Operation on Cube Lists

- OR operation:
 - take two lists of cubes
 - computes union of both lists
- Naive implementation:

```
Algorithm OR(List_of_Cubes C1, List_of_Cubes C2) {
  return C1 ∪ C2
```

- On-the-fly optimizations:
 - remove cubes that are completely covered by other cubes
 - complexity is O(m²); m is length of list
 - conjoin adjacent cubes (consensus operation)
 - remove redundant cubes?
 - □ coNP-complete
 - □ too expensive for non-orthogonal lists of cubes

Operation on Cube Lists

- ■Simple trick:
 - keep cubes in lists orthogonal
 - □check for redundancy becomes O(m²)
 - □but lists become significantly larger (worst case: exponential)
 - Example

Operation on Cube Lists

■ Adding cubes to orthogonal list:

```
Algorithm ADD_CUBE(List_of_Cubes C, Cube c) {
  if(C = \emptyset) return \{c\}
  C' = TOP(C)
  Cres = c-c' /* chopping off minterms may result in multiple cubes */
  foreach cres ∈ Cres {
    C = ADD\_CUBE(C\setminus\{c'\},cres) \cup \{c'\}
  return C
```

- How can the above procedure be further improved?
- What about the AND operation, does it gain from orthogonal cube lists?

Operation on Cube Lists

- Naive implementation of COMPLEMENT operation
 - apply De'Morgan's law to SOP
 - complement each cube and use AND operation

Example

Input	non-orth.	orthogona
01-10 =>	1	=> 1
	-0	00
	0-	01-0-
	1	01-11

- Naive implementation of TAUTOLOGY check
 - complement function using the COMPLEMENT operator and check for emptiness
- We will show that we can do better than that!

34

Tautology Checking

■ Let A be an orthogonal cover matrix, and all cubes of A be pair-wise distinguished by at least two literals (this can be achieved by an on-the-fly merge of cube pairs that are distinguished by only one literal)

Does the following conjecture hold?

 $A = 1 \Leftrightarrow A \text{ has a row of all "-"s}$?

This would dramatically simplify the tautology check!

37

Tautology Checking

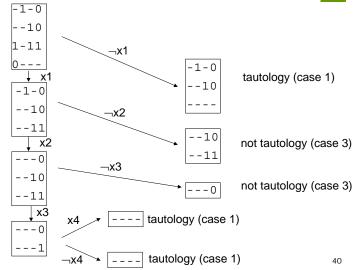
- Implementation tricks
 - Variable ordering:
 - □pick variable that minimizes the two sub-cases ("-"s get replicated into both cases)
 - Quick decision at leaf:
 - □return TRUE if C contains at least one complete "-" cube among others (case 1)
 - □return FALSE if number of minterms in onset is < 2ⁿ (case 2)
 - □return FALSE if C contains same literal in every cube (case 3)

Tautology Checking

38

Tautology Checking

Example -1-0



Special Functions

- □ Definition. A function $f: B^n \to B$ is symmetric with respect to variables x_i and x_j iff $f(x_1,...,x_i,...,x_i,...,x_n) = f(x_1,...,x_i,...,x_n)$
- □ Definition. A function $f: B^n \to B$ is totally symmetric iff any permutation of the variables in f does not change the function

Symmetry can be exploited in searching BDD since

$$f_{x_i \overline{x}_j} = f_{\overline{x}_i x_j}$$

- can skip one of four sub-cases
- used in automatic variable ordering for BDDs

Special Functions

 $\begin{tabular}{ll} \hline D Definition. A function $f:B^n\to B$ is positive unate in variable x_i iff $$$

$$f_{\bar{x}_i} \subseteq f_{x_i}$$

■ This is equivalent to monotone increasing in x_i:

$$f(m^-) \leq f(m^+)$$

for all min-term pairs (m-, m+) where

$$m_j^- = m_j^+, j \neq i$$

$$m_{.}^{-}=0$$

$$m_{i}^{+}=1$$

Example (1001, 1011) with i = 3

42

Special Functions

lacksquare Similarly for negative unate $f_x \subseteq f_{\overline{x}}$

monotone decreasing $f(m^-) \ge f(m^+)$

- □ A function is unate in x_i if it is positive unate or negative unate in x_i
- □ Definition. A function is unate if it is unate in each variable
- □ Definition. A cover F is positive unate in x_i iff $x_i \notin c_j$ for all cubes $c_i \in F$
- □ Note that a cover of a unate function is not necessarily unate! (However, there exists a unate cover for a unate function.)

Special Functions

Example

$$f = ab + b\overline{c} + a\overline{c}$$

positive unate in a,b negative unate in c

 $f(m^{-})=1 \ge f(m^{+})=0$

Unate Recursive Paradigm

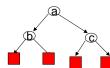
- Key pruning technique is based on exploiting the properties of unate functions
 - based on the fact that unate leaf cases can be solved efficiently
- New case splitting heuristic
 - splitting variable is chosen so that the functions at lower nodes of the recursion tree become unate

Unate Recursive Paradigm

- □ Unate covers F have many extraordinary properties:
 - If a **prime** cover F is minimal with respect to singlecube containment, all of its cubes are essential primes
 - In this case F is the unique minimum cube representation of its logic function
 - A unate cover represents the tautology iff it contains a cube with no literals, i.e. a single tautologous cube
- ☐ This type of implicit enumeration applies to many subproblems (prime generation, reduction, complementation, etc.). Hence, we refer to it as the <u>Unate Recursive</u> <u>Paradigm</u>.

Unate Recursive Paradigm

- 1. Create cofactoring tree stopping at unate covers
 - choose, at each node, the "most binate" variable for splitting
 - iterate until no binate variable left (unate leaf)
- "Operate" on the unate cover at each leaf to obtain the result for that leaf. Return the result
- 3. At each non-leaf node, merge (appropriately) the results of the two children.



- Main idea: "Operation" on unate leaf is computationally less complex
- Operations: complement, simplify, tautology, prime generation, ...

Unate Recursive Paradigm

- ■Binate select heuristic
 - Tautology and other programs based on the unate recursive paradigm use a heuristic called BINATE_SELECT to choose the splitting variable in recursive Shannon expansion
 - ■The idea is, for a given cover F, choose the variable which occurs, both positively and negatively, most often in the cubes of F

Unate Recursive Paradigm

■ Binate select heuristic

Example

Unate and non-unate covers:

a b c d

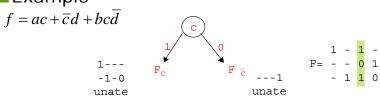
- ⇒ Choose c for splitting!
- Binate variables of a cover are those with both 1's and 0's in the corresponding column
- In the unate recursive paradigm, the BINATE_SELECT heuristic chooses a (most) binate variable for splitting, which is thus eliminated from the sub-covers

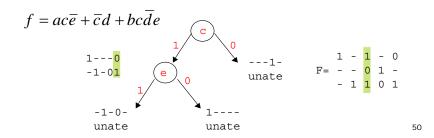
is unate

49

Unate Recursive Paradigm

■Example





Unate Recursive Paradigm Unate Reduction

■ Let F(x) be a cover. Let (a,c) be a partition of the variables x, and let

$$F = \begin{bmatrix} A & C \\ T & F^* \end{bmatrix}$$

where

- 1. the columns of *A* (a unate submatrix) correspond to variables *a* of *x*
- 2. T is a matrix of all "-"s
- □ Theorem. Assume $A \neq 1$. Then $F \equiv 1 \Leftrightarrow F^* \equiv 1$

Unate Recursive Paradigm Unate Reduction

■Example

$$F = \begin{bmatrix} A & C \\ T & F^* \end{bmatrix} \qquad \begin{bmatrix} 1 & - & 0 & 1 \\ - & 1 & 1 & 0 \\ - & - & 1 & 1 \\ - & - & 0 \\ - & - & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 \\ - & 0 \\ - & 1 \end{bmatrix}$$

We pick for the partitioning unate variables because it is easy to decide that $A \neq 1$

Unate Recursive Paradigm Unate Reduction

Example

$\mathtt{A_1}$	⁰ 1 1 0 B ₁
	A_3 A_4
 	D ₁
\mathbf{A}_2	0 1 0 0 1 1 B ₂

- Assume A₁ and A₂ are unate and have no row of all "-"s.
- Note that A₃ and A₄ are unate (single-row sub-matrices)
- Consequently only have to look at D₁ to test if this is a tautology

Unate Recursive Paradigm Unate Reduction

■ Theorem:

$$F = \begin{bmatrix} A & C \\ T & F^* \end{bmatrix}$$

Let A be a non-tautological unate matrix $(A \neq 1)$ and T is a matrix of all -'s. Then $F \equiv 1 \Leftrightarrow F^* \equiv 1$.

■ Proof:

If part: Assume $F^* \equiv 1$. Then we can replace F^* by all -'s. Then last row of F becomes a row of all "-"s, so tautology.

53

54

Unate Reduction Unate Reduction

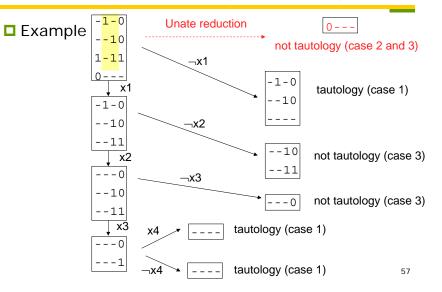
□ Proof (cont'd):

Only if part: Assume $F^* \neq 1$. Then there is a minterm m_2 (in c variables) such that $F^*_{m_2} = 0$ (cofactor in cube), i.e. m_2 is not covered by F^* . Similarly, m_1 (in a variables) exists where $A_{m_1} = 0$, i.e. m_1 is not covered by A. Now the minterm m_1m_2 (in the full variable set) satisfies $F_{m_1m_2} = 0$. Since m_1m_2 is not covered by F, $F \neq 1$.

Unate Recursive Paradigm Application – Tautology Checking

Improved tautology check

Unate Recursive Paradigm Application – Tautology Checking



Unate Recursive Paradigm Application – Complement

- We have shown how tautology check (SAT check) can be implemented recursively using the Binary Decision Tree
- ☐ Similarly, we can implement Boolean operations recursively, e.g. the COMPLEMENT operation:
- □ Theorem. $\overline{f} = x \cdot \overline{f}_x + \overline{x} \cdot \overline{f}_{\overline{x}}$
- □ Proof.

$$g = x \cdot \overline{f}_x + \overline{x} \cdot \overline{f}_{\overline{x}}$$
$$f = x \cdot f_x + \overline{x} \cdot f_{\overline{x}}$$

$$\begin{cases} f \cdot g &= 0 \\ f + g &= 1 \end{cases} \Rightarrow g = \overline{f}$$

58

Unate Recursive Paradigm Application – Complement

Complement operation on cube list

```
Algorithm COMPLEMENT(List_of_Cubes C) {
  if(C contains single cube c) {
    Cres = complement_cube(c) // generate one cube per
    return Cres // literal l in c with ¬l
  }
  else {
    xi = SELECT_VARIABLE(C)
    C0 = COMPLEMENT(COFACTOR(C,¬xi)) ∧ ¬xi
    C1 = COMPLEMENT(COFACTOR(C,xi)) ∧ xi
    return OR(C0,C1)
  }
}
```

Unate Recursive Paradigm Application – Complement

- Efficient complement of a unate cover
- Idea:
 - variables appear only in one polarity on the original cover (ab + bc + ac)' = (a'+b')(b'+c')(a'+c')
 - when multiplied out, a number of products are redundant a'b'a' + a'b'c' + a'c'a' + a'c'c' + b'b'a' + b'b'c' + b'c'a' + b'c'c' = a'b' + a'c' + b'c'
 - we just need to look at the combinations for which the variables cover all original cubes (see the following example)
 - this works independent of the polarity of the variables because of symmetry to the (1,1,1,...,1) case (see the following example)

Unate Recursive Paradigm Application – Complement

■ Map (unate) cover matrix F into Boolean matrix B

		F						В		
a	b	c	d	e		a	b	c	d	e
_	1	-	0	_		0	1	0	1	0
_	-	0	0	1	-	0	0	1	1	1
1	1	_	_	1		1	1	0	0	1
1	-	0	_	1		1	0	1	0	1

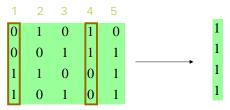
convert: "0","1" in F to "1" in B (literal is present)

"-" in F to "0" in B (literal is not present)

Unate Recursive Paradigm Application – Complement

- ☐ Find all minimal column covers of B.
 - A column cover is a set of columns J such that for each row i, $\exists j \in J$ such that $B_{ii} = 1$
- Example

{1,4} is a minimal column cover for matrix B



All rows "covered" by at least one 1

1

62

Unate Recursive Paradigm Application – Complement

- □ For each minimal column cover create a cube with opposite column literal from F
- Example By selecting a column cover {1,4}, a'd is a cube of f'



Unate Recursive Paradigm Application – Complement

- \Box The set of all minimal column covers = cover of \bar{f}
- Example

■ {(1,4), (2,3), (2,5), (4,5)} is the set of all minimal covers. This translates into:

$$\overline{f} = \overline{ad} + \overline{bc} + \overline{be} + \overline{de}$$

Unate Recursive Paradigm Application – Complement

☐ Theorem (unate complement theorem):

Let F be a unate cover of f. The set of cubes associated with the minimal column covers of B is a cube cover of f.

■ Proof:

We first show that any such cube c generated is in the offset of f, by showing that the cube c is orthogonal with any cube of F.

- Note, the literals of c are the complemented literals of F.
 Since F is a unate cover, the literals of F are just the union of the literals of each cube of F).
- For each cube m_i∈F, ∃j∈J such that B_{ij}=1.
 □J is the column cover associated with c.
- Thus, $(m_i)_j = x_j \Rightarrow c_j = \bar{x}_j$ and $(m_i)_j = \bar{x}_j \Rightarrow c_j = x_j$. Thus $m_i c = \emptyset$. Thus $c \subseteq \bar{f}$.

Unate Recursive Paradigm Application – Complement

□ Proof (cont'd):

We now show that any minterm $m \in \overline{f}$ is contained in some cube c generated:

- First, m must be orthogonal to each cube of F.
 - ■For each row of F, there is at least one literal of m that conflicts with that row.
- The union of all columns (literals) where this happens is a column cover of B
- Hence this union contains at least one minimal cover and the associated cube contains m.

Unate Recursive Paradigm Application – Complement

- ☐ The **unate covering problem** finds a minimum column cover for a given Boolean matrix B
 - Unate complementation is one application based on the unate covering problem
- Unate Covering Problem:

Given a matrix B, with $B_{ij} \in \{0,1\}$, find x, with $x_i \in \{0,1\}$, such that $Bx \ge 1$ (componentwise inequality) and Σ_i is minimized

Sometimes we want to minimize
 Σ_j c_jx_j
 where c_i is a cost associated with column j