Logic Synthesis and Verification

Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University

Fall 2010

Two-Level Logic Minimization (1/2)

Reading:

Logic Synthesis in a Nutshell Section 3 (§3.1-§3.2)

most of the following slides are by courtesy of Andreas Kuehlmann

2

Quine-McCluskey Procedure

Given G and D (covers for $\mathfrak{I} = (f,d,r)$ and d, respectively), find a minimum cover G^* of primes where:

 $f \subseteq G^* \subseteq f+d$ (G* is a prime cover of \mathfrak{I})

Q-M Procedure:

- 1. Generate all primes of \Im , $\{P_j\}$ (i.e. primes of (f+d) = G+D)
- 2. Generate all minterms $\{m_i\}$ of $f = G \land \neg D$
- 3. Build Boolean matrix B where

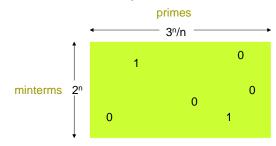
$$B_{ij} = 1 \text{ if } m_i \in P_j$$

= 0 otherwise

4. Solve the minimum column covering problem for B (unate covering problem)

Complexity

□ ~2ⁿ minterms; ~3ⁿ/n primes

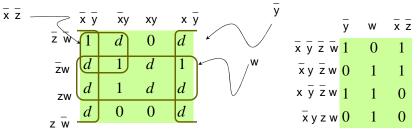


■ There are O(2ⁿ) rows and Ω(3ⁿ/n) columns. Moreover, minimum covering problem is NP-complete. (Hence the complexity can probably be double exponential in size of input, i.e. difficulty is O(2^{3ⁿ}))

Two-Level Logic Minimization

Example

Karnaugh map



$$F = xyzw + xyzw + xyzw + xyzw$$
 (cover of 3)

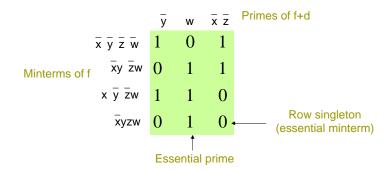
$$D = yz + xyw + xyzw + xyw + xyzw$$
 (cover of d)

Primes: $\overline{y} + w + \overline{x} \overline{z}$ Covering Table

Solution: $\{1,2\} \Rightarrow \overline{y} + w$ is a minimum prime cover (also $w + \overline{x} = \overline{z}$)

5

Covering Table



Definition. An essential prime is a prime that covers an onset minterm of f not covered by any other primes.

Covering Table Row Equality

■ Row equality:

- In practice, many rows in a covering table are identical. That is, there exist minterms that are contained in the same set of primes.
- Example

m₁ 0101101

m₂ 0101101

Covering Table Row and Column Dominance

■ Row dominance:

- A row i₁ whose set of primes is contained in the set of primes of row i₂ is said to dominate i₂.
- Example

i₁ 011010 i₂ 011110

- □i₁ dominates i₂
- □Can remove row i₂ because have to choose a prime to cover i₁, and any such prime also covers i₂. So i₂ is automatically covered.

U

Covering Table Row and Column Dominance

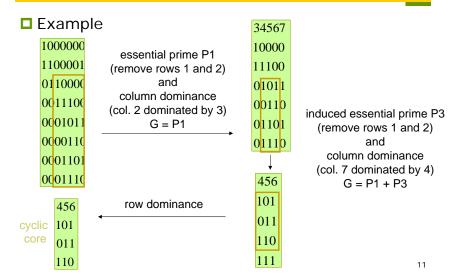
- □ Column dominance:
 - A column j₁ whose rows are a superset of another column j₂ is said to dominate j₂.
 - - $\Box j_1$ dominates j_2
 - We can remove column j_2 since j_1 covers all those rows and more. We would never choose j_2 in a minimum cover since it can always be replaced by j_1 .

Covering Table Table Reduction

- 1. Remove all rows covered by essential primes (columns in row singletons). Put these primes in the cover G.
- 2. Group identical rows together and remove dominated rows.
- 3. Remove dominated columns. For equal columns, keep one prime to represent them.
- 4. Newly formed row singletons define induced essential primes.
- 5. Go to 1 if covering table decreased.
- □ The resulting reduced covering table is called the cyclic core. This has to be solved (unate covering problem). A minimum solution is added to G. The resulting G is a minimum cover.

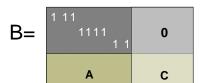
10

Covering Table Table Reduction



Solving Cyclic Core

- Best known method (for unate covering) is branch and bound with some clever bounding heuristics
- Independent Set Heuristic:
 - Find a maximum set I of "independent" rows. Two rows B_{i_1} , B_{i_2} are independent if **not** $\exists j$ such that $B_{i_1j} = B_{i_2j} = 1$. (They have no column in common.)
 - ExampleA covering matrix B rearranged with independent sets first



Independent set Fof rows

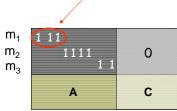
12

Solving Cyclic Core

■ Lemma:

|Solution of Covering| $\geq |\mathcal{I}|$

m₁ must be covered by one of the three columns



Solving Cyclic Core

- Heuristic algorithm:
 - Let $\mathcal{G} = \{I_1, I_2, ..., I_k\}$ be the independent set of rows
- 1. choose $j \in I_i$ such that column j covers the most rows of A. Put Pj in G
- 2. eliminate all rows covered by column j
- 3. $\mathscr{I} \leftarrow \mathscr{I} \setminus \{I_i\}$
- 4. go to 1 if $|\mathcal{I}| > 0$
- If B is empty, then done (in this case achieve minimum solution because of the lower bound of previous lemma attained - IMPORTANT)
- 6. If B is not empty, choose an independent set of B and go to 1

1 11 1111 1 1	0
Α	С

13

14

Prime Generation for Single-Output Function

Tabular method

(based on *consensus* operation, or \forall):

- Start with all minterm canonical form of F
- Group pairs of adjacent minterms into cubes
- □ Repeat merging cubes until no more merging possible; mark (√) + remove all covered cubes.
- □ Result: set of *primes* of *f*.

Example

$$F = x'y' + wxy + x'yz' + wy'z$$

$$F = x' y' + w x y + x' y z' + w y' z$$

w' x' y' z' √	w' x' y' √ w' x' z' √	x' y' x' z'
w'x'y'z √ w'x'yz' √	$\begin{array}{ccc} x'y'z' & \checkmark \\ x'y'z & \checkmark \\ x'yz' & \checkmark \\ wx'y' & \checkmark \end{array}$	
w x' y' z' √ w x' y' z √ w x' y z' √	w x' z' √ w y' z w y z'	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	w x y w x z	
wxyz 1		

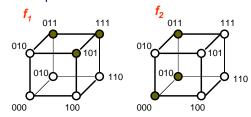
Courtesv: Maciei Ciesielski, UMASS

15

Prime Generation for Multi-Output Function

☐ Similar to *single-output* function, except that we should include also the primes of the products of individual functions

Example



 $\begin{array}{c|c} x \ y \ Z & f_1 \ f_2 \\ \hline 0 - 0 & 0 \ 1 \end{array}$

Can also represent it as:

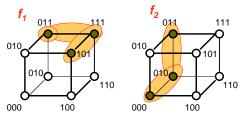
-11 10 1-1 10

16

Prime Generation

Example

Modification from single-output case: When two adjacent implicants are merged, the output parts are intersected



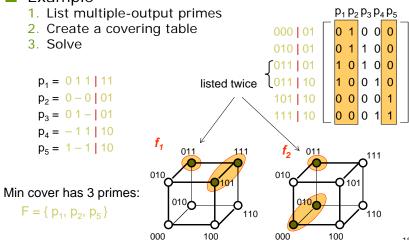
There are five primes for this two-output function

- What is the min cover ?

17

Minimize Multi-Output Cover

Example



Prime Generation Using Unate Recursive Paragidm

- Apply unate recursive paradigm with the following merge step
 - (Assume we have just generated all primes of f_{x_i} and f_{-x_i})
- □ Theorem.

p is a prime of f iff p is maximal (in terms of containment) among the set consisting of

- \blacksquare P = $x_i q_i \ q$ is a prime of f_{x_i} , $q \not\subset f_{\neg x_i}$
- \blacksquare P = x_i 'r, r is a prime of $f_{\neg x_i}$, $r \not\subset f_{x_i}$
- \blacksquare P = q r, q is a prime of f_{x_i} , r is a prime of $f_{\neg x_i}$

Prime Generation Using Unate Recursive Paradigm

Example

- Assume q = abc is a prime of f_{x_i} . Form $p = x_i abc$.
- Suppose r = ab is a prime of $f_{\neg x_i}$. Then x_i ab is an implicant of f.

$$f = x_i abc + x_i' ab + abc + \cdots$$

- Thus abc and x_i ' ab are implicants, so x_iabc is not prime.
- Note: abc is prime because if not, $ab \subseteq f$ (or ac, or bc) contradicting abc prime of f_{x} .
- Note: x_i ab is prime, since if not then either $ab \subseteq f$, x_i a $\subseteq f$, x_i b $\subseteq f$. The first contradicts abc prime of f_{x_i} and the second and third contradict ab prime of f_{-x} .

Summary

- □ Quine-McCluskey Method:
- 1. Generate cover of all primes $G = p_1 + p_2 + \cdots + p_{3^n/n}$
- 2. Make G irredundant (in optimum way)
 - Q-M is exact, i.e., it gives an exact minimum
- Heuristic Methods:
- 1. Generate (somehow) a cover of 3 using some of the primes $G = p_{i_1} + p_{i_2} + \cdots + p_{i_k}$ 2. Make G irredundant (maybe not optimally)
- 3. Keep best result try again (i.e. go to 1)

21