(p != NULL) {
    if(p->left == p1 && p->right == p2) return p;
    p = p->next;
  }
  return NULL;
}
```

□ Tricks:

- keep collision chain sorted by the address (or index) of p
- use memory locations (or array indices) in topological order for better cache performance

Boolean Function Representation And-Inverter Graph

Boolean Function Representation And-Inverter Graph

AND operation

```
AND(Edge p1,Edge p2){
    if(p1 == const1) return p2
    if(p2 == const1) return p1
    if(p1 == p2) return p1
    if(p1 == -p2) return const0
    if(p1 == const0 || p2 == const0) return const0
```

if(RANK(p1) > RANK(p2)) SWAP(p1,p2)

```
if((p = HASH_LOOKUP(p1,p2)) return p
return CREATE_AND_VERTEX(p1,p2)
```

```
29
```

Boolean Function Representation And-Inverter Graph

NOT operation

```
NOT(Edge p) {
    return TOOGLE_COMPLEMENT_BIT(p)
}
```

OR operation

```
OR(Edge p1,Edge p2){
  return (NOT(AND(NOT(p1),NOT(p2))))
}
```

Boolean Function Representation And-Inverter Graph

```
Cofactor operation
  POSITIVE_COFACTOR(Edge p,Edge v) {
    if(IS_VAR(p)) {
      if(p == v) {
        if(IS_INVERTED(v) == IS_INVERTED(p)) return const1
         else
                                               return const0
    else
                                               return p
   if((c = GET_COFACTOR(p,v)) == NULL) {
    left = POSITIVE COFACTOR(p->left, v)
    right = POSITIVE_COFACTOR(p->right, v)
    c = AND(left,right)
     SET COFACTOR(p,v,c)
   if(IS_INVERTED(p)) return NOT(c)
   else
                      return c
```

Boolean Function Representation And-Inverter Graph

□ Similar algorithm for **NEGATIVE_COFACTOR**

Existential and universal quantifications can be built from AND, OR and COFACTORS

Exercise: Prove $(f \cdot g)_v = f_v \cdot g_v$ and $(\neg f)_v = \neg (f_v)$

Question: What is the worst-case complexity of performing quantifications over AIGs?