Logic Synthesis and Verification

Jie－Hong Roland Jiang
 江介宏
 Department of Electrical Engineering National Taiwan University

Fall 2010

SOPs and Incompletely Specified Functions

Reading：

Logic Synthesis in a Nutshell Section 2

Boolean Function Representation

Sum of Products

\square A function can be represented by a sum of cubes (products):

- E.g., $f=a b+a c+b c$

Since each cube is a product of literals, this is a "sum of products" (SOP) representation
\square An SOP can be thought of as a set of cubes F
■ E.g., $F=\{a b, a c, b c\}$
\square A set of cubes that represents f is called a cover of f - E.g.,
$F_{1}=\{a b, a c, b c\}$ and $F_{2}=\left\{a b c, a b c^{\prime}, a b^{\prime} c, a^{\prime} b c\right\}$ are covers of $f=a b+a c+b c$.

List of Cubes (Cover Matrix)

\square We often use a matrix notation to represent a cover:

- Example
$\mathrm{F}=\mathrm{ac}+\mathrm{c}^{\prime} \mathrm{d}=$
a b c d
a c $\rightarrow \quad 12120$ or $c^{\prime} d \rightarrow 22011 \quad-01$
-Each row represents a cube
$\square 1$ means that the positive literal appears in the cube
$\square 0$ means that the negative literal appears in the cube
ㅁ2 (or -) means that the variable does not appear in the cube. It implicitly represents both 0 and 1 values.

PLA

\square A PLA is a (multiple-output) function $f: B^{n} \rightarrow B^{m}$ represented in SOP form
$n=3, m=3$

cover matrix

abc	$\mathbf{f}_{\mathbf{1}} \mathbf{f}_{2} \mathbf{f}_{\mathbf{3}}$	
$10-$	1	-
-11	1	-
$0-0$	-	-
111	-	-
$00-$	-	-1

PLA

\square Each distinct cube appears just once in the ANDplane, and can be shared by (multiple) outputs in the OR-plane, e.g., cube (abc)
\square Extensions from single-output to multiple-output minimization theory are straightforward

SOP

\square The cover (set of SOPs) can efficiently represent many practical logic functions (i.e., for many practical functions, there exist small covers)

- Two-level minimization seeks the cover of minimum size (least number of cubes)

$$
=\text { onset minterm }
$$

Note that each onset minterm is
"covered" by at least one of the cubes!
None of the offset minterms is covered

Irredundant Cube

\square Let $F=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ be a cover for f, i.e., $f=\sum_{i=1}^{k} c_{i}$
A cube $\mathrm{c}_{\mathrm{i}} \in \mathrm{F}$ is irredundant if $\mathrm{F} \backslash\left\{\mathrm{c}_{\mathrm{i}}\right\} \neq \mathrm{f}$
Example

$$
f=a b+a c+b c
$$

a

Not covered
$F \backslash\{a b\} \neq f$

Prime Cube

\square A literal x (a variable or its negation) of cube $c \in F$ (cover of f) is prime if $(F \backslash\{c\}) \cup\left\{c_{x}\right\} \neq f$, where c_{x} (cofactor w.r.t. x) is c with literal x of c deleted
\square A cube of F is prime if all its literals are prime
Example
$f=x y+x z+y z$
$c=x y ; c_{y}=x$ (literal y deleted)
$F \backslash\{c\} \cup\left\{c_{y}\right\}=x+x z+y z$
inequivalent to f since offset vertex is covered

Prime and Irredundant Cover

\square Definition 1. A cover is prime (resp. irredundant) if all its cubes are prime (resp. irredundant)
\square Definition 2. A prime (cube) of f is essential (essential prime) if there is a onset minterm (essential vertex) in that prime but not in any other prime.

- Definition 3. Two cubes are orthogonal if they do not have any minterm in common
E.g.

$$
\begin{aligned}
& c_{1}=x y \\
& c_{1}=x^{\prime} y
\end{aligned}
$$

$$
c_{2}=y^{\prime} z \quad \text { are orthogonal }
$$

$$
\mathrm{c}_{2}=\mathrm{yz} \text { are not orthogonal }
$$

Prime and Irredundant Cover

Example

$f=a b c+b \prime d+c^{\prime} d$ is prime and irredundant.
abc is essential since abcd' $\in a b c$, but not in b'd or c'd or ad

Why is abcd not an essential vertex of abc?
What is an essential vertex of abc?
What other cube is essential? What prime is not essential?

Incompletely Specified Function

\square Let $\mathrm{F}=(\mathrm{f}, \mathrm{d}, \mathrm{r}): \mathrm{Bn}^{\mathrm{n}} \rightarrow\{0,1, *\}$, where * represents "don't care".
■ $\mathrm{f}=$ onset function

$$
\begin{aligned}
& f(x)=1 \leftrightarrow F(x)=1 \\
& r(x)=1 \leftrightarrow F(x)=0 \\
& d(x)=1 \leftrightarrow F(x)=*
\end{aligned}
$$

- r $=$ offset function
- d = don't care function
$\square(f, d, r)$ forms a partition of B^{n}, i.e,
$\square f+d+r=B^{n}$
■ $(\mathrm{f} \cdot \mathrm{d})=(\mathrm{f} \cdot \mathrm{r})=(\mathrm{d} \cdot \mathrm{r})=\varnothing$ (pairwise disjoint)
(Here we don't distinguish characteristic functions and the sets they represent)

Incompletely Specified Function

\square A completely specified function g is a cover for $F=(f, d, r)$ if
$\mathrm{f} \subseteq \mathrm{g} \subseteq \mathrm{f}+\mathrm{d}$
$g \cdot r=\varnothing$

- if $x \in d$ (i.e. $d(x)=1$), then $g(x)$ can be 0 or 1 ;
if $x \in f$, then $g(x)=1$; if $x \in r$, then $g(x)=0$
\square We "don't care" which value g has at $x \in d$

Prime of Incompletely Specified Function

\square Definition. A cube c is a prime of $F=(f, d, r)$ if $c \subseteq$ $\mathrm{f}+\mathrm{d}$ (an implicant of $\mathrm{f}+\mathrm{d}$), and no other implicant (of $f+d$) contains c (i.e., it is simply a prime of $\mathrm{f}+\mathrm{d}$)
\square Definition. Cube c_{j} of cover $G=\left\{c_{i}\right\}$ of $F=(f, d, r)$ is redundant if $\mathrm{f} \subseteq \mathrm{G} \backslash\left\{\mathrm{c}_{\mathrm{j}}\right\}$; otherwise it is irredundant
\square Note that $\mathrm{c} \subseteq \mathrm{f}+\mathrm{d} \leftrightarrow \mathrm{c} \cdot \mathrm{r}=\varnothing$

Prime of Incompletely Specified Function

ExampleConsider logic minimization of $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c})=(\mathrm{f}, \mathrm{d}, \mathrm{r})$ with

Checking of Prime and Irredundancy

Let G be a cover of $F=(f, d, r)$. Let D be a cover for d
$\begin{array}{ll}\square & c_{i} \in G \text { is redundant iff } \\ & c_{i} \subseteq\left(G \backslash\left\{c_{i}\right\}\right) \cup D\end{array}$
(Let $G^{i} \equiv G \backslash\left\{c_{i}\right\} \cup D$. Since $c_{i} \subseteq G^{i}$ and $f \subseteq G \subseteq f+d$, then $c_{i} \subseteq c_{i} f+c_{i} d$ and $c_{i} f$ $\subseteq G \backslash\left\{c_{i}\right\}$. Thus $f \subseteq G \backslash\left\{c_{i}\right\}$.)A literal $I \in c_{i}$ is prime if $\left(c_{i} \backslash\{I\}\right)\left(=\left(c_{i}\right)_{\mid}\right)$is not an implicant of FA cube c_{i} is a prime of F iff all literals $I \in c_{i}$ are prime Literal $I \in c_{i}$ is not prime $\Leftrightarrow\left(c_{i}\right)_{I} \subseteq f+d$

Note: Both tests (1) and (2) can be checked by tautology (to be explained):$\left(\mathrm{G}^{\mathrm{i}}\right)_{\mathrm{c}_{\mathrm{i}}} \equiv 1 \quad$ (implies c_{i} redundant)$(f \cup d)_{\left(\mathrm{c}_{1}\right)} \equiv 1 \quad$ (implies I not prime)
The above two cofactors are with respect to cubes instead of literals

(Literal) Cofactor

\square Let $\mathrm{f}: \mathrm{B}^{\mathrm{n}} \rightarrow \mathrm{B}$ be a Boolean function, and $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ the variables in the support of f; the cofactor f_{a} of f by a literal $a=x_{i}$ or $a=\neg x_{i}$ is
$\square f_{x_{i}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right)$$f_{-x_{i}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n}\right)$

The computation of the cofactor is a fundamental operation in Boolean reasoning!

Example

(Literal) Cofactor

The cofactor $\mathrm{C}_{\mathrm{x}_{\mathrm{i}}}$ of a cube C (representing some Boolean function) with respect to a literal x_{j} is $\square C \quad$ if x_{j} and x_{j} ' do not appear in C $\square C \backslash\left\{x_{j}\right\} \quad$ if x_{j} appears positively in C, i.e., $x_{j} \in C$
if x_{j} appears negatively in C, i.e., $x_{j}{ }^{\prime} \in C$

Example

$C=x_{1} x_{4}{ }^{\prime} x_{6}$,
$C_{x_{2}}=C \quad\left(x_{2}\right.$ and x_{2} do not appear in C)
$\mathrm{C}_{\mathrm{x}_{1}}=\mathrm{x}_{4}{ }^{\prime} \mathrm{x}_{6} \quad$ (x_{1} appears positively in C)
$\mathrm{C}_{\mathrm{x}_{4}}=\varnothing \quad\left(\mathrm{x}_{4}\right.$ appears negatively in C$)$

(Literal) Cofactor

\square Example
$\mathrm{F}=\mathrm{abc}+\mathrm{b} \mathrm{b}^{\prime}+\mathrm{cd}$
$\mathrm{F}_{\mathrm{b}}=\mathrm{ac} \mathrm{c}^{\prime}+\mathrm{cd}$
(Just drop b everywhere and throw away cubes containing literal b')

Cofactor and disjunction commute!

Shannon Expansion

Let $f: \mathrm{B}^{\mathrm{n}} \rightarrow \mathrm{B}$

Shannon Expansion:

$f=x_{i} f_{x_{i}}+x_{i}{ }^{\prime} f_{x_{i}}{ }^{\prime}$
Theorem: F is a cover of f. Then

$$
F=x_{i} F_{x i}+x_{i}^{\prime} F_{x_{i}}{ }^{\prime}
$$

We say that f and F are expanded about x_{i}, and x_{i} is called the splitting variable

Shannon Expansion

- Example
$F=a b+a c+b c$

$$
\begin{aligned}
F & =a F_{a}+a^{\prime} F_{a} \\
& =a(b+c+b c)+a^{\prime}(b c) \\
& =a b+a c+a b c+a^{\prime} b c
\end{aligned}
$$

Cube bc got split into two cubes

(Cube) Cofactor

\square The cofactor f_{C} of f by a cube C is f with the fixed values indicated by the literals of C
E.g., if $C=x_{i} x_{j}{ }^{\prime}$, then $x_{i}=1$ and $x_{j}=0$

For $C=x_{1} x_{4}{ }^{\prime} \mathrm{x}_{6}, \mathrm{f}_{\mathrm{C}}$ is just the function f restricted to the subspace where $x_{1}=x_{6}=1$ and $x_{4}=0$
\square Note that f_{C} does not depend on $\mathrm{x}_{1}, \mathrm{x}_{4}$ or x_{6} anymore
(However, we still consider f_{c} as a function of all n variables, it just happens to be independent of x_{1}, x_{4} and x_{6})

- $\mathrm{x}_{1} \mathrm{f} \neq \mathrm{f}_{\mathrm{x}_{1}}$

पE.g., for $f=a c+a \prime c, a \cdot f_{a}=a \cdot f=a \cdot c$ and $f_{a}=c$

(Cube) Cofactor

\square The cofactor of the cover F of some function f is the sum of the cofactors of each of the cubes of F
\square If $F=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ is a cover of f, then $F_{c}=\left\{\left(c_{1}\right)_{c}\right.$, $\left.\left(c_{2}\right)_{c}, \ldots,\left(c_{k}\right)_{c}\right\}$ is a cover of f_{c}

Containment vs. Tautology

\square A fundamental theorem that connects functional containment and tautology:

Theorem. Let c be a cube and f a function. Then $c \subseteq f \Leftrightarrow f_{c} \equiv 1$.
Proof.
We use the fact that $x f_{x}=x f$, and f_{x} is independent of x.
(\Leftarrow)
Suppose $f_{c} \equiv 1$. Then $c f=f_{c} c=c$. Thus, $c \subseteq f$.
(\Rightarrow)
Suppose $c \subseteq f$. Then $f+c=f$. In addition, $(f+c)_{c}=f_{c}+1=1$. Thus, $\mathrm{f}_{\mathrm{c}}=1$.

Checking of Prime and Irredundancy (Revisited)

Let G be a cover of $F=(f, d, r)$. Let D be a cover for d
$\square c_{i} \in G$ is redundant iff $c_{i} \subseteq\left(G \backslash\left\{c_{i}\right\}\right) \cup D$
(Let $G^{i} \equiv G \backslash\left\{c_{i}\right\} \cup D$. Since $c_{i} \subseteq G^{i}$ and $f \subseteq G \subseteq f+d$, then $c_{i} \subseteq c_{i} f+c_{i} d$ and $c_{i} f$
$\subseteq G \backslash\left\{c_{i}\right\}$. Thus $\left.f \subseteq G \backslash\left\{c_{i}\right\}.\right)$
\square A literal $I \in c_{i}$ is prime if $\left(c_{i} \backslash\{I\}\right)\left(=\left(c_{i}\right)_{1}\right)$ is not an implicant of F
ㅁ A cube c_{i} is a prime of F iff all literals $I \in c_{i}$ are prime Literal $I \in c_{i}$ is not prime $\Leftrightarrow\left(c_{i}\right)_{I} \subseteq f+d$

Note: Both tests (1) and (2) can be checked by tautology (explained):
$\square \quad\left(\mathrm{G}^{\mathrm{i}}\right)_{\mathrm{c}_{\mathrm{i}}} \equiv 1 \quad$ (implies c_{i} redundant)
ㅁ $(f \cup d))_{(\mathrm{c})} \equiv 1 \quad$ (implies I not prime)
The above two cofactors are with respect to cubes instead of literals

Generalized Cofactor

\square Definition. Let f, g be completely specified functions. The generalized cofactor of f with respect to g is the incompletely specified function:

$$
\operatorname{co}(f, g)=(f \cdot g, \bar{g}, \bar{f} \cdot g)
$$

\square Definition. Let $\mathfrak{I}=(f, d, r)$ and g be given. Then

$$
\operatorname{co}(\mathfrak{I}, g)=(f \cdot g, d+\bar{g}, r \cdot g)
$$

Shannon vs. Generalized Cofactor

\square Let $\mathrm{g}=\mathrm{x}_{\mathrm{i}}$. Shannon cofactor is

$$
f_{x_{i}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right)
$$

\square Generalized cofactor with respect to $\mathrm{g}=\mathrm{x}_{\mathrm{i}}$ is

$$
\operatorname{co}\left(f, x_{i}\right)=\left(f \cdot x_{i}, \bar{x}_{i}, \bar{f} \cdot x_{i}\right)
$$

\square Note that

$$
f \cdot x_{i} \subseteq f_{x_{i}} \subseteq f \cdot x_{i}+\bar{x}_{i}=f+\bar{x}_{i}
$$

In fact $f_{x_{i}}$ is the unique cover of $\operatorname{co}\left(f, x_{i}\right)$ independent of the variable x_{i}.

Shannon vs. Generalized Cofactor

$f=a b c+a \bar{b} \bar{c}+\bar{a} \bar{b} c+\bar{a} b \bar{c}$

$$
\operatorname{co}(f, a)=(f \cdot a, \bar{a}, \bar{f} \cdot a)
$$

$$
f_{a}=b c+\bar{b} \bar{c}
$$

Shannon vs. Generalized Cofactor

$$
\operatorname{co}(f, a)=(f \cdot a, \bar{a}, \bar{f} \cdot a)
$$

So $f \cdot a \subseteq f_{a} \subseteq f+\bar{a}$

Shannon vs. Generalized Cofactor

Shannon Cofactor

Generalized Cofactor

$x \cdot f_{x}+\bar{x} \cdot f_{\bar{x}}=f$
$\left(f_{x}\right)_{y}=f_{x y}$
$(f \cdot g)_{y}=f_{y} \cdot g_{y}$
$f=g \cdot \operatorname{co}(f, g)+\bar{g} \cdot \operatorname{co}(f, \bar{g})$

$$
\operatorname{co}(\operatorname{co}(f, g), h)=\operatorname{co}(f, g h)
$$ $\operatorname{co}(f \cdot g, h)=\operatorname{co}(f, h) \cdot \operatorname{co}(g, h)$

$$
\operatorname{co}(f \cdot g, h)=\operatorname{co}(f, h) \cdot \operatorname{co}(g, h)
$$

$(\bar{f})_{x}=\overline{\left(f_{x}\right)}$

$$
\operatorname{co}(\bar{f}, g)=\overline{\cos (f, g)}
$$

We will get back to the use of generalized cofactor later

Data Structure for SOP Manipulation

most of the following slides are by courtesy of Andreas Kuehlmann

Operation on Cube Lists

AND operation:- take two lists of cubes
- compute pair-wise AND between individual cubes and put result on new list
- represent cubes in computer words
- implement set operations as bit-vector operations

Algorithm AND(List_of_Cubes C1,List_of_Cubes C2) \{

C = \varnothing

foreach c1 \in C1 \{
foreach c2 \in C2 \{
$c=c 1 \& c 2$
$C=C \cup c$
\}
\}
return C
\}

