Logic Synthesis and Verification

Jie－Hong Roland Jiang
 江介宏
 Department of Electrical Engineering National Taiwan University

Fall 2010

Two－Level Logic
 Minimization（2／2）

Reading：

Logic Synthesis in a Nutshell Section 3 （§3．1－§3．2）

Heuristic Two-Level Logic Minimization ESPRESSO

```
ESPRESSO(J)
\{
\((\mathrm{F}, \mathrm{D}, \mathrm{R}) \leftarrow \operatorname{DECODE}(\mathfrak{J})\)
\(\mathrm{F} \leftarrow \operatorname{EXPAND}(\mathrm{F}, \mathrm{R})\)
\(\mathrm{F} \leftarrow \operatorname{IRREDUNDANT}(\mathrm{F}, \mathrm{D})\)
\(\mathrm{E} \leftarrow\) ESSENTIAL_PRIMES(F,D)
\(\mathrm{F} \leftarrow \mathrm{F}-\mathrm{E} ; \mathrm{D} \leftarrow \mathrm{D}+\mathrm{E}\)
do\{
do \(\{\)
\(\mathrm{F} \leftarrow \operatorname{REDUCE}(\mathrm{F}, \mathrm{D})\)
\(\mathrm{F} \leftarrow \operatorname{EXPAND}(\mathrm{F}, \mathrm{R})\)
\(\mathrm{F} \leftarrow \operatorname{IRREDUNDANT}(\mathrm{F}, \mathrm{D})\)
\}while fewer terms in F
```

//LASTGASP
$\mathrm{G} \leftarrow$ REDUCE_GASP(F,D)
$G \leftarrow \operatorname{EXPAND}(G, R)$
$\mathrm{F} \leftarrow \operatorname{IRREDUNDANT}(\mathrm{F}+\mathrm{G}, \mathrm{D})$
//LASTGASP
\}while fewer terms in F
$\mathrm{F} \leftarrow \mathrm{F}+\mathrm{E} ; \mathrm{D} \leftarrow \mathrm{D}-\mathrm{E}$
LOWER_OUTPUT(F,D)
RAISE_INPUTS(F,R)
error $\leftarrow\left(\mathrm{F}_{\text {old }} \not \subset \mathrm{F}\right)$ or $\left(\mathrm{F} \not \subset \mathrm{F}_{\text {old }}+\mathrm{D}\right)$
return (F,error)

Heuristic Two-Level Logic Minimization ESPRESSO

ㅁ Illustration

Local minimum

IRREDANDANT

ESPRESSO IRREDUNDANT

\square Problem:
Given a cover of cubes C for some incompletely specified function ($\mathrm{f}, \mathrm{d}, \mathrm{r}$), find a minimum subset of cubes $\mathrm{S} \subseteq \mathrm{C}$ that is also a cover, i.e.
\square Idea 1:

$$
f \subseteq \sum_{c \in S} c \subseteq f+d
$$

We are going to create a function $g(y)$ and a new set of variables $y=\left\{y_{i}\right\}$, one for each cube c_{i}. A minterm in the y-space will indicate a subset of the cubes $\left\{c_{i}\right\}$.

- Example

$$
y=(0,1,1,0,1,0) \text {, i.e. } y_{1}{ }^{\prime} y_{2} y_{3} y_{4}{ }^{\prime} y_{5} y_{6} \text {, represents }\left\{c_{2}, c_{3}, c_{5}\right\}
$$

ESPRESSO IRREDUNDANT

-Idea 2:
Create $g(y)$ so that it is the function such that:
$g\left(\mathrm{y}^{*}\right)=1 \Leftrightarrow \sum_{y^{*}=1} c_{i} \quad$ is a cover
i.e. $g\left(y^{*}\right)=1$ if and only if $\left\{c_{i} \mid y^{*}{ }_{i}=1\right\}$ is a cover.
\square Note: $g(y)$ can be made positive unate (monotone increasing) in all its variables.

ESPRESSO
 IRREDUNDANT

\square Example

$$
\begin{aligned}
& f=b c+\bar{a} c+\bar{a} \bar{b}+\bar{b} \bar{c} \\
& g\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=y_{1} y_{4}\left(y_{2}+y_{3}\right)
\end{aligned}
$$

Note:

We want a minimum subset of cubes that covers f, that is, the largest prime of g (least literals).
Consider g^{\prime} : it is monotone decreasing in y (i.e. negative unate in y) e.g.

$$
\bar{g}\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=\bar{y}_{1}+\bar{y}_{4}+\bar{y}_{2} \bar{y}_{3}
$$

ESPRESSO IRREDUNDANT

Example

Create a Boolean matrix B for g ':
$\overline{\mathrm{g}}-\mathrm{B}=\begin{array}{rlll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1\end{array}$

$$
f=b c+\bar{a} c+\bar{a} \bar{b}+\bar{b} \bar{c}
$$

$$
\bar{g}\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=\bar{y}_{1}+\bar{y}_{4}+\bar{y}_{2} \bar{y}_{3}
$$

We want a minimum column cover of B \square E.g., $\{1,2,4\} \Rightarrow y_{1} y_{2} y_{4}$ (cubes $1,2,4$) $\Rightarrow\left\{b c, a^{\prime} c, b^{\prime} c^{\prime}\right\}$

ESPRESSO
 IRREDUNDANT

\square Deriving $g^{\prime}(y)$

- Modify tautology algorithm:
F = cover of $\mathfrak{I}=(\mathrm{f}, \mathrm{d}, \mathrm{r})$
$D=$ cover of d

Pick a cube $c_{i} \in F$.
(Note: $c_{i} \subseteq F \Leftrightarrow F_{c_{i}} \equiv 1$)
\square Do the following for each cube $\mathrm{c}_{\mathrm{i}} \subseteq \mathrm{F}$:

$$
\left[\begin{array}{l}
A \\
B
\end{array}\right] \equiv\left[\begin{array}{c}
F_{C_{i}} \\
D_{C_{i}}
\end{array}\right]
$$

ESPRESSO IRREDUNDANT

- Deriving $g^{\prime}(y)$

1. All leaves must be tautologies
2. g^{\prime} means how can we make it not a tautology

- Must exactly delete all rows of all -'s that are not part of D

3. Each row came from some row of A/B
4. Each row of A is associated with some cube of F
5. Each cube of B is associated with some cube of D

- Don't need to know which, and cannot delete its rows

6. Rows that must be deleted are written as a cube
ㅁ.g. $y_{1} y_{2} y_{7} \Rightarrow$ delete rows $1,3,7$ of F

ESPRESSO IRREDUNDANT

\square Deriving $g^{\prime}(\mathrm{y})$

- Example

Suppose unate leaf is in subspace $x_{1} x_{2} x_{3}$: Thus we write down: $\overline{\mathrm{y}_{10}} \overline{\mathrm{y}_{18}}$ (actually, $\overline{\mathrm{y}_{\mathrm{i}}}$ must be one of $\overline{\mathrm{y}_{10}}, \overline{\mathrm{y}_{18}}$). Thus, F is not a cover if we leave out cubes $\mathrm{C}_{10}, \mathrm{C}_{18}$.

$\left[A_{B_{-1}}^{A}\right]_{1_{2} x_{3}}=$	$\left[\begin{array}{lllll}2 & 1 & 2 & y_{2} \\ 2 & 2 & 2 & y_{2} \\ 2 & 2 & 2 & y_{10} \\ 1 & y_{18} & y_{18} \\ 1 & 2 & 1 \\ 1 & 1 & 3 & \\ & & \end{array}\right.$

Unate leaf

Note:

If a row of all 2 's is in don't cares, then there is no way not to have tautology at that leaf.

ESPRESSO

 IRREDUNDANT\square Deriving $g^{\prime}(y)$

$$
\bar{g}(y)=\bar{g}_{i}(y)+\bar{g}_{j}(y)+\cdots
$$

$\bar{g}_{i}(y)=\bar{y}_{10} \bar{y}_{18}+\cdots$

ESPRESSO IRREDUNDANT

\square Summary

- Convert $g^{\prime}(\mathbf{y})$ into a Boolean matrix \mathbf{B} (note that $g(y)$ is unate). Then find a minimum column cover of B. For example, if $y_{1} y_{3} y_{18}$ is a minimum column cover, then the set of cubes $\left\{\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{18}\right\}$ is a minimum sub-cover of $\left\{c_{i} \mid i=1, \ldots, k\right\}$. (Recall that a minimal column cover of B is a prime of $g(y)$, and $g(y)$ gives all possible sub-covers of F).
■ Note: We are just doing tautology in constructing g'(y), so unate reduction is applicable

$$
F=\left[\begin{array}{c:c}
A & C \\
\hdashline T & F^{*}
\end{array}\right]
$$

ESPRESSO IRREDUNDANT

\square Summary

- In Q-M, we want a maximum prime of $\mathrm{g}(\mathrm{y})$
$B=\underset{\text { of } f}{\text { Minterms }}\left[\begin{array}{c}\text { All primes } \\ {\left[\begin{array}{c}1011010 \\ \cdots \\ \cdots \\ \cdots \\ \cdots\end{array}\right]} \\ \cdots\end{array}\right] \quad B \cong \bar{g}(y)=\bar{y}_{1} \bar{y}_{3} \bar{y}_{4} \bar{y}_{6}+\cdots$

Note: A row of B says if we leave out primes
$\left.p_{6}\right\}$, then we cease to have a cover
So basically, the only difference between Q-M and IRREDUNDANT is that for the latter, we just constructed a $g^{\prime}(\mathrm{y})$ where we did not consider all primes, but only those in some cover: $F=\left\{C_{1}, C_{3}, \ldots, C_{k}\right\}$

ESPRESSO EXPAND

$\square F \leftarrow \operatorname{EXPAND}(F, R)$

- Problem: Take a cube c and make it prime by removing literals
- Greedy way: (uses D and not R)
\square Remove literal l_{i} from c (results in, say c^{*})
\square Test if $c^{*} \subseteq f+d$ (i.e. test if $(f+d) c_{c^{*}} \equiv 1$)
\square Repeat, removing valid literals in order found
- Better way: (uses R and not D)
\square Want to see all possible ways to remove maximal subset of literals
\square Idea: Create a function $g(y)$ such that $g(y)=1$ iff literals $\left\{l_{i}\right.$ $\left.\mid y_{i}=0\right\}$ can be removed (or $\left\{l_{i} \mid y_{i}=1\right\}$ is a subset of literals such that if kept in c, will still make $c^{*} \subseteq f+d$, i.e. $c^{*} \wedge r \equiv 0$)

ESPRESSO EXPAND

- Main idea

Outline:

1. Expand one cube, c_{i}, at a time
2. Build "blocking" matrix $B=B^{C_{i}}$
3. See which other cubes c_{j} can be feasibly covered using B
4. Choose expansion (literals to be removed) to cover most other c_{j}

Note: $\bullet g(y)$ is monotone increasing

- $B \cong \bar{g}(y)$ is easily built if we have R, a cover of r.
- We do not need all of R. (reduced offset)

ESPRESSO
 EXPAND

\square Reduced offset

Make r unate by adding ($1,1,1$) to offset. Then the new offset $R_{\text {new }}=a+b \cong g^{\prime}(y)$. This is simpler and easier to deal with.

ESPRESSO EXPAND

\square Blocking matrix B (for some cube c)
\square Given $R=\left\{r_{i}\right\}$, a cover of r. [$\left.\mathfrak{I}=(f, d, r)\right]$

$$
B_{i j}=1 \Leftrightarrow\left\{\begin{array}{l}
l_{j} \in c \text { and } \bar{l}_{j} \in r_{i} \\
\bar{l}_{j} \in c \text { and } l_{j} \in r_{i}
\end{array}\right.
$$

B: rows indexed by offset cubes, columns indexed by literals
\square What does row i of B say?

- It says that if literals $\left\{j \mid \mathrm{B}_{i j}=1\right\}$ are removed from c, then c^{*} $\wedge r_{i} \neq 0$, i.e., $\mathrm{B}_{i j}=1$ is one reason why c is orthogonal to offset cube r_{i}
■ Thus $B \rightarrow g^{\prime}(\mathrm{y})=\mathrm{y}_{1}{ }^{\prime} \mathrm{y}_{3}{ }^{\prime} \mathrm{y}_{10}{ }^{\prime}+\cdots$ gives all ways that literals of c can be removed to get $c^{*} \not \subset \mathrm{f}+\mathrm{d}$ (i.e. $c^{*} \wedge \mathrm{r} \neq 0$)

ESPRESSO
 EXPAND

-Example

$c=a b \bar{d}$
$r_{i}=\bar{a} b d \bar{e}$
$y_{1} y_{2} y_{3} \propto a, b, \bar{d}$
$y_{1}=1 \Leftrightarrow$ keep a
$y_{2}=1 \Leftrightarrow$ keep b
$y_{3}=1 \Leftrightarrow$ keep d
$\left(B_{i}\right)=101=\bar{y}_{1} \bar{y}_{3}+\ldots=\bar{g}_{i}(y)$
Suppose $g(y)=1$
If $y_{1}=1$, we keep literal a in cube c.
$\square B_{i}$ means do not keep literals 1 and 3 of c (implies that subsequent c^{*} is not an implicant)

- If literals 1, 3 are removed we get $c \rightarrow c^{*}=b$. But $c^{*} \wedge$ $r_{i} \neq 0: b \wedge a^{\prime} b d e^{\prime}=a^{\prime} b d e^{\prime} \neq 0$. So b is not an implicant.

ESPRESSO EXPAND

\square Example (cont'd)

Thus all minimal column covers ($\cong g(y)$) of B are the minimal subsets of literals of c that must be kept to ensure that $c^{*} \subseteq f+d\left(i . e . c^{*} \wedge r_{i}=0\right)$

- Thus each minimal column cover is a prime p that covers c, i.e. $\mathrm{p} \supseteq \mathrm{c}$

ESPRESSO
 EXPAND

\square Expanding c_{i}

$$
F=\left\{c_{i}\right\}, \mathfrak{J}=(f, d, r) \quad f \subseteq F \subseteq f+d
$$

Q: Why do we want to expand c_{i} ?
A: To cover some other c_{j} 's.

Q: Can we cover c_{S} ?
A: If and only if (SCC = "smallest cube containing" also called "supercube")
equivalent to: $\operatorname{SCC}\left(c_{i} \cup c_{j}\right) \subseteq f+d$
equivalent to: $\operatorname{SCC}\left(c_{i} \cup c_{j}\right) \wedge r=0$
literals "conflicting" between c_{i}, c_{j} can be removed and still have an implicant

ESPRESSO EXPAND

\square Expanding c_{i}
Can check $\operatorname{SCC}\left(\mathrm{c}_{\mathrm{i}}, \mathrm{c}_{\mathrm{j}}\right)$ with blocking matrix:

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{i}}=12012 \\
& \mathrm{c}_{\mathrm{j}}=12120
\end{aligned}
$$

implies that literals 3 and 4 must be removed for c_{i}^{*} to cover c_{j}

Check if columns 3, 4 of B can be removed without causing a row of all 0's

ESPRESSO EXPAND

\square Covering function

The objective of EXPAND is to expand c_{i} to cover as many cubes c_{j} as possible. The blocking function $g^{\prime}(y)=1$ whenever the subset of literals $\left\{l_{i} \mid y_{i}=1\right\}$ yields a cube c^{*} $\not \subset f+d$.

- Note: $c^{*}=\prod_{\left(y_{j}=1\right)} l_{j}$

We now build the covering function h, such that:
$\mathrm{h}(\mathrm{y})=1$, whenever the cube $c^{*} \supseteq c_{i}$ covers another cube $c_{j} \subseteq \mathrm{~F}$
-Note: $h(y)$ is easy to build
-Thus a minterm of $\mathrm{g}(\mathrm{y}) \wedge \mathrm{h}(\mathrm{y})$ is such that it gives $\mathrm{c}^{*} \subseteq f+d$ $(\mathrm{g}(\mathrm{m})=1)$ and covers at least one cube $(\mathrm{h}(\mathrm{m})=1$). In fact every cube $c^{*}{ }_{m} \supseteq c_{l}$ is covered. We seek m which results in the most cubes covered.

ESPRESSO EXPAND

\square Covering function
Define $h(y)$ by a set of cubes where $d_{k}=k^{\text {th }}$ cube is:

$$
\begin{aligned}
& d_{k}=\varnothing \text { if } S C C\left[c_{i} \cup c_{k}\right] \not \subset f+d \text { else } \\
& d_{k}^{j}=\left\{\begin{array}{l}
\bar{y}_{j} \text { if } c_{k}^{j} \not \subset c_{i}^{j} \text { i.e. }\left\{\begin{array}{l}
2 \not \subset 1 \\
2 \not \subset 0 \\
0 \not \subset 1 \\
1 \not \subset 0
\end{array}\right. \\
2 \text { otherwise }
\end{array} \quad d_{k}^{j: j^{\text {th }} \text { literal of } k^{\text {th }} \text { cube }}\right.
\end{aligned}
$$

Every d_{k} indicates the minimal expansion to cover c_{k}, that is, which literals that we have to leave out to minimally cover c_{k}. Essentially $\mathrm{d}_{\mathrm{k}} \neq \varnothing$ if cube c_{k} can be feasibly covered by expanding cube c_{i}.

Note that $h(y)=d_{1}+d_{2}+\cdots+d_{|F|-1}$ (one for each cube of F, except c_{i}) is monotone decreasing.

ESPRESSO
 EXPAND

\square Covering function

We want a minterm m of $g(y) \wedge h(y)$ contained in a maximum number of d_{k} 's
In Espresso, we build a Boolean covering matrix C (note that $h(y)$ is negative unate) representing $h(y)$ and solve this problem with greedy heuristics

Note:

$B \cong \underset{\sim}{g}(y)$
but $C \cong \breve{h}(y) \supseteq h(y)$
$\tilde{h}(y)$ is an over-approximation of $h(y)$, e.g., by removing the $C=\left\{\begin{array}{c}\ldots \\ 010110 \\ 101011 \\ 100101 \\ \ldots\end{array}\right\}$ $B=\left\{\begin{array}{c}\ldots \\ 110110 \\ 101010 \\ 101001 \\ \ldots\end{array}\right\}$ $d_{k}=\varnothing$ rule in the previous slide

ESPRESSO EXPAND

\square Covering function
$C=\left\{\begin{array}{c}\ldots \\ 010110 \\ 101011 \\ 100101 \\ \ldots\end{array}\right\} \quad B=\left\{\begin{array}{c}\ldots \\ 110110 \\ 101010 \\ 101001 \\ \ldots\end{array}\right\}$

- Want a set of columns such that if eliminated from B and C results in no empty rows of B and a maximum of empty rows in C
Note: A "1" in C can be interpreted as a reason why c* does not cover c_{j}

ESPRESSO
 EXPAND

-Endgame

\square What do we do if $h(y) \equiv 0$?
\square This could be important in many hard problems, since it is often the case that $\mathrm{h}(\mathrm{y}) \equiv 0$
\square Some things to try:
\square Generate largest prime covering c_{i}
\square Generate largest prime covering cover most care points of another cube c_{k}
\square Coordinate two or more cube expansions, i.e. try to cover another cube by a combination of several other cube expansions

ESPRESSO REDUCE

\square Problem:
Given a cover F and $c \in F$, find the smallest cube $\mathrm{c} \subseteq \mathrm{c}$ such that $\mathrm{F} \backslash\{\mathrm{C}\}+\{\mathrm{c}\}$ is still a cover
$\square \mathrm{c}$ is called the maximally reduced cube of c

BAD

- on

- don't care

REDUCE is order dependent

ESPRESSO
 REDUCE

\square Example
$F=a c+b c+\bar{b} \bar{c}+\overline{a c}$

Two orders:

1. $\operatorname{REDUCE}(F=\{a c, b c, \bar{b} \bar{c}, \bar{a} \bar{c}\})=a \bar{b} c+b c+a \bar{b} \bar{c}+\bar{a} \bar{c}$
2. $\operatorname{REDUCE}(F=\{b c, \bar{b} \bar{c}, a c, \bar{a} \bar{c}\})=\bar{a} b c+a c+a \bar{b} \bar{c}+\bar{a} \bar{c}$

REDUCE is order dependent!

ESPRESSO REDUCE

Algorithm REDUCE(F, D) \{
$F \leftarrow \operatorname{ORDER}(F)$
for (1 $\leq j \leq|F|)\{$
$\underline{C}_{j} \leftarrow$ MAX_REDUCE (C, F, D)
$F \leftarrow\left(F \cup\left\{\underline{c}_{j}\right\}\right) \backslash\left\{\mathrm{C}_{j}\right\}$
\}
return F
\}

ESPRESSO
 REDUCE

\square Main Idea: Make a prime not a prime but still maintain cover:
$\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{i}}, \ldots, \mathrm{c}_{\mathrm{k}}\right\} \rightarrow\left\{\mathrm{c}_{1}, \ldots, \underline{c}_{i}, \mathrm{c}_{\mathrm{i}+1}, \ldots, \mathrm{c}_{\mathrm{k}}\right\}$
But

$$
f \subseteq \sum_{j=0}^{i-1} c_{j}+\underline{c}_{i}+\sum_{j=i+1}^{k} c_{j} \subseteq f+d
$$

To get out of a local minimum (prime and irredundant is local minimum)

- After reduce, have non-primes and can expand again in different directions
$\boldsymbol{\square}$ Since EXPAND is "smart", it may know best direction

ESPRESSO REDUCE

$$
\begin{aligned}
& F=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\} \\
& F(i)=(F+D) \backslash\left\{c_{i}\right\}=\left\{c_{1}, c_{2}, \ldots, c_{i-1}, c_{i+1}, \ldots, c_{k}\right\}
\end{aligned}
$$

\square Reduced cube:

$\underline{c}_{i}=$ smallest cube containing ($\mathrm{c}_{\mathrm{i}} \cap \overline{\mathrm{F}}(\mathrm{i})$)

Note that $c_{i} \cap \bar{F}(i)$ is the set of points uniquely covered by c_{i} (and not by any other c_{j} or D).
Thus, c_{i} is the smallest cube containing the minterms of c_{i} which are not in $F(i)$.

ESPRESSO
 REDUCE

\square SCC: "smallest cube containing", i.e., supercube
\square SCCC: "smallest cube containing complement"

- on

- don't care

$$
\begin{aligned}
\underline{c}_{i} & =\operatorname{SCC}\left(c_{i} \cap \overline{F(i)}\right) \\
& =\operatorname{SCC}\left(c_{i} \overline{F_{c_{i}}(i)}\right) \\
& =c_{i} \operatorname{SCC}\left(\overline{F_{c_{i}}(i)}\right) \\
& =c_{i} \operatorname{SCCC}\left(F_{c_{i}}(i)\right)
\end{aligned}
$$

ESPRESSO REDUCE

\square SCCC computation

- Unate recursive paradigm
\square Select most binate variable \square Cofactor until unate leaf

unate

What is SCCC (unate cover) ?

Note that for a cube c with at least 2 literals, $\operatorname{SCCC}(\mathrm{c})$ is the universe:

$$
\text { cube }=01222 \Longrightarrow \overline{\text { cube }}=\begin{aligned}
& 12222 \\
& 20222
\end{aligned} \quad \text { Hence, SCCC(cube) }=22222
$$

Implies only need to look at 1-literal cubes

ESPRESSO
 REDUCE

-SCCC computation

■ SCCC $(U)=\gamma$ for a undate cover U

Claim
ㅁIf unate cover has row of all 2's except one 0, then complement is in x_{i}, i.e. $\gamma_{i}=1$
IIf unate cover has row of all 2's except one 1, then complement is in x_{i}, i.e. $\gamma_{i}=0$
\square Otherwise, in both subspaces, i.e. $\gamma_{i}=2$
Finally

$$
\begin{aligned}
\operatorname{SCCC}\left(c_{1}+c_{2}+\ldots+c_{k}\right) & =\operatorname{SCC}\left(\bar{c}_{1} \bar{c}_{2} \ldots \bar{c}_{k}\right) \\
& =\operatorname{SCC}\left(\bar{c}_{1}\right) \cap \ldots \cap \operatorname{SCC}\left(\bar{c}_{k}\right)
\end{aligned}
$$

ESPRESSO REDUCE

\square SCCC computation
Example 1: $f=a+b c+\bar{d} \Rightarrow \bar{f}=\bar{a}(\bar{b}+\bar{c}) d \subseteq \bar{a} d$
Note: 0101 and 0001 are both in \bar{f}. So SCCC could not have literal b or b in t.

Example 2:

$U($ unate $)=$| 2 | 2 | 2 | 2 | 0 |
| ---: | ---: | ---: | ---: | ---: |
| 0 | 2 | 2 | 2 | 2 |
| 2 | 1 | 1 | 2 | 2 |
| 2 | 1 | 2 | 1 | 0 |
| | \uparrow | | | |
| \uparrow | | | | |

- Note that columns 1 and 5 are essential: they must be in every minimal cover. So Hence $\operatorname{SCCC}(U)=x_{1} x_{5}$

ESPRESSO REDUCE

\square SCCC computation
Example 2 (cont'd):

$$
\begin{aligned}
& U=\bar{x}_{1}+\bar{x}_{5}+x_{2}\left(x_{3}+x_{4}\right) \\
& \bar{U}=x_{1} x_{5}\left(\bar{x}_{2}+\bar{x}_{3} \bar{x}_{4}\right) \\
& \begin{array}{lllll}
1 & 0 & 2 & 2
\end{array} \\
& \bar{U}(\text { unate })=1 \quad 2 \quad 0 \quad 0 \quad 1 \subseteq 12221 \\
& \uparrow \uparrow \uparrow
\end{aligned}
$$

The marked columns contain both 0's and 1's. But every prime of U contains literals x_{1}, x_{5}

ESPRESSO REDUCE

-SCCC computation

At unate leaves

$$
\mathrm{n}=\operatorname{SCCC}(\text { unate })=\varnothing \text { if row of all 2's }
$$

$\mathrm{n}_{j}= \begin{cases}x_{j} & \text { if column } j \text { has a row singleton with a } 0 \text { in it } \\ \bar{x}_{j} & \text { if column } j \text { has a row singleton with a } 1 \text { in it } \\ 2 & \text { otherwise }\end{cases}$

ESPRESSO
 REDUCE

\square SCCC computation

Merging

\square We need to produce $\operatorname{SCCC}(f)=\operatorname{SCC}\left(x_{i} c_{1}+\bar{x}_{i} C_{2}\right)=\gamma$

$$
\begin{gathered}
\gamma=I_{1} I_{2} \ldots I_{k} \\
x_{i} \in \gamma \Leftrightarrow c_{2}=\varnothing \\
\bar{X}_{i} \in \gamma \Leftrightarrow c_{1}=\varnothing \\
I_{j \neq i} \in \gamma \Leftrightarrow\left(I_{j} \in C_{1}\right) \wedge\left(I_{j} \in C_{2}\right)
\end{gathered}
$$

If $\mathrm{C}_{1} \wedge \mathrm{C}_{2} \neq \varnothing$, then $\gamma_{\mathrm{i}}=2$

- because minterms with x_{i} and $\neg x_{i}$ literals both exist, and thus $\left(\operatorname{SCC}\left(x_{i} C_{1}+x_{i} C_{2}\right)\right)_{i}=2$
\square If $I_{j} \notin C_{1}$ or $I_{j} \notin C_{2}$, then $\gamma_{j}=2$ (where $I_{j}=x_{j}$ or $\neg X_{j}$)
- because minterms with x_{j} and $\neg x_{j}$ literals both exist
$\square I f I_{j} \in C_{1}$ and $\neg I_{j} \in C_{2}$, then $\gamma_{j}=2$.

ESPRESSO

```
ESPRESSO(I)
\{
```

$(\mathrm{F}, \mathrm{D}, \mathrm{R}) \leftarrow \operatorname{DECODE}(\mathfrak{J})$
$\mathrm{F} \leftarrow \operatorname{EXPAND}(\mathrm{F}, \mathrm{R})$
$\mathrm{F} \leftarrow \operatorname{IRREDUNDANT}(\mathrm{F}, \mathrm{D})$
E \leftarrow ESSENTIAL_PRIMES(F,D)
$\mathrm{F} \leftarrow \mathrm{F}-\mathrm{E} ; \mathrm{D} \leftarrow \mathrm{D}+\mathrm{E}$
do\{
do\{
$\mathrm{F} \leftarrow \operatorname{REDUCE}(\mathrm{F}, \mathrm{D})$
$\mathrm{F} \leftarrow \operatorname{EXPAND}(\mathrm{F}, \mathrm{R})$
$\mathrm{F} \leftarrow \operatorname{IRREDUNDANT}(\mathrm{F}, \mathrm{D})$
\} while fewer terms in F
//LASTGASP
$\mathrm{G} \leftarrow$ REDUCE_GASP(F,D)
$G \leftarrow \operatorname{EXPAND}(\mathrm{G}, \mathrm{R})$
$\mathrm{F} \leftarrow \operatorname{IRREDUNDANT}(\mathrm{F}+\mathrm{G}, \mathrm{D})$
//LASTGASP
\}while fewer terms in F
$\mathrm{F} \leftarrow \mathrm{F}+\mathrm{E} ; \mathrm{D} \leftarrow \mathrm{D}-\mathrm{E}$
LOWER_OUTPUT(F,D)
RAISE_INPUTS(F,R)
error $\leftarrow\left(\mathrm{F}_{\text {old }} \not \subset \mathrm{F}\right)$ or $\left(\mathrm{F} \not \subset \mathrm{F}_{\text {old }}+\mathrm{D}\right)$
return (F,error)

ESPRESSO
 LASTGASP

- Reduce is order dependent:
E.g., expand can't do anything with that produced by REDUCE 2.
\square Maximal Reduce:

$\underline{C}_{i}^{M}=\operatorname{SCC}\left(c_{i} \cap \overline{F(i)}\right)=C_{i} \cap \operatorname{SCCC}\left(F(i)_{c_{i}}\right) \quad \forall i$
i.e., we reduce all cubes as if each were the first one.
Note:
$\left\{\underline{C}_{1}{ }^{M}, \underline{C}_{2}{ }^{M}, \ldots\right\}$ is not a cover

ESPRESSO LASTGASP

Now EXPAND, but try to cover only $c_{j}{ }^{\text {M's. }}$
We call $\operatorname{EXPAND}(\mathrm{G}, \mathrm{R})$, where $\mathrm{G}=\left\{{\underline{c_{1}}}^{M}, \underline{c}_{2}{ }^{M}, \ldots, \underline{c}_{k}{ }^{M}\right.$.

- If a covering is possible, take the resulting prime:

$$
f+d \supseteq p_{i} \supseteq \underline{c}_{i}^{M} \cup \underline{c}_{j}^{M}
$$

and add to F :

$$
\tilde{F}=F \cup\left\{p_{i}\right\}
$$

Since F is a cover, so is \tilde{F}. Now apply IRREDUNDANT on \tilde{F}.

What about "supergasp" ?

Main Idea: Generally, think of ways to throw in a few more primes and then use IRREDUNDANT. If all primes generated, then just Quine-McCluskey

