Boolean Function Representation

Binary Decision Diagram (BDD)

- A graphical representation of Boolean function
 - BDD is a Shannon cofactor tree:
 - \(f = v f_v + \overline{v} f_{\overline{v}} \) (Shannon expansion)
 - vertices represent decision nodes (i.e. multiplexers) controlled by variables
 - leafs are constants “0” and “1”
 - two children of a vertex of \(f \) represent two subfunctions \(f_v \) and \(f_{\overline{v}} \)
 - Variable ordering restriction and reduction rules make (ROBDD) representation canonical

Directed acyclic graph (DAG)

- one root node, two terminal-nodes, 0 and 1
- each node has two children and is controlled by a variable
- Shannon cofactor tree, except reduced and ordered (ROBDD)
 - **Ordered**: cofactor variables (splitting variables) in the same order along all paths
 - \(x_1 < x_2 < x_3 < \ldots < x_n \)
 - **Reduced**: any node with two identical children is removed
 - two nodes with isomorphic BDD’s are merged
 - These two rules make any node in an ROBDD represent a distinct logic function

Example

Same function with two different variable orders

\[f = ab + a'c + bc'd \]

\[\begin{align*}
 f &= ab + a'c + bc'd \\
 f &= ab + a'c + bc'd
\end{align*} \]
Boolean Function Representation
BDD – Canonicity of ROBDD

- Three components make ROBDD canonical (Bryant 1986):
 - unique nodes for constant “0” and “1”
 - identical order of case-splitting variables along each paths
 - a hash table that ensures
 - $(\text{node}(f_1) = \text{node}(g_1)) \land (\text{node}(f_2) = \text{node}(g_2)) \Rightarrow \text{node}(f) = \text{node}(g)$
 - and provides recursive argument that node(f) is unique when using the unique hash-table

Boolean Function Representation
BDD – Onset Counting

$F = b' + a'c' = ab' + a'c'b + a'c'$ (all paths to the 1 node)

- By tracing all paths to the 1 node, we get a cover of pairwise disjoint cubes
- BDD does not explicitly enumerate all paths; rather it represents paths by a graph whose size is measured by its nodes
 - A DAG can represent an exponential number of paths with a linear number of nodes
 - BDDs can be used to efficiently represent sets
 - interpret elements of the onset as elements of the set
 - f is called the characteristic function of that set

Boolean Function Representation
BDD – ITE Operator

- Each BDD node can be written as a triplet: $f = \text{ite}(v, g, h) = vg + v'h$, where $g = f_v$ and $h = f_{\neg v}$, meaning “if v then g else h”

ITE Operator

- ITE operator can implement any two variable logic function. There are 16 such functions corresponding to all subsets of vertices of B^2:

<table>
<thead>
<tr>
<th>Subset</th>
<th>Expression</th>
<th>Equivalent Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>AND(f, g)</td>
<td>f g</td>
</tr>
<tr>
<td>0010</td>
<td>f > g</td>
<td>f' g</td>
</tr>
<tr>
<td>0011</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>0100</td>
<td>f < g</td>
<td>f' g</td>
</tr>
<tr>
<td>0101</td>
<td>g</td>
<td>g</td>
</tr>
<tr>
<td>0110</td>
<td>XOR(f, g)</td>
<td>f \oplus g</td>
</tr>
<tr>
<td>0111</td>
<td>OR(f, g)</td>
<td>f + g</td>
</tr>
<tr>
<td>1000</td>
<td>NOR(f, g)</td>
<td>f \oplus g'</td>
</tr>
<tr>
<td>1001</td>
<td>XNOR(f, g)</td>
<td>f \oplus g'</td>
</tr>
<tr>
<td>1010</td>
<td>NOT(g)</td>
<td>f'</td>
</tr>
<tr>
<td>1011</td>
<td>f \leq g</td>
<td>f' + g</td>
</tr>
<tr>
<td>1100</td>
<td>NOT(f)</td>
<td>f</td>
</tr>
<tr>
<td>1101</td>
<td>f \geq g</td>
<td>f' + g</td>
</tr>
<tr>
<td>1110</td>
<td>NAND(f, g)</td>
<td>(f \oplus g)'</td>
</tr>
<tr>
<td>1111</td>
<td>f = g</td>
<td>f'</td>
</tr>
</tbody>
</table>

(v is top variable of f)
Recursive operation of ITE

\[\text{Ite}(f, g, h) = f \cdot g + f' \cdot h \]
\[= v \cdot (f \cdot g + f' \cdot h) + v' \cdot (f' \cdot g + f \cdot h) \]
\[= \text{ite}(v, \text{ite}(f' \cdot g, f \cdot h), \text{ite}(f \cdot g, f' \cdot h)) \]

Let \(v \) be the top-most variable of BDDs \(f, g, h \)

Example

\[\text{Ite}(F, G, H) = \text{ite}(a, \text{ite}(\text{ite}(1, 0, 1), \text{ite}(0, 0, D)), \text{ite}(a, 0, D)) \]

Check:

\[F = a + b \]
\[G = ac \]
\[H = b + d \]
\[\text{Ite}(F, G, H) = (a + b)(ac) + a'b(b + d) = ac + a'b'd \]
Boolean Function Representation

BDD – ITE Operator

- Composition using ITE
 - Compose is an important operation, e.g., for building the BDD of a circuit backwards. Compose\((F, v, G)\) : \(F(v, x) \rightarrow F(G(x), x)\), means substitute \(v = G(x)\)

Algorithm COMPOSE\((F, v, G)\) {
 if \(\text{TOP VARIABLE}(F) > v\) return \(F\) // \(F\) does not depend on \(v\)
 if \(\text{TOP VARIABLE}(F) == v\) return ITE\((G, F_1, F_0)\)
 \(i = \text{COMPOSE}(F_1, v, G)\)
 \(e = \text{COMPOSE}(F_0, v, G)\)
 return ITE\((\text{TOP VARIABLE}(F), i, e)\)
}

Note:
1. \(F_1\) and \(F_0\) are the 1-child and 0-child of \(F\), respectively
2. \(G, i, e\) are not functions of \(v\)
3. If \(\text{TOP VARIABLE}\) of \(F\) is \(v\), then ITE\((G, F_1, F_0)\) does the replacement of \(v\) by \(G\)

Boolean Function Representation

BDD – Implementation Issues

- Unique table:
 - avoids duplication of existing nodes
 - Hash-Table: hash-function(key) = value
 - identical to the use of a hash-table in AND/INVERTER circuits

- Computed table:
 - avoids re-computation of existing results

Before a node \(\text{ite}(v, g, h)\) is added to BDD database, it is looked up in the unique-table. If it is there, then existing pointer to node is used to represent the logic function. Otherwise, a new node is added to the unique-table and the new pointer returned.

Thus a strong canonical form is maintained. The node for \(f = \text{ite}(v, g, h)\) exists if \(\text{ite}(v, g, h)\) is in the unique-table. There is only one pointer for \(\text{ite}(v, g, h)\) and that is the address to the unique-table entry.

Unique-table allows single multi-rooted DAG to represent all users’ functions
Boolean Function Representation
BDD – Implementation Issues

- Use of computed table
 - BDD packages often use optimized implementations for special operations
 - e.g. ITE_Constant (check whether the result would be a constant) AND_Exist (AND operation with existential quantification)
 - All operations need a cache for decent performance
 - local cache
 - for one operation only - cache will be thrown away after operation is finished (e.g. AND_Exist)
 - special cache for each operation
 - does not need to store operation type
 - shared cache for all operations
 - better memory handling
 - needs to store operation type

- Complemented edges
 - To maintain strong canonical form, need to resolve 4 equivalences:
 - ITE(F, G, H) = ITE(F, G, H)
 - ITE(F, 0, G) = ITE(H, G, 0)
 - ITE(F, G, 0) = ITE(F, G, H)
 - ITE(F, G, 1) = ITE(H, G, H)

 - Solution: Always choose the ones on left, i.e. the “then” leg must have no complement edge.

- Complemented edges
 - Combine inverted functions by using complemented edge
 - similar to AIG
 - reduces memory requirements
 - more importantly, makes operations NOT, ITE more efficient

- Standard triples:
 - ITE(F, G, H) = ITE(F, 1, G)
 - ITE(F, G, F) = ITE(F, G, 0)
 - ITE(F, G, ¬F) = ITE(F, G, 1)
 - ITE(F, ¬F, G) = ITE(F, 0, G)

 - To resolve equivalences:
 - ITE(F, 1, G) = ITE(G, 1, F)
 - ITE(F, 0, G) = ITE(¬G, 1, ¬F)
 - ITE(F, G, 0) = ITE(G, F, 0)
 - ITE(F, G, 1) = ITE(¬G, ¬F, 1)
 - ITE(F, ¬G, ¬F) = ITE(G, F, ¬F)

 - To maximize matches on computed table:
 1. First argument is chosen with smallest top variable.
 2. Break ties with smallest address pointer. (breaks PORTABILITY!)

- Triples:
 - ITE(F, G, H) = ITE(¬F, H, G) = ¬ITE(F, G, H)
 - Choose the one such that the first and second argument of ITE should not be complemented edges (i.e. the first one above.)
Boolean Function Representation
BDD – Implementation Issues

- Variable ordering – static
 - variable ordering is computed up-front based on the problem structure
 - works well for many practical combinational functions
 - general scheme: control variables first
 - DFS order is good for most cases
 - works bad for unstructured problems
 - e.g. using BDDs to represent arbitrary sets
 - lots of ordering algorithms
 - simulated annealing, genetic algorithms
 - give better results but extremely costly

- Variable ordering – dynamic
 - Changes the order in the middle of BDD applications
 - must keep same global order
 - Problem: External pointers reference internal nodes!
 - Theorem (Friedman):
 - Permuting any top part of the variable order has no effect on the nodes labeled by variables in the bottom part.
 - Permuting any bottom part of the variable order has no effect on the nodes labeled by variables in the top part.
 - Trick: Two adjacent variable layers can be exchanged by keeping the original memory locations for the nodes

- BDD sifting:
 - shift each BDD variable to the top and then to the bottom and see which position had minimal number of BDD nodes
 - efficient if separate hash-table for each variable
 - can stop if lower bound on size is worse than the best found so far
 - shortcut: two layers can be swapped very cheaply if there is no interaction between them
 - expensive operation

- Grouping of BDD variables:
 - for many applications, grouping variables gives better ordering
 - e.g. current state and next state variables in state traversal
 - grouping variables for sifting
Boolean Function Representation
BDD – Implementation Issues

- **Garbage collection**
 - Important to free and reuse memory of unused BDD nodes including:
 - those explicitly freed by an external `bdd_free` operation
 - those temporary created during BDD operations
 - Two mechanisms to check whether a BDD is not referenced:
 - **Reference counter** at each node
 - increment whenever node gets one more referenced
 - decrement when node gets de-referenced
 - take care of counter-overflow
 - **Mark and sweep** algorithm
 - does not need counter
 - first pass, mark all BDDs that are referenced
 - second pass, free the BDDs that are not marked
 - need additional handle layer for external references

- **Timing is crucial because garbage collection is expensive**
 - immediately when node gets freed
 - bad because dead nodes get often reincarnated in subsequent operations
 - regular garbage collections based on statistics obtained during BDD operations
 - Computed-table must be cleared since not used in reference mechanism
 - Improving memory locality and therefore cache behavior

Boolean Function Representation
BDD – Variants

- **MDD**: Multi-valued DD
 - have more than two branches
 - can be implemented using a regular BDD package with binary encoding
 - the binary variables for one MV variable do not have to stay together and thus potentially better ordering

- **ADD**: (Algebraic BDDs) MTBDD
 - multi-terminal BDDs
 - decision tree is binary
 - multiple leaves, including real numbers, sets or arbitrary objects
 - efficient for matrix computations and other non-integer applications

- **FDD**: Free-order BDD
 - variable ordering differs
 - not canonical anymore

- **Zero suppressed BDD (ZDD)**
 - ZBDDs were invented by Minato to efficiently represent sparse sets. They have turned out to be useful in implicit methods for representing primes (which usually are a sparse subset of all cubes).
 - Different reduction rules:
 - **BDD**: eliminate all nodes where then edge and else edge point to the same node.
 - **ZBDD**: eliminate all nodes where the then node points to 0. Connect incoming edges to else node.
 - For both: share equivalent nodes.
Boolean Function Representation

BDD – Variants

Theorem: ZBDDs are canonical given a variable ordering and the support set.

Example:

- BDD
- ZBDD if support is x_1, x_2
- ZBDD if support is x_1, x_2, x_3

Summary

- **Sum of products**
 - Good for circuit synthesis
- **Product of sums**
 - Good for Boolean reasoning
- **Boolean network**
 - Generic network
 - Good for multi-level circuit synthesis
 - And-inverter graph
 - Good for Boolean reasoning
- **Binary decision diagram**
 - Good for Boolean reasoning

Boolean Reasoning

Satisfiability (SAT)

- Boolean reasoning engines need:
 - a data structure to represent problem instances
 - a decision procedure to decide about SAT or UNSAT

- **Fundamental tradeoff**
 - canonical data structure (e.g. truth table, ROBDD)
 - data structure uniquely represents function
 - decision procedure is trivial (e.g., just pointer comparison)
 - Problem: size of data structure is in general exponential
 - non-canonical data structure (e.g. AIG, CNF)
 - systematic search for satisfying assignment
 - size of data structure is linear
 - Problem: decision may take an exponential amount of time

Reading:

Logic Synthesis in a Nutshell

Section 2

most of the following slides are by courtesy of Andreas Kuehlmann
Boolean Reasoning

SAT

- Basic SAT algorithms:
 - branch and bound algorithm
 - branching on the assignments of primary inputs only or those of all variables
 - E.g. PODEM vs. D-algorithms in ATPG

- Basic data structures:
 - circuits or CNF formulas
 - SAT on circuits is identical to the justification part in ATPG
 - 1st half of ATPG: justification
 - find an input assignment that forces an internal signal to a required value
 - 2nd half of ATPG: propagation
 - make a signal change at an internal signal observable at some outputs (can be easily formulated as SAT over CNF formulas)

SAT vs. Tautology

- SAT:
 - find a truth assignment to the inputs making a given Boolean formula true
 - NP-complete

- Tautology:
 - find a truth assignment to the inputs making a given Boolean formula false
 - coNP-complete

SAT and Tautology are dual to each other
- checking SAT on formula \(\phi \) = checking Tautology on formula \(\neg \phi \), and vice versa

Boolean Reasoning

SAT – AIG-based Decision Procedure

- General Davis-Putnam procedure
 - search for consistent assignment to entire cone of requested vertex in AIG by systematically trying all combinations (may be partial)
 - keep a queue of vertices that remain to be justified
 - pick decision vertex from the queue and case split on possible assignments
 - for each case
 - propagate as many implications as possible
 - generate more vertices to be justified
 - if conflicting assignment encountered, undo all implications and backtrack
 - recur to next vertex from queue

SAT – AIG-based Decision Procedure

- General Davis-Putnam procedure
 Algorithm\textsc{SAT}(Edge p) \{
 queue = \textsc{INIT_QUEUE}(p)
 if(!\textsc{IMPLY}(p)) return FALSE
 return \textsc{JUSTIFY}(queue)
\}

Algorithm\textsc{JUSTIFY}(queue) \{
 if(\textsc{QUEUE_EMPTY}(queue)) return TRUE
 mark = \textsc{ASSIGNMENT_MARK}()
 v = \textsc{QUEUE_NEXT}(queue) // decision vertex
 if(\textsc{IMPLY}(\neg(v))) \{
 if(\textsc{JUSTIFY}(queue)) return TRUE
 \} // conflict
 UNDO_ASSIGNMENTS(mark)
 if(\textsc{IMPLY}(v)) \{
 if(\textsc{JUSTIFY}(queue)) return TRUE
 \} // conflict
 UNDO_ASSIGNMENTS(mark)
 return FALSE
\}
Example

SAT(NOT(9))??

1st case for 9:

Queue Assignments

conflict!
- undo all assignments
- backtrack

2nd case for 9:

Note: vertex 7 is justified by 8->5->7

1st case for 5:

Solution cube: 1 = x, 2 = 0, 3 = 0

Implication

- Fast implication procedure is key for efficient SAT solver!
 - don't move into circuit parts that are not sensitized to current SAT problem
 - detect conflicts as early as possible

- Table lookup implementation (27 cases):
 - No-implication cases:
 - Conflict cases:
 - Split case:
Case split
- Different heuristics work well for particular problem classes
- Often depth-first heuristic is good because it generates conflicts quickly
- Mixture of depth-first and breadth-first schedule
- Other heuristics:
 - pick the vertex with the largest fanout
 - count the polarities of the fanout separately and pick the vertex with the highest count in either polarity
 - run a full implication phase on all outstanding case splits and count the number of implications one would get
 - pick vertices that are involved in small cut of the circuit

Learning
- Learning is the process of adding "shortcuts" to the circuit structure that avois case splits
 - static learning:
 - global implications are learned
 - dynamic learning:
 - learned implications only hold in current part of the search tree
- Learned implications are stores as additional network

Example (cont'd)
- 1st case for vertex 9 lead to conflict
- If we were to try the same assignment again (e.g. for the next SAT call), we would get the same conflict => merge vertex 7 with zero-vertex

```
CREATE_AND(p1, p2) {
  . . . // create new vertex p
  if((p'=HASH_LOOKUP(p1, NOT(p2))) {
    LEARN(((p=0) & (p'=0)) => (p1=0))
  }
  if((p'=HASH_LOOKUP(NOT(p1), p2)) {
    LEARN(((p=0) & (p'=0)) => (p2=0))
  }
}
```

Solution cube: 1 = x, 2 = x, 3 = 0
Boolean Reasoning
SAT – AIG-based Decision Procedure

Learning – static
- Other learning based on contra-positive:
 if \((P \implies Q)\), then \((\neg Q \implies \neg P)\)

```plaintext
foreach vertex v {
    mark = ASSIGNMENT_MARK()
    IMPLY(v)
    LEARN_IMPLICATIONS(v)
    UNDO_ASSIGNMENTS(mark)
    IMPLY(NOT(v))
    LEARN_IMPLICATIONS(NOT(v))
    UNDO_ASSIGNMENTS(mark)
}
```

- Problem: learned implications are far too many
- Solution: restrict learning to non-trivial implications and filter redundant implications

Boolean Reasoning
SAT – AIG-based Decision Procedure

Learning – static and recursive
- Compute the set of all implications for both case splits on level \(i\)
- Static learning of constants, equivalences
- Intersect both split cases to learn for level \(i-1\)

\[((x=1) \implies (y=1)) \land (x=0) \implies (y=1)\] \implies (y=1)

- Dynamic learning of equivalence relations (Stalmarck procedure)
- Learn equivalence relations by dynamically rewriting the formula
Boolean Reasoning

SAT – AIG-based Decision Procedure

Learning – dynamic
- Efficient implementation of **dynamic recursive learning** with level 1:
 - consider both sub-cases in parallel
 - use 27-valued logic in the IMPLY routine
 \[(\text{level0-value}, \text{level1-choice1}, \text{level1-choice2})\] \[\{(0,1,x), (0,1,x), (0,1,x)\}\]
 - automatically set learned values for level0 if both level1 choices agree, e.g.,

![Diagram](attachment:image.png)

Learning – conflict-based (c.f. structure-based)
- Idea: Learn the situation under which a particular conflict occurred and assert it to 0
 - IMPLY will use this “shortcut” to detect similar conflict earlier
- Definition: An **implication graph** is a directed Graph
 \[I(G,E), G' \subseteq G\] the gates of C with assigned values \(v_g \neq \text{unknown}, E \subseteq G' \times G'\) are the edges, where each edge \((g_i,g_j) \in E\) reflects an implication for which an assignment of gate \(g_i\) leads to the assignment of gate \(g_j\).

![Diagram](attachment:image.png)

- The roots (w/o fanin-edges) of the implication graph correspond to the decision vertices, the leaves correspond to the implication frontier
 - There is a strict implication order in the graph from the roots to the leaves
 - We can completely cut the graph at any point and identify value assignments to the cut vertices, we result in identical implications toward the leaves
 \[C_1 \Rightarrow C_2 \Rightarrow \ldots \Rightarrow C_{n-1} \Rightarrow C_n\] (\(C_i\): decision vertices)

- If an implication leads to a conflict, any cut assignment in the implication graph between the decision vertices and the conflict will result in the same conflict!

- We can learn the complement of the cut assignment as circuit
 - find minimal cut in the implication graph \(I\) (costs less to learn)
 - find dominator vertex if exists
 - restrict size of cuts to be learned, otherwise exponential blow-up
Boolean Reasoning

SAT – AIG-based Decision Procedure

- Non-chronological backtracking
 - If we learned only cuts on decision vertices, only the decision vertices that are in the support of the conflict are needed
 - The conflict is fully symmetric with respect to the unrelated decision vertices!!
 - Learning the conflict would prevent checking the symmetric parts again
 - BUT: It is too expensive to learn all conflicts (any cut)

Decision Tree:

- Decision levels: 5
- Decision Tree:

Boolean Reasoning

SAT – CNF-based Decision Procedure

- CNF
 - Product-of-Sums (POS) representation of Boolean function
 - Describes solution using a set of constraints
 - very handy in many applications because new constraints can be simply added to the list of existing constraints
 - very common in AI community
 - Example
 \[\varphi = (a+b'+c) (a'+b+c) (a+b'+c') (a+b+c) \]
 - SAT on CNF (POS) \(\Leftrightarrow \) TAUTOLOGY on DNF (SOP)

- Circuit to CNF conversion
 - Encountered often in practical applications
 - Naive conversion from circuit to CNF:
 - multiply out expressions of circuit until two level structure
 - Example: \(y = x_1 \oplus x_2 \oplus x_3 \oplus \ldots \oplus x_n \) (parity function)
 - circuit size is linear in the number of variables
 - generated chess-board Karnaugh map
 - CNF (or DNF) formula has \(2^n-1 \) terms (exponential in the # vars)
 - Better approach:
 - introduce one variable per circuit vertex
 - formulate the circuit as a conjunction of constraints imposed on the vertex values by the gates
 - uses more variables but size of formula is linear in the size of the circuit
DPLL procedure

Algorithm DPLL() {
 while Deduce() == CONFLICT {
 blevel = AnalyzeConflict();
 if (blevel < 0) return UNSATISFIABLE;
 else Backtrack(blevel);
 }
 return SATISFIABLE;
}

ChooseNextAssignment picks next decision variable and assignment
Deduce does Boolean Constraint Propagation (implications)
AnalyzeConflict backprocesses from conflict and produces learnt-clause
Backtrack undoes assignments
Boolean Reasoning

SAT – CNF-based Decision Procedure

- **Implication**
 - Example
 - $a \land c \iff (\neg a \land \neg b \land \neg c) \land (a \land \neg c) \land (b \land \neg c)$

 - Non-implication cases:
 - [Diagram showing all clauses satisfied]
 - [Diagram showing not all clauses satisfied (avoid exploring this part)]

- **DPLL (w/ implication)**
 - Steps:
 1. $a + b + c$
 2. $a + b + \neg c$
 3. $(\neg a + b + \neg c)$
 4. $(a + c + \neg c)$
 5. $(\neg a + c + \neg c)$
 6. $(\neg a + c + \neg c)$
 7. $(a + b + c + \neg c)$
 8. $(\neg a + c + \neg c)$

Source: Karen A. Sakallah, Univ. of Michigan

Important detail for cut selection:
- During implication processing, record decision level for each implication
- At conflict, select earliest cut such that exactly one node of the implication graph lies on current decision level
 - Either decision variable itself
 - Or UIP (“unique implication point”) that represents a dominator node for current decision level in conflict graph
- By selecting such cut, implication processing will automatically flip decision variable (or UIP variable) to its complementary value
Boolean Reasoning
SAT – CNF-based Decision Procedure

- **Conflict-based learning**
 - UIP detection
 - Store with each implication the decision level, and a time stamp (integer that is incremented after each decision)
 - UIP on decision level I has the property that all following implications towards the conflict have a larger time stamp
 - When back processing from conflict, put all implications that are to be processed on heap, keeping the one with smallest time stamp on top
 - If during processing there is only one variable on current decision level on heap then that variable must be a UIP

Decision level

![UIP on level 5](image)

- **DPLL (conflict-based learning)**
 1. $(a + b + c)$
 2. $(a + b + ¬c)$
 3. $(¬a + b + ¬c)$
 4. $(a + c + d)$
 5. $(¬a + c + a)$
 6. $(¬a + c + ¬a)$
 7. $(¬b + c + ¬c)$
 8. $(¬b + ¬c + d)$

Source: Kenem A. Sakallah, Univ. of Michigan

Boolean Reasoning
SAT – CNF-based Decision Procedure

- **Implementation issues**
 - Clauses are stores in arrays
 - Track change-sensitive clauses (two-literal watching)
 - all literals but one assigned -> implication
 - all literals but two assigned -> clause is sensitive to a change of either literal
 - all other clauses are insensitive and do not need to be observed
 - Learning:
 - learned implications are added to the CNF formula as additional clauses
 - limit the size of the clause
 - limit the ‘lifetime’ of a clause, will be removed after some time
 - Non-chronological back-tracking
 - similar to circuit case

- **Implementation issues (cont’d)**
 - Random restarts:
 - stop after a given number of backtracks
 - start search again with modified ordering heuristic
 - keep learned structures!
 - very effective for satisfiable formulas, often also effective for unsat formulas
 - Learning of equivalence relations:
 - if $(a \Rightarrow b) \land (b \Rightarrow a)$, then $(a = b)$
 - very powerful for formal equivalence checking
 - Incremental SAT solving
 - solving similar CNF formulas in a row
 - share learned clauses