
1

Logic Synthesis and
Verification

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Fall 2010

2

SOPs and Incompletely
Specified Functions

Reading:
Logic Synthesis in a Nutshell

Section 2

most of the following slides are by
courtesy of Andreas Kuehlmann

3

Boolean Function Representation

Sum of Products
 A function can be represented by a sum of cubes (products):

 E.g., f = ab + ac + bc
Since each cube is a product of literals, this is a “sum of
products” (SOP) representation

 An SOP can be thought of as a set of cubes F
 E.g., F = {ab, ac, bc}

 A set of cubes that represents f is called a cover of f
 E.g.,

F1={ab, ac, bc} and F2={abc, abc’, ab’c, a’bc} are covers of
f = ab + ac + bc.

4

List of Cubes (Cover Matrix)

We often use a matrix notation to represent a
cover:
 Example

F = ac + c’d =

a b c d a b c d
a c  1 2 1 2 or 1 - 1 -
c’d  2 2 0 1 - - 0 1

Each row represents a cube
1 means that the positive literal appears in the cube
0 means that the negative literal appears in the cube
2 (or -) means that the variable does not appear in the

cube. It implicitly represents both 0 and 1 values.

5

PLA

 A PLA is a (multiple-output) function f : Bn  Bm

represented in SOP form

f2 f3f1

n=3, m=3

a a b b c c
abc f1f2f3

10- 1 - -

-11 1 - -

0-0 - 1 -

111 - 1 1

00- - - 1

cover matrix

6

PLA

 Each distinct cube appears just once in the AND-
plane, and can be shared by (multiple) outputs in
the OR-plane, e.g., cube (abc)

 Extensions from single-output to multiple-output
minimization theory are straightforward

7

SOP
 The cover (set of SOPs) can efficiently represent many

practical logic functions (i.e., for many practical functions,
there exist small covers)

 Two-level minimization seeks the cover of minimum size
(least number of cubes)

bc ac

ab
c

a

b

= onset minterm

Note that each onset minterm is
“covered” by at least one of the
cubes!
None of the offset minterms is
covered

8

Irredundant Cube

 Let F = {c1, c2, …, ck} be a cover for f, i.e.,
f = i

k
=1 ci

A cube ci F is irredundant if F\{ci}  f

 Example

f = ab + ac + bc

bc ac

ab
c

a

b

bc

ac
Not covered

F\{ab}  f

9

Prime Cube
 A literal x (a variable or its negation) of cube c  F (cover

of f) is prime if (F \ {c})  {cx}  f,
where cx (cofactor w.r.t. x) is c with literal x of c deleted

 A cube of F is prime if all its literals are prime

Example
f = xy + xz + yz
c = xy; cy = x (literal y deleted)
F \ {c}  {cy} = x + xz + yz

yz

xz
x

z

x

yinequivalent to f since
offset vertex is covered

10

Prime and Irredundant Cover
 Definition 1. A cover is prime (resp. irredundant) if all its

cubes are prime (resp. irredundant)

 Definition 2. A prime (cube) of f is essential (essential
prime) if there is a onset minterm (essential vertex) in that
prime but not in any other prime.

 Definition 3. Two cubes are orthogonal if they do not have
any minterm in common
 E.g. c1= x y c2 = y’z are orthogonal

c1= x’y c2 = y z are not orthogonal

11

Prime and Irredundant Cover
Example

f = abc + b’d + c’d is prime and irredundant.
abc is essential since abcd’abc, but not in b’d or c’d or ad

Why is abcd not an essential vertex of abc?
What is an essential vertex of abc?
What other cube is essential? What prime is not essential?

abc

bd

cdda

c
b

12

Incompletely Specified Function

 Let F = (f, d, r) : Bn  {0, 1, *}, where *
represents “don’t care”.
 f = onset function f(x)=1  F(x)=1
 r = offset function r(x)=1  F(x)=0
 d = don’t care function d(x)=1  F(x)=*

 (f,d,r) forms a partition of Bn, i.e,
 f + d + r = Bn

 (f  d) = (f  r) = (d  r) =  (pairwise disjoint)
(Here we don’t distinguish characteristic functions and
the sets they represent)

13

Incompletely Specified Function

 A completely specified function g is a
cover for F = (f,d,r) if

f  g  f+d
 gr = 
 if xd (i.e. d(x)=1), then g(x) can be 0 or 1;

if xf, then g(x) = 1; if xr, then g(x) = 0
 We “don’t care” which value g has at xd

14

Prime of Incompletely Specified
Function

 Definition. A cube c is a prime of F = (f,d,r) if c 
f+d (an implicant of f+d), and no other implicant
(of f+d) contains c (i.e., it is simply a prime of
f+d)

 Definition. Cube cj of cover G = {ci} of F = (f,d,r)
is redundant if f  G\{cj}; otherwise it is
irredundant

 Note that c  f+d  c  r = 

15

Prime of Incompletely Specified
Function

 Example
Consider logic minimization of F(a,b,c)=(f,d,r) with
f=a’bc’+ab’c+abc and d = abc’+ab’c’

F1={a’bc’, ab’c, abc}

ab’c is redundant
a is prime

F3= {a, a’bc’}
Expand a’bc’  bc’

Expand abca

F2={a, a’bc’, ab’c}

F4= {a, bc’}

off

on

don’t care

16

Checking of Prime and Irredundancy
Let G be a cover of F = (f,d,r). Let D be a cover for d
 ci  G is redundant iff

ci  (G\{ci})  D (1)

(Let Gi  G\{ci}  D. Since ci  Gi and f  G  f+d, then ci  cif+cid and cif
 G\{ci}. Thus f  G\{ci}.)

 A literal l  ci is prime if (ci\{ l }) (= (ci)l) is not an implicant of F
 A cube ci is a prime of F iff all literals l  ci are prime

Literal l  ci is not prime  (ci)l  f+d (2)

Note: Both tests (1) and (2) can be checked by tautology (to be explained):

 (Gi)ci  1 (implies ci redundant)
 (fd)(ci)l

 1 (implies l not prime)
The above two cofactors are with respect to cubes instead of literals

17

(Literal) Cofactor
 Let f : Bn  B be a Boolean function, and x= (x1, x2, …, xn)

the variables in the support of f; the cofactor fa of f by a
literal a = xi or a = xi is

 fxi
(x1, x2, …, xn) = f (x1, …, xi-1, 1, xi+1,…, xn)

 fxi
(x1, x2, …, xn) = f (x1, …, xi-1, 0, xi+1,…, xn)

The computation of the cofactor is a fundamental operation
in Boolean reasoning!

 Example

a

b

c

f = abc + abc

a

b

c

fa = bc

18

(Literal) Cofactor

The cofactor Cxj of a cube C (representing some
Boolean function) with respect to a literal xj is

 C if xj and xj’ do not appear in C
 C\{xj} if xj appears positively in C, i.e., xj  C
  if xj appears negatively in C, i.e., xj’  C

Example
C = x1 x4’ x6,
Cx2 = C (x2 and x2 do not appear in C)
Cx1 = x4’ x6 (x1 appears positively in C)
Cx4 =  (x4 appears negatively in C)

19

(Literal) Cofactor

 Example

F = abc’ + b’d + cd
Fb = ac’ + cd

(Just drop b everywhere and throw away cubes
containing literal b’)

Cofactor and disjunction commute!

20

Shannon Expansion

Let f : Bn  B
Shannon Expansion:

f = xi fxi
+ xi’ fxi’

Theorem: F is a cover of f. Then

F = xi Fxi + xi’ Fxi’

We say that f and F are expanded about xi, and
xi is called the splitting variable

21

Shannon Expansion
 Example

F = ab + ac + bc

F = a Fa + a’ Fa’

= a (b+c+bc)+a’ (bc)
= ab+ac+abc+a’bc

Cube bc got split into two cubes

c

a

b
c

a

b

bc

ac

ab

22

(Cube) Cofactor

 The cofactor fC of f by a cube C is f with the fixed
values indicated by the literals of C
 E.g., if C = xi xj’, then xi = 1 and xj = 0

 For C = x1 x4’ x6, fC is just the function f restricted to the
subspace where x1 = x6 = 1 and x4 = 0
Note that fC does not depend on x1,x4 or x6 anymore

(However, we still consider fC as a function of all n
variables, it just happens to be independent of x1,x4 and x6)

 x1f  fx1
E.g., for f = ac + a’c, afa = af = ac and fa=c

23

(Cube) Cofactor

 The cofactor of the cover F of some function f is
the sum of the cofactors of each of the cubes of F

 If F={c1, c2,…, ck} is a cover of f, then Fc= {(c1)c,
(c2)c,…, (ck)c} is a cover of fc

24

Containment vs. Tautology
 A fundamental theorem that connects functional containment and

tautology:

Theorem. Let c be a cube and f a function. Then c  f  fc  1.

Proof.
We use the fact that xfx = xf, and fx is independent of x.
()
Suppose fc  1. Then cf = fcc = c. Thus, c  f.
()
Suppose c  f. Then f+c=f. In addition, (f+c)c = fc+1=1. Thus,
fc=1.

ff
cc

25

Checking of Prime and Irredundancy
(Revisited)
Let G be a cover of F = (f,d,r). Let D be a cover for d
 ci  G is redundant iff

ci  (G\{ci})  D (1)

(Let Gi  G\{ci}  D. Since ci  Gi and f  G  f+d, then ci  cif+cid and cif
 G\{ci}. Thus f  G\{ci}.)

 A literal l  ci is prime if (ci\{ l }) (= (ci)l) is not an implicant of F
 A cube ci is a prime of F iff all literals l  ci are prime

Literal l  ci is not prime  (ci)l  f+d (2)

Note: Both tests (1) and (2) can be checked by tautology (explained):

 (Gi)ci  1 (implies ci redundant)
 (fd)(ci)l

 1 (implies l not prime)
The above two cofactors are with respect to cubes instead of literals

26

Generalized Cofactor

 Definition. Let f, g be completely specified
functions. The generalized cofactor of f with
respect to g is the incompletely specified
function:

 Definition. Let  = (f, d, r) and g be given. Then

co(f ,g)  (f  g,g, f  g)

co(,g)  (f  g,d  g,r  g)

27

Shannon vs. Generalized Cofactor

 Let g = xi . Shannon cofactor is
fxi

(x1, x2, …, xn) = f (x1, …, xi-1, 1, xi+1,…, xn)

 Generalized cofactor with respect to g=xi is

 Note that

In fact fxi
is the unique cover of co(f, xi)

independent of the variable xi .

co(f , xi)  (f  xi , xi , f  xi)

f  xi  fxi
 f  xi  xi  f  xi

28

Shannon vs. Generalized Cofactor

offoff

onon

DonDon’’t caret care

a

f  abc  abc  abc  abc

co(f ,a)  (f a,a, f a) fa  bc  bc

29

Shannon vs. Generalized Cofactor

So

f

f a af
fa a

co(f ,a)  (f a,a, f a)

 

 f  a  f
a
 f  a

30

Shannon vs. Generalized Cofactor

Generalized Cofactor

We will get back to the use of generalized cofactor later

Shannon Cofactor

x  fx  x  fx  f

fx 
y
 fxy

f  g y
 fy  gy

f 
x
 fx 

f  g  co(f ,g)  g  co(f ,g)

co(co(f , g),h)  co(f ,gh)

co(f  g,h)  co(f ,h)  co(g,h)

co(f ,g)  co(f ,g)

31

Data Structure for SOP
Manipulation

most of the following slides are by
courtesy of Andreas Kuehlmann

32

Operation on Cube Lists
 AND operation:

 take two lists of cubes
 compute pair-wise AND between individual cubes and put result on

new list
 represent cubes in computer words
 implement set operations as bit-vector operations

Algorithm AND(List_of_Cubes C1,List_of_Cubes C2) {
C = 
foreach c1  C1 {

foreach c2  C2 {
c = c1  c2
C = C  c

}
}
return C

}

