Operation on Cube Lists

\square OR operation:

- take two lists of cubes
- computes union of both lists
\square Naive implementation:

```
Algorithm OR(List_of_Cubes C1, List_of_Cubes C2) {
    return C1 \cup C2
}
```

\square On-the-fly optimizations:
■ remove cubes that are completely covered by other cubes
\square complexity is $\mathrm{O}\left(\mathrm{m}^{2}\right)$; m is length of list
■ conjoin adjacent cubes (consensus operation)

- remove redundant cubes?
\square coNP-complete
\square too expensive for non-orthogonal lists of cubes

Operation on Cube Lists

- Simple trick:

\square keep cubes in lists orthogonal $\square c h e c k$ for redundancy becomes $\mathrm{O}\left(\mathrm{m}^{2}\right)$
\square but lists become significantly larger (worst case: exponential)

Example

$$
\begin{aligned}
& \text { O1-0 } \\
& 1-01
\end{aligned} \quad \text { OR } \quad 0-1-\quad \begin{aligned}
& 01-0 \\
& 1-11
\end{aligned}=\quad \begin{aligned}
& 1-01 \\
& 001- \\
& 0111 \\
& 1-11
\end{aligned}
$$

Operation on Cube Lists

ㅁ Adding cubes to orthogonal list:

```
Algorithm ADD_CUBE(List_of_Cubes C, Cube c) {
    if(C = \varnothing) return {c}
    c' = TOP(C)
    Cres = c-c' /* chopping off minterms may result in multiple cubes */
    foreach cres \in Cres {
        C = ADD_CUBE(C\{c'},cres) \cup {c'}
    }
    return C
}
```

- How can the above procedure be further improved?What about the AND operation, does it gain from orthogonal cube lists?

Operation on Cube Lists

ㅁ Naive implementation of COMPLEMENT operation

- apply De'Morgan's law to SOP

■ complement each cube and use AND operation
Example
Input

$01-10 \Rightarrow$| non-orth. |
| :--- |
| $1----$ |
| $-0---$ |
| $---0-$ |
| ----1 |

\quad| orthogonal |
| :--- |
| $1----$ |
| $00---$ |
| $01-0-$ |
| $01-11$ |Naive implementation of TAUTOLOGY check

- complement function using the COMPLEMENT operator and check for emptiness
\square We will show that we can do better than that!

Tautology Checking

\square Let A be an orthogonal cover matrix, and all cubes of A be pair-wise distinguished by at least two literals (this can be achieved by an on-the-fly merge of cube pairs that are distinguished by only one literal)

Does the following conjecture hold?

$$
A \equiv 1 \Leftrightarrow A \text { has a row of all "-"s? }
$$

This would dramatically simplify the tautology check!

Tautology Checking

```
Algorithm CHECK_TAUTOLOGY(List_of_Cubes C) {
    if(C == \varnothing) return FALSE;
    if(C == {-...-})return TRUE; // cube with all '.'
    xi = SELECT_VARIABLE(C)
    C0 = COFACTOR(C,\negXi)
    if(CHECK_TAUTOLOGY(C0) == FALSE) {
        print xi = 0
        return FALSE;
    }
    C1 = COFACTOR(C,Xi)
    if(CHECK_TAUTOLOGY(C1) == FALSE) {
        print xi = 1
        return FALSE;
    }
    return TRUE;
}
```


Tautology Checking

- Implementation tricks

■ Variable ordering:
■pick variable that minimizes the two sub-cases ("-"s get replicated into both cases)

■ Quick decision at leaf:
Dreturn TRUE if C contains at least one complete "-" cube among others (case 1)
$\square r e t u r n ~ F A L S E$ if number of minterms in onset is $<2^{n}$ (case 2)

- return FALSE if C contains same literal in every cube (case 3)

Tautology Checking

Special Functions

\square Definition. A function $f: B^{n} \rightarrow B$ is symmetric with respect to variables x_{i} and x_{i} iff $f\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{j}, \ldots, x_{i}, \ldots, x_{n}\right)$
\square Definition. A function $f: B^{n} \rightarrow B$ is totally symmetric iff any permutation of the variables in f does not change the function

Symmetry can be exploited in searching BDD since

$$
f_{x_{i} \bar{x}_{j}}=f_{\bar{x}_{i} x_{j}}
$$

- can skip one of four sub-cases
- used in automatic variable ordering for BDDs

Special Functions

\square Definition. A function $f: B^{n} \rightarrow B$ is positive unate in variable x_{i} iff

$$
f_{\bar{x}_{i}} \subseteq f_{x_{x_{1}}}
$$

This is equivalent to monotone increasing in x_{i} :

$$
f\left(m^{-}\right) \leq f\left(m^{+}\right)
$$

for all min-term pairs ($\mathrm{m}^{-}, \mathrm{m}^{+}$) where

$$
\begin{aligned}
& m_{j}^{-}=m_{j}^{+}, j \neq i \\
& m_{i}^{-}=0 \\
& m_{i}^{+}=1
\end{aligned}
$$

\square Example
(1001, 1011) with $i=3$

Special Functions

\square Similarly for negative unate $f_{x_{i}} \subseteq f_{\overline{x_{i}}}$
monotone decreasing $f\left(m^{-}\right) \geq f\left(m^{+}\right)$
\square A function is unate in x_{i} if it is positive unate or negative unate in x_{i}Definition. A function is unate if it is unate in each variable
\square Definition. A cover F is positive unate in x_{i} iff $\bar{x}_{i} \notin c_{j}$ for all cubes $c_{j} \in F$

ㅁ Note that a cover of a unate function is not necessarily unate! (However, there exists a unate cover for a unate function.)

Special Functions

\square Example

$$
f=a b+b \bar{c}+a \bar{c}
$$

positive unate in a, b negative unate in c

$$
f\left(m^{-}\right)=1 \geq f\left(m^{+}\right)=0
$$

Unate Recursive Paradigm

\square Key pruning technique is based on exploiting the properties of unate functions
\square based on the fact that unate leaf cases can be solved efficiently
\square New case splitting heuristic
\square splitting variable is chosen so that the functions at lower nodes of the recursion tree become unate

Unate Recursive Paradigm

Unate covers F have many extraordinary properties: - If a prime cover F is minimal with respect to singlecube containment, all of its cubes are essential primes- In this case F is the unique minimum cube representation of its logic function

A unate cover represents the tautology iff it contains a cube with no literals, i.e. a single tautologous cube
\square This type of implicit enumeration applies to many subproblems (prime generation, reduction, complementation, etc.). Hence, we refer to it as the Unate Recursive Paradigm.

Unate Recursive Paradigm

1. Create cofactoring tree stopping at unate covers

- choose, at each node, the "most binate" variable for splitting
- iterate until no binate variable left (unate leaf)

2. "Operate" on the unate cover at each leaf to obtain the result for that leaf. Return the result
3. At each non-leaf node, merge (appropriately) the results of the two children.

\square Main idea: "Operation" on unate leaf is computationally less complexOperations: complement, simplify, tautology, prime generation, ...

Unate Recursive Paradigm

\square Binate select heuristic

- Tautology and other programs based on the unate recursive paradigm use a heuristic called BI NATE_SELECT to choose the splitting variable in recursive Shannon expansion
\square The idea is, for a given cover F, choose the variable which occurs, both positively and negatively, most often in the cubes of F

Unate Recursive Paradigm

\square Binate select heuristic

- Example

Unate and non-unate covers:

a	b	c	d
1	-	1	-
-	-	1	0

a b c d
1 - 1 -

- - 01
- 110
\Rightarrow Choose c for splitting!
- Binate variables of a cover are those with both 1 's and 0 's in the corresponding column
- In the unate recursive paradigm, the BINATE_SELECT heuristic chooses a (most) binate variable for splitting, which is thus eliminated from the sub-covers

Unate Recursive Paradigm

-Example
$f=a c+\bar{c} d+b c \bar{d}$

1---
-1-0
unate

$$
F=\begin{array}{cccc}
1 & - & 1 & - \\
- & - & 0 & 1 \\
-1 & 1 & 0
\end{array}
$$

$f=a c \bar{e}+\bar{c} d+b c \bar{d} e$

$$
1---0
$$

$$
F=\begin{array}{ccccc}
1 & - & 1 & - & 0 \\
- & - & 0 & 1 & - \\
- & 1 & 0 & 1
\end{array}
$$

Unate Recursive Paradigm Unate Reduction

\square Let $F(x)$ be a cover. Let (a, c) be a partition of the variables x, and let

$$
F=\left[\begin{array}{c:c}
A & C \\
\hdashline T & F^{*}
\end{array}\right]
$$

where

1. the columns of A (a unate submatrix) correspond to variables a of x
2. T is a matrix of all "-"s

- Theorem. Assume $A \neq 1$. Then $F \equiv 1 \Leftrightarrow F^{*} \equiv 1$

Unate Recursive Paradigm Unate Reduction

-Example

$$
\left.F=\left[\begin{array}{c:c}
A & C \\
\hdashline T & F^{*}
\end{array}\right] \quad\left[\begin{array}{llll}
1 & - & 0 & 1 \\
- & 1 & 1 & 0 \\
- & - & 1 & 1 \\
- & - & - & 0 \\
- & - & - & 1
\end{array}\right] \longrightarrow \begin{array}{|cc|}
\hline 1 & 1 \\
- & 0 \\
- & 1
\end{array}\right]
$$

Unate Recursive Paradigm Unate Reduction

\square Example

$$
\begin{aligned}
& \begin{array}{lll}
\mathbf{A}_{1} & 0 & 0 \\
1 & 10 & \mathbf{B}_{\mathbf{1}}
\end{array} \\
& -\quad-\quad-\quad-\quad-\quad-\quad-\quad \mathbf{A}_{3} \quad \mathbf{A}_{4} \\
& -\quad-\quad-\quad-\quad-\quad-\quad--\quad-\quad-\quad-\quad- \\
& -\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-D_{1} \\
& \begin{array}{llll}
\mathbf{A}_{\mathbf{2}} & \left.\begin{array}{llll}
0 & 1 \\
0 & 0 & 0 & \mathbf{B}_{\mathbf{2}} \\
1 & 1 & 1 &
\end{array}\right]
\end{array}
\end{aligned}
$$

- Assume A_{1} and A_{2} are unate and have no row of all "-"s.
- Note that A_{3} and A_{4} are unate (single-row sub-matrices)

■ Consequently only have to look at D_{1} to test if this is a tautology

Unate Recursive Paradigm Unate Reduction

ㅁ Theorem:

$$
F=\left[\begin{array}{c:c}
A & C \\
\hdashline T & F^{*}
\end{array}\right]
$$

Let A be a non-tautological unate matrix $(A \neq 1)$ and T is a matrix of all -'s. Then $F \equiv 1 \Leftrightarrow F^{*} \equiv 1$.
\square Proof:
If part: Assume $\mathrm{F}^{*} \equiv 1$. Then we can replace F^{*} by all -'s. Then last row of F becomes a row of all "-"s, so tautology.

Unate Recursive Paradigm Unate Reduction

- Proof (cont'd):

Only if part: Assume $F^{*} \neq 1$. Then there is a minterm m_{2} (in c variables) such that $F^{*}{ }_{\mathrm{m}_{2}}=0$ (cofactor in cube), i.e. m_{2} is not covered by F^{*}. Similarly, m_{1} (in a variables) exists where $A_{\mathrm{m}_{1}}=0$, i.e. m_{1} is not covered by A. Now the minterm $\mathrm{m}_{1} \mathrm{~m}_{2}$ (in the full variable set) satisfies $F_{\mathrm{m}_{1} \mathrm{~m}_{2}}=0$. Since $\mathrm{m}_{1} \mathrm{~m}_{2}$ is not covered by $F, F \neq 1$.

Unate Recursive Paradigm Application - Tautology Checking

- Improved tautology check

Algorithm CHECK_TAUTOLOGY(List_of_Cubes C) \{

```
    if(C == \varnothing) return FALSE;
    if(C == {-...-}) return TRUE; // cube with all '-'
    C = UNATE_REDUCTION(C)
    xi = BINATE_SELECT(C)
    C0 = COFACTOR(C,\negxi)
    if(CHECK_TAUTOLOGY(C0) == FALSE) {
        return FALSE;
    }
    C1 = COFACTOR(C,xi)
    if(CHECK_TAUTOLOGY(C1) == FALSE) {
        return FALSE;
    }
    return TRUE;
```

\}

Unate Recursive Paradigm Application - Tautology Checking

Unate Recursive Paradigm Application - Complement

\square We have shown how tautology check (SAT check) can be implemented recursively using the Binary Decision Tree
\square Similarly, we can implement Boolean operations recursively, e.g. the COMPLEMENT operation:Theorem.

$$
\bar{f}=x \cdot \bar{f}_{x}+\bar{x} \cdot \bar{f}_{\bar{x}}
$$Proof.

$$
\left.\begin{array}{l}
g=x \cdot \bar{f}_{x}+\bar{x} \cdot \bar{f}_{\bar{x}} \\
f=x \cdot f_{x}+\bar{x} \cdot f_{\bar{x}} \\
f \cdot g=0 \\
f+g=1
\end{array}\right\} \Rightarrow g=\bar{f}
$$

Unate Recursive Paradigm Application - Complement

```Complement operation on cube list
```

```
Algorithm COMPLEMENT(List_of_Cubes C) {
```

Algorithm COMPLEMENT(List_of_Cubes C) {
if(C contains single cube c) {
if(C contains single cube c) {
Cres = complement_cube(c) // generate one cube per
Cres = complement_cube(c) // generate one cube per
return Cres // literal l in c with \negl
return Cres // literal l in c with \negl
}
}
else {
else {
xi = SELECT_VARIABLE(C)
xi = SELECT_VARIABLE(C)
C0 = COMPLEMENT(COFACTOR(C,\negxi)) ^ \negxi
C0 = COMPLEMENT(COFACTOR(C,\negxi)) ^ \negxi
C1 = COMPLEMENT(COFACTOR(C,xi)) ^ xi
C1 = COMPLEMENT(COFACTOR(C,xi)) ^ xi
return OR(C0,C1)
return OR(C0,C1)
}
}
}

```
}
```


Unate Recursive Paradigm Application - Complement

\square Efficient complement of a unate cover

- Idea:
- variables appear only in one polarity on the original cover $(a b+b c+a c)^{\prime}=\left(a^{\prime}+b^{\prime}\right)\left(b^{\prime}+c^{\prime}\right)\left(a^{\prime}+c^{\prime}\right)$
- when multiplied out, a number of products are redundant $a^{\prime} b^{\prime} a^{\prime}+a^{\prime} b^{\prime} c^{\prime}+a^{\prime} c^{\prime} a^{\prime}+a^{\prime} c^{\prime} c^{\prime}+b^{\prime} b^{\prime} a^{\prime}+b^{\prime} b^{\prime} c^{\prime}+b^{\prime} c^{\prime} a^{\prime}+b^{\prime} c^{\prime} c^{\prime}=$ $a^{\prime} b^{\prime}+a^{\prime} c^{\prime}+b^{\prime} c^{\prime}$
- we just need to look at the combinations for which the variables cover all original cubes (see the following example)
- this works independent of the polarity of the variables because of symmetry to the ($1,1,1, \ldots, 1$) case (see the following example)

Unate Recursive Paradigm Application - Complement

\square Map (unate) cover matrix F into Boolean matrix B

F				
a	b	c	d	e
-	1	-	0	-
-	-	0	0	1
1	1	-	-	1
1	-	0	-	1

convert: " 0 "," 1 " in F to " 1 " in B (literal is present) "-" in F to " 0 " in B (literal is not present)

Unate Recursive Paradigm Application - Complement

\square Find all minimal column covers of B.
\square A column cover is a set of columns J such that for each row i, $\exists j \in J$ such that $B_{i j}=1$

Example
$\{1,4\}$ is a minimal column cover for matrix B

0	1	0	1	0
0	0	1	1	
1				
1	1	0	0	
1	0	1	0	
1				

All rows "covered" by at least one 1

Unate Recursive Paradigm
 Application - Complement

\square For each minimal column cover create a cube with opposite column literal from F

- Example

By selecting a column cover $\{1,4\}$, a'd is a cube of f '

a	b	c	d	e						
-	1	-	0	-						
-	-	0	0	1						
1	1	-	-	1						
1	-	0	-	1	\quad	a	b	c	d	e
:---:	:---:	:---:	:---:	:---:						
0	1	0	1	0						
0	0	1	1	1						
1	1	0	0	1						
1	0	1	0	1						

Unate Recursive Paradigm
 Application - Complement

The set of all minimal column covers $=$ cover of \bar{f}- Example

a	b	c	d	e						
-	1	-	0	-						
-	-	0	0	1						
1	1	-	-	1						
1	-	0	-	1	\longrightarrow	a	b	c	d	e
:---:	:---:	:---:	:---:	:---:						
0	1	0	1	0						
0	0	1	1	1						
1	1	0	0	1						
1	0	1	0	1						

- $\{(1,4),(2,3),(2,5),(4,5)\}$ is the set of all minimal covers.

This translates into:

$$
\bar{f}=\bar{a} d+\bar{b} c+\bar{b} \bar{e}+d \bar{e}
$$

Unate Recursive Paradigm
 Application - Complement

\square Theorem (unate complement theorem):

Let F be a unate cover of f. The set of cubes associated with the minimal column covers of B is a cube cover of f.

\square Proof:

We first show that any such cube c generated is in the offset of f, by showing that the cube c is orthogonal with any cube of F.
■ Note, the literals of c are the complemented literals of F. \square Since F is a unate cover, the literals of F are just the union of the literals of each cube of F).
■ For each cube $m_{i} \in F, \exists j \in J$ such that $B_{i j}=1$. $\square \mathrm{J}$ is the column cover associated with c .
\square Thus, $\left(m_{i}\right)_{j}=x_{j} \Rightarrow c_{j}=\bar{x}_{j}$ and $\left(m_{i}\right)_{j}=\bar{x}_{j} \Rightarrow c_{j}=x_{j}$. Thus $\mathrm{m}_{\mathrm{i}} \mathrm{c}=\varnothing$. Thus $\mathrm{c} \subseteq \overline{\mathrm{f}}$.

Unate Recursive Paradigm Application - Complement

ロProof (cont'd):

We now show that any minterm $m \in \bar{f}$ is contained in some cube c generated:

- First, m must be orthogonal to each cube of F.
\square For each row of F, there is at least one literal of m that conflicts with that row.
- The union of all columns (literals) where this happens is a column cover of B
- Hence this union contains at least one minimal cover and the associated cube contains m.

Unate Recursive Paradigm Application - Complement

\square The unate covering problem finds a minimum column cover for a given Boolean matrix B

Unate complementation is one application based on the unate covering problem

ㅁ Unate Covering Problem:
Given a matrix B, with $B_{i j} \in\{0,1\}$, find x, with $x_{i} \in\{0,1\}$, such that $B x \geq 1$ (componentwise inequality) and $\Sigma_{\mathrm{j}} \mathrm{x}_{\mathrm{j}}$ is minimized

- Sometimes we want to minimize
$\Sigma_{j} c_{j} x_{j}$
where c_{j} is a cost associated with column j

