Boolean Function Representation
 Binary Decision Diagram (BDD)

Boolean Function Representation BDD - Canonicalization

\square A graphical representation of Boolean function

- BDD is a Shannon cofactor tree:
$\square f=v f_{v}+v^{\prime} f_{v^{\prime}}$ (Shannon expansion)
\square vertices represent decision nodes (i.e. multiplexers) controlled by variables
-leafs are constants " 0 " and " 1 "
\square two children of a vertex of f represent two subfunctions f_{v} and f_{v}.
- Variable ordering restriction and reduction rules make (ROBDD) representation canonical

- General idea:
- instead of exploring sub-cases by enumerating them in time, try to store sub-cases in memory
\square KEY: two hashing mechanisms:
unique table: find identical sub-cases and avoid replication
- Represent logic functions as graphs (DAGs)
- many logic functions can be represented compactly - usually better than SOPs
\square Can be made canonical (ROBDD)
- Shift the effort in a Boolean reasoning engine from SAT algorithm to data representation
- Many logic operations can be performed efficiently on BDD's:

■ usually linear in size of input BDDs

- tautology checking and complement operation are constant time
- BDD size critically depends on variable ordering

Boolean Function Representation BDD - Canonicalization

- Directed acyclic graph (DAG)
- one root node, two terminal-nodes, 0 and 1
- each node has two children and is controlled by a variable
\square Shannon cofactor tree, except reduced and ordered (ROBDD)
- Ordered:
\square cofactor variables (splitting variables) in the same order along all paths
Reduced. $\mathrm{x}_{\mathrm{i}_{1}}<\mathrm{x}_{\mathrm{i}_{2}}<\mathrm{x}_{\mathrm{i}_{3}}<\ldots<\mathrm{x}_{\mathrm{in}_{n}}$
\square any node with two identical children is removed
\square two nodes with isomorphic BDD's are merged These two rules make any node in an ROBDD represent a distinct logic function

Boolean Function Representation BDD

\square Example

Boolean Function Representation BDD - Canonicity of ROBDD

\square Three components make ROBDD canonical
(Bryant 1986):

- unique nodes for constant " 0 " and " 1 "

■identical order of case-splitting variables along each paths

- a hash table that ensures
$\square\left(\operatorname{node}\left(\mathrm{f}_{\mathrm{v}}\right)=\operatorname{node}\left(\mathrm{g}_{\mathrm{v}}\right)\right) \wedge\left(\operatorname{node}\left(\mathrm{f}_{\mathrm{v}}\right)=\operatorname{node}\left(\mathrm{g}_{\mathrm{v}}\right)\right) \Rightarrow$ node(f) $=$ node(g)
and provides recursive argument that node(f) is unique when using the unique hash-table

Boolean Function Representation
BDD - Onset Counting

$$
F=b^{\prime}+a^{\prime} c^{\prime}=a b^{\prime}+a^{\prime} c b^{\prime}+a^{\prime} c^{\prime}(\text { all paths to the } 1 \text { node })
$$

\square By tracing all paths to the 1 node, we get a cover of pairwise disjoint cubes
\square BDD does not explicitly enumerate all paths; rather it represents paths by a graph whose size is measures by its nodes
A DAG can represent an exponential number of paths with a linear
number of nodes
\square BDDs can be used to efficiently represent sets

- interpret elements of the onset as elements of the set - f is called the characteristic function of that set

Boolean Function Representation BDD - ITE Operator

Boolean Function Representation BDD - ITE Operator

\square Each BDD node can be written as a triplet: $\mathrm{f}=$ ite $(v, g, h)=v g+v^{\prime} h$, where $g=f_{v}$ and $h=f_{\bar{v}}$, meaning if v then g else h

(v is top variable of f)
\square ite $(f, g, h)=f g+f ' h$

- ITE operator can implement any two variable logic function. There are 16 such functions corresponding to all subsets of vertices of B

Table	Subset	Expression	Equivalent Form
0000	0	0	0
0001	AND(f, g)	$f \mathrm{~g}$	ite(f, g, 0)
0010	$\mathrm{f}>\mathrm{g}$	$\mathrm{f} \mathrm{g}^{\prime}$	ite(f, g', 0)
0011	f	f	f
0100	$\mathrm{f}<\mathrm{g}$	$\mathrm{f}^{\prime} \mathrm{g}$	ite(f, 0, g)
0101	g	g	g
0110	$\operatorname{XOR}(\mathrm{f}, \mathrm{g})$	$\mathrm{f} \oplus \mathrm{g}$	ite(f, g', g)
0111	OR(f, g)	$f+\mathrm{g}$	ite(f, 1, g)
1000	$\operatorname{NOR}(\mathrm{f}, \mathrm{g})$	$(\mathrm{f}+\mathrm{g})^{\prime}$	ite(f, 0, g')
1001	XNOR(f, g)	$\mathrm{f} \oplus \mathrm{g}^{\prime}$	ite(f, g, g')
1010	NOT(g)	g^{\prime}	ite($\mathrm{g}, 0,1$)
1011	$f \geq \mathrm{g}$	$\mathrm{f}+\mathrm{g}^{\prime}$	ite(f, 1, g')
1100	NOT(f)	f^{\prime}	ite(f, 0, 1)
1101	$\mathrm{f} \leq \mathrm{g}$	$\mathrm{f}^{\prime}+\mathrm{g}$	ite(f, g, 1)
1110	NAND(f, g)	$(\mathrm{fg})^{\prime}$	ite(f, g', 1)
1111	1	1	1

Boolean Function Representation BDD - ITE Operator

\square Recursive operation of ITE

Ite(f,g,h)

$=f g+f^{\prime} h$
$=v\left(f g+f^{\prime} h\right)_{v}+v^{\prime}\left(f g+f^{\prime} h\right)_{v^{\prime}}$
$=v\left(f_{v} g_{v}+f_{v}^{\prime} h_{v}\right)+v^{\prime}\left(f_{v^{\prime}} g_{v^{\prime}}+f_{v^{\prime}} h_{v^{\prime}}\right)$
$=\operatorname{ite}\left(v, \operatorname{ite}\left(f_{v}, g_{v}, h_{v}\right)\right.$, ite $\left.\left(f_{v^{\prime}}, g_{v^{\prime}}, h_{v^{\prime}}\right)\right)$
■ Let v be the top-most variable of BDDs $\mathrm{f}, \mathrm{g}, \mathrm{h}$

Boolean Function Representation BDD - ITE Operator

```
\square Recursive computation of ITE
Algorithm ITE(f, g, h)
    if(f == 1) return g
    if(f == 0) return h
    if(g == h) return g
    if((p = HASH_LOOKUP_COMPUTED_TABLE(f,g,h)) return p
    v = TOP_VARIABLE(f, g, h ) // top variable from f,g,h
    fn = ITE( (fv, g
    gn = ITE (f
    if(fn == gn) return gn
    if(fn == gn) return gn // reduction
    if(!(p = HASH_LOOKUP_UNIQUE_TABLE(v,fn,gn))
        p = CREATE_NODE(v,fn,gn) // and insert into UNIQUE_TABLE
    }
    INSERT_COMPUTED_TABLE(p,HASH_KEY{f,g,h})
    return p
}
```


Boolean Function Representation BDD - ITE Operator

- Example

I =ite(F, G, H)
$=\operatorname{ite}\left(a, \operatorname{ite}\left(F_{a}, G_{a}, H_{a}\right)\right.$, ite($\left.\left.F_{\bar{a}}, G_{\bar{a}}, H_{-a}\right)\right)$
F,G,H,I,J,B,C,D
$=\operatorname{ite}(\mathrm{a}, \operatorname{ite}(1, \mathrm{C}, \mathrm{H})$, ite $(\mathrm{B}, \mathrm{O}, \mathrm{H}))$
$=\operatorname{ite}\left(a, C, i \operatorname{ite}\left(b, \operatorname{ite}\left(B_{b}, O_{b}, H_{b}\right), \operatorname{ite}\left(B_{\bar{b}}, O_{\text {б }}, H_{\text {б }}\right)\right)\right.$
$=\operatorname{ite}(\mathrm{a}, \mathrm{C}, \operatorname{ite}(\mathrm{b}, \operatorname{ite}(1,0,1), \operatorname{ite}(0,0, D))$
$=$ ite $(a, C$, ite $(b, 0, D))$
$=$ ite (a, C, J)
Check: $\mathrm{F}=\mathrm{a}+\mathrm{b}$
$\mathrm{G}=\mathrm{ac}$
$H=b+d$
ite(F, G, H) $=(a+b)(a c)+a^{\prime} b^{\prime}(b+d)=a c+a^{\prime} b^{\prime} d$

Boolean Function Representation BDD - ITE Operator

```
\square Tautology checking using ITE
Algorithm ITE_CONSTANT(f,g,h) { // returns 0,1, or NC
    if(TRIVIAL_CASE(f,g,h) return result (0,1, or NC)
    if((res = HASH_LOOKUP_COMPUTED_TABLE(f,g,h))) return res
    v = TOP_VARIABLE (f,g,\overline{h})
    i = ITE_CONSTANT (fv, (Gv,h
    if(i == NC)
        INSERT COMPUTED TABLE(NC, HASH KEY{f, g, h}) // special table!!
        return NC
    e}=\mp@code{ITE_CONSTANT ( }\mp@subsup{\textrm{f}}{\mp@subsup{\textrm{v}}{}{\prime}}{\prime},\mp@subsup{g}{\mp@subsup{\textrm{v}}{}{\prime}}{},\mp@subsup{h}{\mp@subsup{\textrm{v}}{}{\prime}}{
    if(e == NC) {
        INSERT_COMPUTED_TABLE(NC, HASH_KEY{f,g,h})
        return NC
    }f(e != i)
        INSERT_COMPUTED_TABLE(NC, HASH_KEY{f,g,h})
        return NC
    INSERT_COMPUTED_TABLE(e, HASH_KEY{f,g,h})
    return i;
```


Boolean Function Representation BDD - ITE Operator

- Composition using ITE
- Compose is an important operation, e.g. for building the BDD of a circuit

Compose is an important operation, e.g. for building the BDD of a circuit
backwards, Compose $(F, v, G): F(v, x) \rightarrow F(G(x), x)$, means substitute $v=G(x)$
Algorithm COMPOSE(F,v,G) \{
if(TOP_VARIABLE $(F)>v)$ return F // F does not depend on v
if(TOP_VARIABLE(F) == v) return ITE(G,F1,F0)
i $=$ COMPOSE (F1, $\mathrm{V}, \mathrm{G})$
$\mathrm{e}=\operatorname{COMPOSE}(\mathrm{FO}, \mathrm{v}, \mathrm{G})$
return ITE(TOP_VARIABLE (F), i, e)
\}
Note:

1. F1 and $F 0$ are the 1 -child and 0 -child of F, respectively
2. G, i, e are not functions of v
3. If TOP_VARIABLE of F is v, then ITE($G, F 1, F 0)$ does the replacement of v by G

Boolean Function Representation BDD - Implementation Issues

Unique table

- avoids duplication of existing nodes
- Hash-Table: hash-function(key) = value
- identical to the use of a hash-table in AND/INVERTER circuits

Computed table:

- avoids re-computation of existing results

Boolean Function Representation BDD - Implementation Issues

Boolean Function Representation BDD - Implementation Issues

- Unique table

- Before a node ite (v, g, h) is added to BDD database, it is looked up in the the logic function Otherwise, a new node is added to the unique-table and the new pointer returned.
Thus a strong canonical form is maintained. The node for $f=i t e(v, g, h)$ exists Thus a strong in in the unique-table. There is only one pointer for ite (v, g, h)
iff ite (v, g, h) is in tring and that is the address to the unique-table entry.
- Unique-table allows single multi-rooted DAG to represent all users' functions

sharing of
co-factors

Boolean Function Representation BDD - Implementation Issues

\square Use of computed table

- BDD packages often use optimized implementations for special operations
-e.g. ITE_Constant (check whether the result would be a constant) AND_Exist (AND operation with existential quantification)
- All operations need a cache for decent performance -local cache
- for one operation only - cache will be thrown away after operation is finished (e.g. AND_Exist)
\square special cache for each operation
- does not need to store operation type
\square shared cache for all operations
" better memory handling
- needs to store operation type

Boolean Function Representation BDD - Implementation Issues

\square Complemented edges

- To maintain strong canonical form, need to resolve 4 equivalences:

- Solution: Always choose the ones on left, i.e. the "then" leg must have no complement edge.

Boolean Function Representation BDD - Implementation Issues

\square Complemented edges

- Combine inverted functions by using complemented edge \square similar to AIG
\square reduces memory requirements
\square more importantly, makes operations NOT, ITE more efficient

two different
DAGs
\qquad
only one DAG using complement pointer

Boolean Function Representation BDD - Implementation Issues

ㅁ Complemented edges
Standard triples:
ite(F, F, G) $\Rightarrow \operatorname{ite}(F, 1, G)$ ite $(F, G, F) \Rightarrow \operatorname{ite}(F, G, 0)$ ite $(F, G, \neg F) \Rightarrow \operatorname{ite}(F, G, 1$ ite $(F, \neg F, G) \Rightarrow \operatorname{ite}(F, 0, G)$

To resolve equivalences: $\operatorname{ite}(\mathrm{F}, \mathbf{1}, \mathrm{G}) \equiv \operatorname{ite}(\mathrm{G}, \mathbf{1}, \mathrm{F})$ ite($F, 0, G) \equiv \operatorname{ite}(\neg G, 1, \neg F)$ $\operatorname{ite}(F, G, 0) \equiv \operatorname{ite}(G, F, 0)$ ite(F, G, 1) $\equiv \operatorname{ite}(\neg G, \neg F, 1)$ ite(F, G, $\neg \mathrm{G}) \equiv \operatorname{ite}(\mathrm{G}, \mathrm{F}, \neg \mathrm{F})$

To maximize matches on computed table:

1. First argument is chosen with smallest top variable.
2. Break ties with smallest address pointer. (breaks PORTABILITY!)
ite $(\mathrm{F}, \mathrm{G}, \mathrm{H}) \equiv$ ite $(\neg \mathrm{F}, \mathrm{H}, \mathrm{G}) \equiv \neg$ ite $(\mathrm{F}, \neg \mathrm{G}, \neg \mathrm{H}) \equiv \neg$ ite $(\neg \mathrm{F}, \neg \mathrm{H}, \neg \mathrm{G})$ Choose the one such that the first and second argument of ite should not be complement edges (i.e. the first one above

Boolean Function Representation BDD - Implementation Issues

\square Variable ordering - static
\square variable ordering is computed up-front based on the problem structure

- works well for many practical combinational functions
\square general scheme: control variables first -DFS order is good for most cases
■ works bad for unstructured problems
$\square e . g$. using BDDs to represent arbitrary sets
\square lots of ordering algorithms \square simulated annealing, genetic algorithms \square give better results but extremely costly

Boolean Function Representation BDD - Implementation Issues

\square Variable ordering - dynamic
Theorem (Friedman):
Permuting any top part of the variable order has no effect on the nodes labeled by variables in the bottom part.
Permuting any bottom part of the variable order has no effect on the nodes labeled by variables in the top part.

- Trick: Two adjacent variable layers can be exchanged by keeping the original memory locations for the nodes

Boolean Function Representation
 BDD - Implementation Issues

\square Variable ordering - dynamic

- Changes the order in the middle of BDD applications \square must keep same global order
- Problem: External pointers reference internal nodes!

Boolean Function Representation BDD - Implementation Issues

\square Variable ordering - dynamic

- BDD sifting:
\square shift each BDD variable to the top and then to the bottom and see which position had minimal number of BDD nodes \square efficient if separate hash-table for each variable
-can stop if lower bound on size is worse then the best found so far
\square shortcut: two layers can be swapped very cheaply if there is no interaction between them
\square expensive operation
- grouping of BDD variables:
\square for many applications, grouping variables gives better ordering
- e.g. current state and next state variables in state traversal \square grouping variables for sifting

Boolean Function Representation BDD - Implementation Issues

\square Garbage collection

- Important to free and reuse memory of unused BDD nodes including
\square those explicitly freed by an external bdd_free operation \square those temporary created during BDD operations
- Two mechanisms to check whether a BDD is not referenced: \square Reference counter at each node
- increment whenever node gets one more referenced
- decrement when node gets de-referenced
- take care of counter-overflow
\square Mark and sweep algorithm
does not need counter
- first pass, mark all BDDs that are referenced
- second pass, free the BDDs that are not marked
- need additional handle layer for external references

Boolean Function Representation
 BDD - Implementation Issues

Garbage collection

- Timing is crucial because garbage collection is expensive $\square i m m e d i a t e l y$ when node gets freed
- bad because dead nodes get often reincarnated in subsequent operations
$\square r e g u l a r ~ g a r b a g e ~ c o l l e c t i o n s ~ b a s e d ~ o n ~ s t a t i s t i c s ~$ obtained during BDD operations
- Computed-table must be cleared since not used in reference mechanism
- Improving memory locality and therefore cache behavior

Boolean Function Representation BDD - Variants

- MDD: Multi-valued DD
- have more then two branches
- can be implemented using a regular BDD package with binary encoding
\square the binary variables for one MV variable do not have to stay together and thus potentially better ordering
\square ADD: (Algebraic BDDs) MTBDD - multi-terminal BDDs
- decision tree is binary
- multiple leaves, including real numbers, sets or arbitrary objects - efficient for matrix computations and other non-integer applications
\square FDD: Free-order BDD
- variable ordering differs
- not canonical anymore
\square

Boolean Function Representation BDD - Variants

\square Zero suppressed BDD (ZDD)

- ZBDDs were invented by Minato to efficiently represent sparse sets. They have turned out to be useful in implicit methods for representing primes (which usually are a sparse subset of all
- Different reduction rules:
- BDD: eliminate all nodes where then edge and else edge point to the same node.
\square ZBDD: eliminate all nodes where the then node points to 0 . Connect incoming edges to else node.
\square For both: share equivalent nodes.

Boolean Function Representation BDD - Variants

Boolean Function Representation
 Summary

Theorem: ZBDDs are canonical given a variable ordering and the support set

Example

ZBDD if support is $\mathrm{X}_{1}, \mathrm{X}_{2}$

ZBDD if support is $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$
\square Sum of products

- Good for circuit synthesis
\square Product of sums
- Good for Boolean reasoning
\square Boolean network
- Generic network
-Good for multi-level circuit synthesis
- And-inverter graph
\square Good for Boolean reasoning
\square Binary decision diagram
- Good for Boolean reasoning

1
ZBDD if support is
$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$

Boolean Reasoning

Reading:

Logic Synthesis in a Nutshell
Section 2

Boolean Reasoning Satisfiability (SAT)

\square Boolean reasoning engines need:
■ a data structure to represent problem instances

- a decision procedure to decide about SAT or UNSAT
\square Fundamental tradeoff
■ canonical data structure (e.g. truth table, ROBDD)
\square data structure uniquely represents function \square decision procedure is trivial (e.g., just pointer comparison) \square Problem: size of data structure is in general exponential

■ non-canonical data structure (e.g. AI G, CNF)
\square systematic search for satisfying assignment

- size of data structure is linear
-Problem: decision may take an exponential amount of time

Boolean Reasoning
 SAT

\square Basic SAT algorithms:

- branch and bound algorithm
\square branching on the assignments of primary inputs only or those of all variables
- E.g. PODEM vs. D-algorithms in ATPG

ㅁ Basic data structures:

- circuits or CNF formulas
- SAT on circuits is identical to the justification part in ATPG \square 1st half of ATPG: justification
- find an input assignment that forces an internal signal to a required value
$\square 2$ nd half of ATPG: propagation
- make a signal change at an internal signal observable at some outputs (can be easily formulated as SAT over CNF formulas)

Boolean Reasoning
 SAT vs. Tautology

- find a truth assignment to the inputs making a given Boolean formula true
- NP-complete

\square Tautology

- find a truth assignment to the inputs making a given Boolean formula false
- coNP-complete
\square SAT and Tautology are dual to each other
■ checking SAT on formula $\varphi=$ checking Tautology on formula $\neg \varphi$, and vice versa

Boolean Reasoning SAT - AIG-based Decision Procedure

\square General Davis-Putnam procedure

- search for consistent assignment to entire cone of requested vertex in AIG by systematically trying all combinations (may be partial)
■ keep a queue of vertices that remain to be justified \square pick decision vertex from the queue and case split on possible assignments
\square for each case
- propagate as many implications as possible
- generate more vertices to be justified
- if conflicting assignment encountered, undo all implications and backtrack
- recur to next vertex from queue

Boolean Reasoning
 SAT - AIG-based Decision Procedure

- General Davis-Putnam procedure

Algorithm SAT(Edge p) \{
queue = INIT_QUEUE(p)
if(!IMPLY(p)) return FALSE
return JUSTIFY(queue)
\}
Algorithm JustIfy(queue) \{
if(QUEUE_EMPTY(queue)) return TRUE
mark = ASSIGNMENT_MARK ()
v = QUEUE_NEXT(queue) // decision vertex
if(IMPLY(NOT(v)) \&
if(JUSTIFY(queue)) return TRUE
UNDO ASSIGNMENTS(mark)
if(IMPLY(v)) \{
if(JUSTIFY(queue)) return TRUE
\}
UNDO_ASSIGNMENTS(mark)
return FALSE
\}

Boolean Reasoning

SAT - AIG-based Decision Procedure

- Example

SAT(NOT(9))??

Queue

Assignments

1st case for 9 :

conflict!

- undo all assignments

Boolean Reasoning
SAT - AIG-based Decision Procedure
\square Example (cont'd)
2nd case for 9 :

Note:
vertex 7 is justified
by $8->5->7$

1st case for 5:

Solution cube: $1=x, 2=0,3=0$

Assignments

5
6
:---
7
8
5
6

Boolean Reasoning

 SAT - AIG-based Decision Procedure
Boolean Reasoning SAT - AIG-based Decision Procedure

\square Implication (cont'd)

- Table lookup implementation (27 cases):

口Implication cases:
(
-Conflict cases:

\square Split case:
$x_{x}^{x} \rightarrow 0$

Boolean Reasoning SAT - AIG-based Decision Procedure

Boolean Reasoning
 SAT - AIG-based Decision Procedure

\square Case split

- Different heuristics work well for particular problem classes
- Often depth-first heuristic is good because it generates conflicts quickly
- Mixture of depth-first and breadth-first schedule
- Other heuristics:
\square pick the vertex with the largest fanout
\square count the polarities of the fanout separately and pick the vertex with the highest count in either polarity
\square run a full implication phase on all outstanding case splits and count the number of implications one would get
\square pick vertices that are involved in small cut of the circuit

- Learning

Learning is the process of adding "shortcuts" to the circuit structure that avoids case splits
\square static learning:
" global implications are learned
\square dynamic learning:
" learned implications only hold in current part of the search tree

- Learned implications are stores as additional network
- Example (cont'd)
\square 1st case for vertex 9 lead to conflict
\square If we were to try the same assignment again (e.g. for the next SAT call), we would get the same conflict => merge vertex 7 with zero-vertex

if rehashing is invoked vertex 9 is simplified and and merged with vertex 8

Boolean Reasoning SAT - AIG-based Decision Procedure

\square Learning - static

- Implications that can be learned structurally from the circuit \square Add learned structure as circuit

```
Use hash table to find structure in circuit
Algorithm CREATE_AND(p1,p2) {
    . . . // create new vertex p
    if((p'=HASH_LOOKUP(p1,NOT(p2))) {
        LEARN}(((p=0)&(\mp@subsup{p}{}{\prime}=0))=>(p1=0)
    }
    if(( p'=HASH_LOOKUP(NOT(p1),p2)) {
        LEARN(((p=0)&( }\mp@subsup{p}{}{\prime}=0)) =>(p2=0)
    }
}
```


Boolean Reasoning
 SAT - AIG-based Decision Procedure

\square Example (cont'd)

2nd case for 9 (original):

2nd case for 9 (with static learning):

Boolean Reasoning SAT - AIG-based Decision Procedure

Boolean Reasoning
 SAT - AIG-based Decision Procedure

\square Learning - static

- Other learning based on contra-positive:
if $(P \Rightarrow Q)$, then $(\neg Q \Rightarrow \neg P)$
foreach vertex v \{
mark = ASSIGNMENT_MARK()
IMPLY(v)
LEARN_IMPLICATIONS(v)
UNDO_ASSIGNMENTS(mark)
IMPLY(NOT(v))
LEARN_IMPLICATIONS(NOT(v))
UNDO_ASSIGNMENTS (mark)
\}
- Problem: learned implications are far too many
- solution: restrict learning to nontrivial implications and filter
redundant implications
- Learning - static and recursive
- Compute the set of all implications for both case splits on level i \square Static learning of constants, equivalences
- Intersect both split cases to learn for level $i-1$

- Apply learning recursively until all case splits exhausted
\square recursive learning is complete but very expensive in practice for levels >2, 3
\square restrict learning level to fixed number \rightarrow becomes incomplete

Boolean Reasoning SAT - AIG-based Decision Procedure

Boolean Reasoning
 SAT - AIG-based Decision Procedure

\square Learning - static and recursive

```
Algorithm RECURSIVE_LEARN(int level) {
    if(v = PICK_SPLITTING_VERTEX()) {
        mark = ASSIGNMENT_MARK()
        IMPLY(v)
        IMPL1 = RECURSIVE_LEARN(level+1)
        UNDO_ASSIGNMENTS(mark)
        IMPLY(NOT(v))
        IMPL0 = RECURSIVE_LEARN(level+1)
        UNDO_ASSIGNMENTS(mark)
        return IMPL1 }\cap\mathrm{ IMPL0
    }
    else { // completely justified
        return IMPLICATIONS
    }
}
```


\square Learning - dynamic

- Learn implications in a sub-tree of searching \square cannot simply add permanent structure because not globally valid
- add and remove learned structure (expensive)
- add branching condition to the learned implication
" of no use unless we prune the condition (conflict learning)
- use implication and assignment mechanism to assign and undo assigns
" e.g., dynamic recursive learning with fixed recursion level \square Dynamic learning of equivalence relations (Stalmarck procedure)
- learn equivalence relations by dynamically rewriting the formula

Boolean Reasoning
 SAT - AIG-based Decision Procedure

Boolean Reasoning
 SAT - AIG-based Decision Procedure

\square Learning - conflict-based (c.f. structure-based)

- Idea: Learn the situation under which a particular conflict occurred and assert it to 0
ロIMPLY will use this "shortcut" to detect similar conflict earlier
- Definition: An implication graph is a directed Graph $1\left(\mathrm{G}^{\prime}, \mathrm{E}\right), \mathrm{G}^{\prime} \subseteq \mathrm{G}$ are the gates of C with assigned values v_{g} \neq unknown, $\mathrm{E} \subseteq \mathrm{G}^{\prime} \times \mathrm{G}^{\prime}$ are the edges, where each edge $\left(g_{i}, g_{j}\right) \in E$ reflects an implication for which an assignment of gate g_{i} leads to the assignment of gate g_{j}.

Circuit:
Implication graph:
$\xrightarrow{0}(1)$
0 (decision vertex)
 2)
\rightarrow (3) $\rightarrow 0$ (decision vertex)
(1)
(3)

Boolean Reasoning
 SAT - AIG-based Decision Procedure

Boolean Reasoning
 SAT - AIG-based Decision Procedure

\square Learning - conflict-based

- The roots ($w / 0$ fanin-edges) of the implication graph correspond to the decision vertices, the leaves correspond to the implication frontier

- There is a strict implication order in the graph from the roots to the leaves
\square We can completely cut the graph at any point and identify value assignments to the cut vertices, we result in identical implications toward the leaves

$$
\left.C_{1} \Rightarrow C_{2} \Rightarrow \ldots \Rightarrow C_{n-1} \Rightarrow C_{n} \quad \text { (} C_{1}: \text { decision vertices }\right)
$$

\square Learning - conflict-based

- If an implication leads to a conflict, any cut assignment in the implication graph between the decision vertices and the conflict will result in the same conflict!

$$
\left(\mathrm{C}_{\mathrm{i}} \Rightarrow \text { Conflict }\right) \Rightarrow\left(\mathrm{NOT}(\text { Conflict }) \Rightarrow \mathrm{NOT}\left(\mathrm{C}_{\mathrm{i}}\right)\right)
$$

- We can learn the complement of the cut assignment as circuit \square find minimal cut in the implication graph I (costs less to learn) find dominator vertex if exists
\square restrict size of cuts to be learned, otherwise exponential blow-up

Boolean Reasoning SAT - AIG-based Decision Procedure

Boolean Reasoning
 SAT - AIG-based Decision Procedure

\square Non-chronological backtracking

- If we learned only cuts on decision vertices, only the decision vertices that are in the support of the conflict are needed

Decision levels: 5

- The conflict is fully symmetric with respect to the unrelated decision vertices!!
\square Learning the conflict would prevent checking the symmetric parts again
- Non-chronological backtracking
- We can still avoid exploring symmetric parts of the decision tree by tracking the decision support vertices of a conflict If no conflict of the first choice on a decision vertex depends on
that vertex, the other choice will result in symmetric conflicts and their evaluation can be skipped
- By tracking the implications of the decision vertices we can skip decision levels during backtrack

Boolean Reasoning SAT - CNF-based Decision Procedure

Boolean Reasoning
 SAT - CNF-based Decision Procedure

\square CNF

- Product-of-Sums (POS) representation of Boolean function
- Describes solution using a set of constraints
\square very handy in many applications because new constraints can be simply added to the list of existing constraints \square very common in AI community
- Example
$\varphi=\left(a+b^{\prime}+c\right)\left(a^{\prime}+b+c\right)\left(a+b^{\prime}+c^{\prime}\right)(a+b+c)$
- SAT on CNF (POS) \Leftrightarrow TAUTOLOGY on DNF (SOP)
\square Circuit to CNF conversion
- Encountered often in practical applications
- Naive conversion from circuit to CNF:
\square multiply out expressions of circuit until two level structure \square Example: $\mathrm{y}=\mathrm{x}_{1} \oplus \mathrm{x}_{2} \oplus \mathrm{x}_{2} \oplus \ldots \oplus \mathrm{x}_{\mathrm{n}}$ (parity function)
" circuit size is linear in the number of variables

- generated chess-board Karnaugh map
- CNF (or DNF) formula has 2^{n-1} terms (exponential in the \# vars)
- Better approach:
\square introduce one variable per circuit vertex
\square formulate the circuit as a conjunction of constraints imposed on the vertex values by the gates
\square uses more variables but size of formula is linear in the size of the circuit

Boolean Reasoning SAT - CNF-based Decision Procedure

Boolean Reasoning SAT - CNF-based Decision Procedure

\square Circuit to CNF conversion

- Example
\square Single gate
a
$\rightarrow(\neg a+\neg b+c)(a+\neg c)(b+\neg c)$
\square Connected gates

- DPLL procedure

```
Algorithm DPLL() 
    while ChooseNextAssignment() {
        while Deduce() == CONFLICT
            blevel = AnalyzeConflict()
            if (blevel < 0) return UNSATISFIABLE;
            else Backtrack(blevel)
        }
        }
        return SATISFIABLE
}
```

ChooseNextAssignment picks next decision variable and assignment Deduce does Boolean Constraint Propagation (implications) AnalyzeConflict backprocesses from conflict and produces learnt-clause Backtrack undoes assignments

Boolean Reasoning SAT - CNF-based Decision Procedure

\square DPLL (basic case splitting)

Boolean Reasoning

 SAT - CNF-based Decision Procedure
-Implication

- Implications in a CNF formula are caused by unit clauses
\square A unit clause is a CNF term for which all variables except one are assigned
- the value of that clause can be implied immediately

-Example

$$
(a+\neg b+c) \quad(a=0) \quad(b=1) \Rightarrow(c=1)
$$

Boolean Reasoning SAT - CNF-based Decision Procedure

Boolean Reasoning

SAT - CNF-based Decision Procedure

-Implication

- Example

Non-implication cases:

$$
\begin{aligned}
& \text { All clauses satisfied } \\
& \text { Not all clauses satisfied (avoid exploring this part) }
\end{aligned}
$$

-Implication

■ Example (cont'd)

Implication cases:

$\xrightarrow{\text { and }} \mathrm{c}(\neg \mathrm{a}+\neg \mathrm{b}+\mathrm{c})(\mathrm{a}+\neg \mathrm{c})(\mathrm{b}+\neg \mathrm{c})$
$(\neg a+\neg b+c)$

Boolean Reasoning

 SAT - CNF-based Decision Procedure
Boolean Reasoning SAT - CNF-based Decision Procedure

\square Conflict-based learning

- Important detail for cut selection:
-During implication processing, record decision level for each implication
\square At conflict, select earliest cut such that exactly one node of the implication graph lies on current decision level
" Either decision variable itself
- Or UIP ("unique implication point") that represents a dominator node for current decision level in conflict graph
- By selecting such cut, implication processing will automatically flip decision variable (or UIP variable) to its complementary value

Boolean Reasoning SAT - CNF-based Decision Procedure

Boolean Reasoning SAT - CNF-based Decision Procedure

\square Conflict-based learning

- UIP detection

Store with each implication the decision level, and a time stamp (integer that is incremented after each decision)

UIP on decision level I has the property that all following implications towards the
conflict have a larger time stamp
When back processing from conflict, put all implications that are to be processed on heap, keeping the one with smallest time stamp on top
If during processing there is only one variable on current decision level on heap
then that variable must be a Ulp

UIP on level 5

Boolean Reasoning
 SAT - CNF-based Decision Procedure

Boolean Reasoning
 SAT - CNF-based Decision Procedure

\square Implementation issues

- Clauses are stores in arrays
- Track change-sensitive clauses (two-literal watching)
\square all literals but one assigned -> implication
\square all literals but two assigned -> clause is sensitive to a change of either literal
\square all other clauses are insensitive and do not need to be observed
- Learning:
- learned implications are added to the CNF formula as additional clauses
- limit the size of the clause
- limit the "lifetime" of a clause, will be removed after some time
- Non-chronological back-tracking
\square similar to circuit case
\square DPLL (conflict-based learning)

\square Implementation issues (cont'd)
- Random restarts:
\square stop after a given number of backtracks
" start search again with modified ordering heuristic
- keep learned structures !
\square very effective for satisfiable formulas, often also effective for unsat formulas
- Learning of equivalence relations:

पif $(a \Rightarrow b) \wedge(b \Rightarrow a)$, then $(a=b)$
\square very powerful for formal equivalence checking
■ Incremental SAT solving
\square solving similar CNF formulas in a row
\square share learned clauses

