Logic Synthesis and Verification

Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University

Fall 2010

Boolean Algebra

Boolean Algebra

Reading

F. M. Brown. *Boolean Reasoning: The Logic of Boolean Equations.* Dover, 2003. (Chapters 1-3)

Boolean Algebra

Outline

- Definitions
- Examples
- Properties
- Boolean formulae and Boolean functions

Boolean Algebra

□ A Boolean algebra is an algebraic structure (B, +, ·, 0, 1)

- **B** is a set, called the *carrier*
- + and · are binary operations defined on B
- <u>0</u> and <u>1</u> are distinct members of **B**

that satisfies the following postulates (axioms):

- 1. Commutative laws
- 2. Distributive laws
- 3. Identities
- 4. Complements

Postulates of Boolean Algebra

(B, +, ⋅, 0, 1) **B** is closed under + and · 1. $\forall a, b \in \mathbf{B}, a + b \in \mathbf{B} \text{ and } a \cdot b \in \mathbf{B}$ 2. Commutative laws: $\forall a, b \in \mathbf{B}$ a + b = b + a $a \cdot b = b \cdot a$ 3. Distributive laws: $\forall a, b \in \mathbf{B}$ $a + (b \cdot c) = (a + b) \cdot (a + c)$ $a \cdot (b+c) = a \cdot b + a \cdot c$ Identities: $\forall a \in \mathbf{B}$ 4. 0 + a = a $1 \cdot a = a$ 5. Complements: $\forall a \in \mathbf{B}, \exists a' \in \mathbf{B}$ s.t. a + a' = 1

$$a \cdot a' = \underline{0}$$

Verify that a' is unique in $(\mathbf{B}, +, \cdot, \underline{0}, \underline{1})$.

Instances of Boolean Algebra

- Switching algebra (two-element Boolean algebra)
- □ The algebra of classes (subsets of a set)
- Arithmetic Boolean algebra
- □ The algebra of propositional functions

Instance 1: Switching Algebra

□ A switching algebra is a two-element Boolean Algebra ({0,1}, +, ·, 0, 1) consisting of:

- the set **B** = {0, 1}
- two binary operations AND(·) and OR(+)
- one unary operation NOT(')

where

OR	0	1	AND	0	1	NOT	-
0	0	1	0	0	0	0	1
1	1	1	1	0	1	1	0

Switching Algebra

- Just one of many other Boolean algebras
 - (Ex: verify that the algebra satisfies all the postulates.)
- An exclusive property (not hold for all Boolean algebras) for two-element Boolean algebra:
 x + y = 1 iff x=1 or y=1
 - $x \cdot y = 0$ *iff* x = 0 or y = 0

OR	0	1	AND
0	0	1	0
1	1	1	1

0	1	NOT
0	0	0
0	1	1

1

0

9

Instance 2: Algebra of Classes

Subsets of a set

- $\mathbf{B} \leftrightarrow 2^{S} \\
 + \leftrightarrow \cup \\
 \cdot \leftrightarrow \cap \\
 \underline{0} \leftrightarrow \phi \\
 \underline{1} \leftrightarrow S$
- □ S is a universal set $(S \neq \phi)$. Each subset of S is called a *class* of S.
- **D** If $S = \{a, b\}$, then **B** = $\{\phi, \{a\}, \{b\}, \{a, b\}\}$
- **B** (= 2^{s}) is closed under \cup and \cap

Algebra of Classes

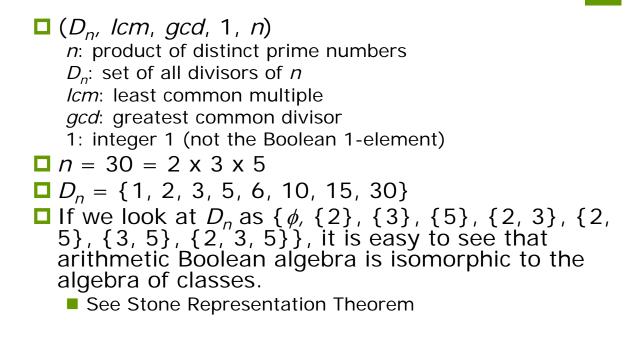
□ Commutative laws: $\forall S_1, S_2 \in 2^S$ $S_1 \cup S_2 = S_2 \cup S_1$ $S_1 \cap S_2 = S_2 \cap S_1$ □ Distributive laws: $\forall S_1, S_2, S_3 \in 2^S$ $S_1 \cup (S_2 \cap S_3) = (S_1 \cup S_2) \cap (S_1 \cup S_3)$ $S_1 \cap (S_2 \cup S_3) = (S_1 \cap S_2) \cup (S_1 \cap S_3)$ □ Identities: $\forall S_1 \in 2^S$ $S_1 \cup \phi = S_1$ $S_1 \cap S = S_1$ □ Complements: $\forall S_1 \in 2^S, \exists S_1' \in 2^S, S_1' = S \setminus S_1 \text{ s.t.}$ $S_1 \cup S_1' = S$ $S_1 \cap S_1' = \phi$

11

Algebra of Classes

 Stone Representation Theorem: Every finite Boolean algebra is isomorphic to the Boolean algebra of subsets of some finite set S Therefore, for all finite Boolean algebra, |B| can only be 2^k for some k ≥ 1.
 The theorem proves that finite class algebras are not specialized (i.e. no exclusive properties, e.g. x + y = 1 *iff* x=1 or y=1 in two-element Boolean algebra)
 Can reason in terms of specific and easily "visualizable" concepts (union, intersection, empty set, universal set) rather than abstract operations (+, ·,0,1)

Instance 3: Arithmetic Boolean Algebra



Instance 4: Algebra of Propositional Functions

□(P, ∨, ∧, □, ■)

- P: the set of propositional functions of *n* given variables
- v: disjunction symbol (OR)
- ∧: conjunction symbol (AND)
- □: formula that is always false (contradiction)
- ■: formula that is always true (tautology)

Lessons from Abstraction

- Abstract mathematical objects in terms of simple rules
- A systematic way of characterizing various seemingly unrelated mathematical objects
- Abstraction trims off immaterial details and simplifies problem formulation

Properties of Boolean Algebras

□ For arbitrary elements a, b, and c in Boolean algebra

- 1. Associativity a + (b + c) = (a + b) + c $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 2. Idempotence a + a = a $a \cdot a = a$
- 3.
- $a + \underline{1} = \underline{1}$ $a \cdot \underline{0} = \underline{0}$
- 4. Absorption $a + (a \cdot b) = a$ $a \cdot (a + b) = a$

- 5. Involution (a')' = a
- 6. De Morgan's Laws $(a + b)' = a' \cdot b'$ $(a \cdot b)' = a' + b'$
- 7.

 $a + a' \cdot b = a + b$ $a \cdot (a' + b) = a \cdot b$

8. Consensus $a \cdot b + a' \cdot c + b \cdot c =$ $a \cdot b + a' \cdot c$ $(a + b) \cdot (a' + c) \cdot (b + c) =$ $(a + b) \cdot (a' + c)$

Principle of Duality

Every identity on Boolean algebra is transformed into another identity if the following is interchanged

• the operations + and \cdot ,

the elements <u>0</u> and <u>1</u>

Example:

$$a + 1 = 1$$

 $a \cdot 0 = 0$

17

Postulates for Boolean Algebra (Revisited)

Duality in $(\mathbf{B}, +, \cdot, 0, 1)$ 1. **B** is closed under + and \cdot $\forall a, b \in \mathbf{B}, a + b \in \mathbf{B} \text{ and } a \cdot b \in \mathbf{B}$ 2. Commutative Laws: $\forall a, b \in \mathbf{B}$ a + b = b + a $a \cdot b = b \cdot a$ Distributive laws: $\forall a, b \in \mathbf{B}$ 3. $a + (b \cdot c) = (a + b) \cdot (a + c)$ $a \cdot (b + c) = a \cdot b + a \cdot c$ 4. Identities: $\forall a \in \mathbf{B}$ 0 + a = a $1 \cdot a = a$ Complements: $\forall a \in \mathbf{B}, \exists a' \in \mathbf{B}$ s.t. 5. a + a' = 1 $a \cdot a' = 0$

Two Propositions

- 1. Let a and b be members of a Boolean algebra. Then $a = \underline{0}$ and $b = \underline{0}$ iff $a + b = \underline{0}$ $a = \underline{1}$ and $b = \underline{1}$ iff $ab = \underline{1}$
 - c.f. The following two propositions are only true for two-element Boolean algebra (not other Boolean algebra)
 x+y =1 iff x=1 or y=1
 xy=0 iff x=0 or y=0

Why?

2. Let a and b be members of a Boolean algebra. Then a = b iff a'b + ab' = $\underline{0}$

Boolean Formulas and Boolean Functions

Boolean Formulas and Boolean Functions

Outline:

- Definition of Boolean formulas
- Definition of Boolean functions
- Boole's expansion theorem
- The minterm canonical form

- Given a Boolean algebra **B** and *n* symbols $x_1, ..., x_n$, the set of all Boolean formulas on the *n* symbols is defined by:
 - 1. The elements of **B** are Boolean formulas.
 - 2. The variable symbols x_1, \ldots, x_n are Boolean formulas.
 - 3. If g and h are Boolean formulas, then so are
 - $\Box (g) + (h)$ $\Box (g) \cdot (h)$
 - **□**(g)′
 - 4. A string is a Boolean formula if and only if it is obtained by finitely many applications of rules 1, 2 and 3.
- There are infinitely many n-variable Boolean formulas.

n-variable Boolean Functions

- A Boolean function is a mapping that can be described by a Boolean formula.
- □ Given an *n*-variable Boolean formula F, the corresponding *n*-variable function $f: \mathbf{B}^n \rightarrow \mathbf{B}$ is defined as follows:
 - 1. If $F = b \in \mathbf{B}$, then the formula represents the constant function defined by $f(x_1,...,x_n) = b \quad \forall ([x_1],...,[x_n]) \in \mathbf{B}^n$
 - 2. If $F = x_i$, then the formula represents the projection function defined by

 $f(x_1,\ldots,x_n) = x_i \quad \forall ([x_1],\ldots,[x_n]) \in \mathbf{B}^n$

where $[x_k]$ denotes a valuation of variable x_k

n-variable Boolean Functions

3. If the formula is of type either G + H, GH or G', then the corresponding *n*-variable function is defined as follows

 $(g + h)(x_1, ..., x_n) = g(x_1, ..., x_n) + h(x_1, ..., x_n)$ $(g \cdot h)(x_1, ..., x_n) = g(x_1, ..., x_n) \cdot h(x_1, ..., x_n)$ $(g')(x_1, ..., x_n) = g(x_1, ..., x_n)'$

for \forall ([x_1],...,[x_n]) \in **B**ⁿ

The number of *n*-variable Boolean functions over a finite Boolean algebra **B** is *finite*.

Example

B = {<u>0</u>, <u>1</u>, a, a'}

- Variable symbols: {x, y}
- 2-variable Boolean formula:

e.g., a' x + a y'

- □ 2-variable Boolean function: f : B² → B
- Domain B²={(0,0), (0,1), ..., (a,a)}

x	У	f
<u>0</u>	<u>0</u>	а
<u>0</u>	<u>1</u>	<u>0</u>
<u>0</u>	a'	а
<u>0</u>	а	<u>0</u>
<u>1</u>	<u>0</u>	<u>1</u>
<u>1</u>	<u>1</u>	a'
<u>1</u>	a'	<u>1</u>
<u>1</u>	а	a'
а	<u>0</u>	а
а	<u>1</u>	<u>0</u>
а	a'	а
а	а	<u>0</u>
X 0 0 0 1 <td< td=""><td>y 0 1 a' a 0 1 a' a' </td><td>a$\underline{0}$a$\underline{0}$1a'a'a$\underline{0}$a$\underline{0}$1a'1</td></td<>	y 0 1 a' a 0 1 a' a'	a $\underline{0}$ a $\underline{0}$ 1a'a'a $\underline{0}$ a $\underline{0}$ 1a'1
a'	1	a'
a'	a'	1
a'	а	a'

25

Boole's Expansion Theorem

Theorem 1 If $f: \mathbf{B}^n \rightarrow \mathbf{B}$ is a Boolean function, then $f(x_1, \dots, x_n) = x' \cdot f(0, \dots, x_n) + x \cdot f(1)$

 $f(x_1, \dots, x_n) = x'_1 f(\underline{0}, \dots, x_n) + x_1 f(\underline{1}, \dots, x_n)$ for $\forall ([x_1], \dots, [x_n]) \in \mathbf{B}^n$

Proof. Case analysis of Boolean functions under the construction rules. Apply postulates of Boolean algebra.

The theorem holds not only for twoelement Boolean algebra (c.f. Shannon expansion)

Minterm Canonical Form

Theorem 2 A function $f: \mathbf{B}^n \rightarrow \mathbf{B}$ is Boolean if and only if it can be expressed in the minterm canonical form

$$f(X) = \sum_{A \in \{\underline{0},\underline{1}\}^n} f(A) \cdot X^A$$

where $X = (x_1, \dots, x_n) \in \mathbf{B}^n$, $A = (a_1, \dots, a_n) \in \{\underline{0}, \underline{1}\}^n$, and $X^A \equiv x_1^{a_1} \cdot x_2^{a_2} \cdots x_n^{a_n}$ (with $x^{\underline{0}} \equiv x'$ and $x^{\underline{1}} \equiv x$)

Proof.

 (\Rightarrow) Follows from Boole's expansion theorem.

(\Leftarrow) Examine the construction rules of Boolean functions.

Example

f is not Boolean! *Proof.* If f is Boolean, f can be

expressed by f(x) = x f(1) + x' f(0)= x + a x' from the minterm canonical form. However, substituting x = a in the previous expression yields: f(a) = a + a a'= $a \neq 1$

f(x)
а
1
a'
1

Why Study General Boolean Algebra?

General algebras can't be avoided

 $f = \mathbf{X} \mathbf{y} + \mathbf{X} \mathbf{z}' + \mathbf{X}' \mathbf{z}$

- Two-element view: x, y, $z \in \{0,1\}$ and $f \in \{0,1\}$
- General algebra view: f as a member of the Boolean algebra of 3-variable Boolean functions

29

Why Study General Boolean Algebra?

General algebras are useful

- Two-element view: Truth tables include only 0 and 1.
- General algebra view: Truth tables contain any elements of B.

J	К	Q	Q+
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0

J	К	Q+
0	0	Q
0	1	0
1	0	1
1	1	Q′