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Finite State Machine

Finite-State Machine F(Q,Q0,X,Y,,) 
where:

Q:  Set of internal states
Q0:  Set of initial states
X:  Input alphabet
Y:  Output alphabet
:  X x Q  Q    (next state function)
:  X x Q  Y    (output function)

Delay element:

• Clocked: synchronous circuit

• single-phase clock, multiple-phase clocks

• Not clocked: asynchronous circuit

x=(x1,x2,…,xn) y=(y1,y2,…,yn)



s=(s1,s2,…,sn)
s’ =(s’1,s’2,…,s’n)

D
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General Logic Structure

 Combinational 
optimization
 keep latches/registers 

at current positions, 
keep their function

 optimize combinational 
logic in between

 Sequential 
optimization
 change latch 

position/function 
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Optimization Criteria for Synthesis
The optimization criteria for multi-level logic is to minimize

some function of:
1. Area occupied by the logic gates and interconnect

(approximated by literals = transistors in technology 
independent optimization)

2. Critical path delay of the longest path through the logic
3. Degree of testability of the circuit, measured in terms 

of the percentage of faults covered by a specified set of 
test vectors for an approximate fault model (e.g. single  
or multiple stuck-at faults)

4. Power consumed by the logic gates
5. Noise immunity
6. Placeability, routability

while simultaneously satisfying upper or lower bound 
constraints placed on these physical quantities
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Area-Delay Trade-off

Example
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Two-Level (PLA) vs. Multi-Level

 PLA
 Control logic 
 Constrained layout
 Highly automatic
 Technology independent
 Multi-valued logic
 Input, output, state encoding
 Predictable

 Multi-level logic
 Control logic, data path
 General layout 
 Automatic
 Partially technology independent
 Some ideas of multi-valued logic
 Occasionally involving encoding
 Hard to predict

E.g. Standard Cell Layout
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General Approaches to Synthesis

 PLA synthesis:
 theory well understood
 predictable results in a top-down flow

Multi-level synthesis:
 optimization criteria very complex

except special cases, no general theory available
 greedy optimization approach

 incrementally improve along various dimensions of the 
criteria

 works on common design representation (circuit or 
network representation)
attempt a change, accept if criteria improve, reject 

otherwise
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Transformation-based Synthesis
 All modern synthesis systems are transformation based

 set of transformations that change network representation
work on uniform network representation

 “script” of “scenario” that can orchestrate various 
transformations

 Transformations differ in:
 the scope they are applied

 Local vs. global restructuring
 the domain they optimize

 combinational vs. sequential
 timing vs. area
 technology independent vs. technology dependent

 the underlying algorithms they use
 BDD based, SAT based, structure based
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Network Representation

 Boolean network
 Directed acyclic graph 

(DAG)
 Node logic function 

representation fj(x,y)
 Node variable yj: yj=fj(x,y)
 Edge (i,j) if fj depends 

explicitly on yi

 Inputs: x = (x1, …, xn)
 Outputs: z = (z1, …, zp)
 External don’t cares: 

d1(x), …, dp(x) for outputs
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Typical Synthesis Scenario

RTL to Network Transformation

Technology Independent Optimizations

Technology Mapping

Technology Dependent Optimizations

Test Preparation

- read Verilog

- control/datapath analysis

- basic logic restructuring

- crude measures for goals

- use logic gates from target

cell library

- timing optimization

- physically driven optimization

- improve testability

- test logic insertion
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Local vs. Global Transformation
 Local transformations optimize one node’s function in the

network
 smaller area
 faster performance
 map to a particular set of cells

 Global transformations restructure the entire network
 merging nodes
 spitting nodes
 removing/changing connections between nodes

 Node representation:
 keep size bounded to avoid blow-up of local transformations

 SOP, POS
 BDD
 Factored forms
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Sum-of-Products (SOP)

 Example
abc’+a’bd+b’d’+b’e’f

 Advantages:
 Easy to manipulate and minimize
 many algorithms available (e.g. AND, OR, TAUTOLOGY)
 two-level theory applies

 Disadvantages:
 Not representative of logic complexity

E.g., f=ad+ae+bd+be+cd+ce and f’=a’b’c’+d’e’
differ in their implementation by an inverter

 Not easy to estimate logic; difficult to estimate progress
during logic manipulation
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Reduced Ordered BDD
 Represents both function and its 

complement, like factored forms to be 
discussed

 Like network of muxes, but restricted since 
controlled by primary input variables
 not really a good estimator for 

implementation complexity
 Given an ordering, reduced BDD is 

canonical, hence a good replacement for 
truth tables

 For a good ordering, BDDs remain 
reasonably small for complicated functions 
(but not multipliers, for instance)

 Manipulations are well defined and efficient
 Only true support variables (dependency 

on primary input variables) are displayed
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Factor Form
 Example

(ad+b’c)(c+d’(e+ac’))+(d+e)fg

 Advantages
 good representative of logic complexity
 f=ad+ae+bd+be+cd+ce
 f’=a’b’c’+d’e’  f=(a+b+c)(d+e)
 in many designs (e.g. complex gate CMOS) the 

implementation of a function corresponds directly to its 
factored form

 good estimator of logic implementation complexity
 doesn’t blow up easily

 Disadvantages
 not as many algorithms available for manipulation
 usually converted into SOP before manipulation
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Factor Form

Note:

literal count   transistor 
count  area 
 however, area also 
depends on wiring, gate 
size, etc.
 therefore very crude 
measure
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Factored Form
 Definition: f is an algebraic expression if f is a set of cubes (SOP), 

such that no single cube contains another (minimal with respect 
to single cube containment)
 Example

a+ab is not an algebraic expression (factoring gives a(1+b) )

 Definition: The product of two expressions f and g is a set defined 
by fg = {cd | c  f  and d  g  and cd  0}
 Example

(a+b)(c+d+a’)=ac+ad+bc+bd+a’b

 Definition: fg is an algebraic product if f and g are algebraic 
expressions and have disjoint support (that is, they have no input 
variables in common)
 Example

(a+b)(c+d)=ac+ad+bc+bd is an algebraic product
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Factored Form
 Definition: A factored form can be defined recursively by 

the following rules. A factored form is either a product or 
sum where:
 a product is either a single literal or a product of 

factored forms
 a sum is either a single literal or a sum of factored forms

 A factored form is a parenthesized algebraic expression
 In effect a factored form is a product of sums of 

products or a sum of products of sums

 Any logic function can be represented by a factored form, 
and any factored form is a representation of some logic 
function
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Factored Form

Example
 x, y’, abc’, a+b’c, ((a’+b)cd+e)(a+b’)+e’ are 

factored forms
 (a+b)’c is not a factored form since 

complement is not allowed, except on literals

Factored forms are not unique
 Three equivalent factored forms

ab+c(a+b),    bc+a(b+c),    ac+b(a+c)
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Factored Form
 Definition: The factorization value of an algebraic 

factorization F=G1G2+R is defined to be
fact_val(F,G2) = lits(F) - ( lits(G1) + lits(G2) + lits(R) ) 
= (|G1|-1) lits(G2) + (|G2|-1) lits(G1)
 Assuming G1, G2 and R are algebraic expressions, where |H| is 

the number of cubes in the SOP form of H
 Example

F = ae+af+ag+bce+bcf+bcg+bde+bdf+bdg
can be expressed in the form F = (a+b(c+d))(e+f+g), which 
requires 7 literals, rather than 24

 If G1=(a+bc+bd) and G2=(e+f+g), then R= and
fact_val(F,G2) = 23+25=16
 The above factored form saves 17 literals, not 16. The extra literal 

comes from recursively applying the formula to the factored form
of G1.
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Factored Form

 Factored forms are more compact
representations of logic functions than the 
traditional SOP forms
 Example:

(a+b)(c+d(e+f(g+h+i+j)))
when represented as an SOP form is
ac+ade+adfg+adfh+adfi+adfj+bc+bde+bdfg+ 
bdfh+bdfi+bdfj

 SOP is a factored form, but it may not be a good 
factorization
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Factored Form
 There are functions whose size is exponential in SOP 

representation, but polynomial in factored form
 Example:

Achilles’ heel function

n literals in factored form and (n/2)2n/2 literals in SOP form
  

(x
2i1

 x
2i

)
i1

in / 2



Factored forms are useful in estimating
area and delay in a multi-level synthesis 
and optimization system. In many design 
styles (e.g. complex gate CMOS design) 
the implementation of a function 
corresponds directly to its factored form.
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Factored Form
 Factored forms can be graphically represented as labeled 

trees, called factoring trees, in which each internal node 
including the root is labeled with either + or , and each 
leaf has a label of either a variable or its complement
 Example

factoring tree of ((a’+b)cd+e)(a+b’)+e’
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Factored Form
 Definition: The size of a factored form F (denoted (F )) is 

the number of literals in the factored form
 E.g., ((a+b)ca’) = 4, ((a+b+cd)(a’+b’)) = 6

 A factored form of a function is optimal if no other factored 
form has less literals

 A factored form is positive unate in x, if x appears in F, but 
x’ does not. A factored form is negative unate in x, if x’
appears in F, but x does not.

 F is unate in x if it is either positive or negative unate in x, 
otherwise F is binate in x
 E.g., F = (a+b’)c+a’

positive unate in c; negative unate in b; binate in a
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Factored Form
Cofactor

 The cofactor of a factored form F, with respect a 
literal x1 (or x1’ ), is the factored form Fx1

= 
Fx1=1(x) (or Fx1’=Fx1=0(x) ) obtained by
 replacing all occurrences of x1 by 1, and x1’

by 0
 simplifying the factored form using the 

Boolean algebra identities 
1y=y    1+y=1    0y=0    0+y=y

 after constant propagation (all constants are 
removed), part of the factored form may 
appear as G+G.  In general, G is in a factored 
form.
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Factored Form
Cofactor

The cofactor of a factored form F, with 
respect to a cube c, is a factored form FC
obtained by successively cofactoring F
with each literal in c
 Example

F = (x+y’+z)(x’u+z’y’(v+u’)) and c = vz’. 
Then
Fz’ = (x+y’)(x’u+y’(v+u’))
Fz’ v = (x+y’)(x’u+y’)
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Factored Form
Optimality

 Definition
Let f be a completely specified Boolean function, 
and (f) is the minimum number of literals in any 
factored form of f
 Recall (F) is the number of literals of a factored form F

 Definition
Let sup(f) be the true support variable of f, i.e. 
the set of variables that f depends on. Two 
functions f and g are orthogonal, f  g, if sup(f) 
sup(g) = 
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Factored Form
Optimality

 Lemma: Let f = g + h such that g  h, then (f) = (g) + (h)
 Proof:

Let F, G and H be the optimum factored forms of f, g and h. Since G+H
is a factored form, (f)=(F)  (G+H)=(g)+(h).

Let c be a minterm, on sup(g), of g’. Since g and h have disjoint 
support, we have fc=(g+h)c=gc+hc=0+hc=hc=h. Similarly, if d is a 
minterm of h’, fd=g. Because (h)=(fc)(Fc) and (g)=(fd)(Fd), 
(h)+(g)  (Fc)+(Fd).

Let m (n) be the number of literals in F that are from SUPPORT(g)
(SUPPORT(h)). When computing Fc (Fd), we replace all the literals from 
SUPPORT(g) (SUPPORT(h)) by the appropriate values and simplify the 
factored form by eliminating all the constants and possibly some literals 
from sup(g) (sup(h)) by using the Boolean identities. Hence (Fc)  n 
and (Fd)  m. Since (F) = m+n, (Fc)+(Fd)  m+n = (F).
We have (f)  (g)+(h)  (Fc)+(Fd)  (F)  (f) = (g) + (h) since
(f)=(F).
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Factored Form
Optimality

 Note, the previous result does not imply that all minimum literal 
factored forms of f are sums of the minimum literal factored forms 
of g and h

 Corollary: Let f = gh such that g  h, then (f)=(g)+(h)
 Proof:

Let F’ denote the factored form obtained using DeMorgan’s law. Then 
(F) = (F’), and therefore (f)=(f’). From the above lemma, we have 
(f) = (f’) = (g’+h’) = (g’)+(h’) = (g)+(h).

 Theorem: Let such that fijfkl, ij or kl, then

 Proof:
Use induction on m and then n, and the above lemma and corollary.

f  fij
j1

m


i1

n



  
( f )  ( f

ij
)

j1

m


i1

n



30

Factored Form
 SOP forms are used as the internal representation of logic 

functions in most multi-level logic optimization systems
 Advantages

 good algorithms for manipulating them are available
 Disadvantages

 performance is unpredictable - they may accidentally generate a 
function whose SOP form is too large

 factoring algorithms have to be used constantly to provide an estimate 
for the size of the Boolean network, and the time spent on factoring 
may become significant

 Possible solution
 avoid SOP representation by using factored forms as the internal 

representation
 still not practical unless we know how to perform logic operations 

directly on factored forms without converting to SOP forms
 the most common logic operations over factored form have been 

partially provided
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Boolean Network Manipulation

Basic techniques
Structural operations (change topology)

Algebraic
Boolean

Node simplification (change node functions)
Node minimization using don’t cares
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Structural Operation
 Restructuring: Given initial network, find best network

 Example
f1  = abcd+ab’cd’+acd’e+ab’c’d’+a’c+cdf+abc’d’e’+ab’c’df’
f2 = bdg+b’dfg+b’d’g+bd’eg
minimizing
f1 = bcd+b’cd’+cd’e+a’c+cdf+abc’d’e’+ab’c’df’
f2 = bdg+dfg+b’d’g+d’eg
factoring
f1 = c(d(b+f)+d’(b’+e)+a’)+ac’(bd’e’+b’df’)
f2 = g(d(b+f)+d’(b’+e))
decompose
f1 = c(x+a’)+ac’x’
f2 = gx
x = d(b+f)+d’(b’+e)

 Two problems:
 find good common subfunctions
 effect the division
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Structural Operation
 Basic Operations:

 Decomposition (single function)
f = abc+abd+a’c’d’+b’c’d’ 
f = xy+x’y’ x = ab y = c+d

 Extraction (multiple functions)
f = (az+bz’)cd+e g = (az+bz’)e’ h = cde 
f = xy+e g = xe’ h = ye    x = az+bz’ y = cd

 Factoring (series-parallel decomposition)
f = ac+ad+bc+bd+e 
f = (a+b)(c+d)+e

 Substitution
g = a+b f = a+bc 
f = g(a+c)

 Collapsing (also called elimination)
f = ga+g’b g = c+d 
f = ac+ad+bc’d’ g = c+d

“Division” plays a key role in all of these operations
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Factoring vs. Decomposition

 Factoring:
 f=(e+g’)(d(a+c)+a’b’c’)

+b(a+c)

 Decomposition:
 y(b+dx)+xb’y’

Similar to merging 
common nodes and 
using negative 
pointers in BDD. 
However, not
canonical, so have no 
perfect identification 
of common nodes.

Tree

DAG
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Structural Operation 
Node Elimination

where 
ni =  number of times literals yj and yj’ occur in factored form fi
 can treat yj and yj’ the same since ( Fj ) = ( Fj’ )

lj =  number of literals in factored fj
with factoring

without factoring

value = (without factoring) - (with factoring)

value( j)  n
i

iFO( j )










 l

j
1  l

j

l
j
 n

i
iFO( j )
  c

l
j

n
i

iFO( j )
  c
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Structural Operation 
Node Elimination

 Example
 Literals before

5+7+5 = 17
 Literals after

9+15 = 24
 Difference: 

after - before = 
value = 7

xx

value( j)  n
i

iFO( j )










 l

j
1  l

j

 (n
1
 n

2
)(l

3
1)  l

3

 (1 2)(51)  5  7
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Structural Operation 
Node Elimination

Note: Value of a node can change during elimination

value=3
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Factorization
 Given a SOP, how do we generate a “good” factored form

 Division operation:
 is central in many operations
 find a good divisor
 apply division

results in quotient and remainder

 Applications:
 factoring
 decomposition
 substitution
 extraction
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Division

 Definition: An operation op is called division if, 
given two SOP expressions F and G, it generates 
expressions H and R (<H,R> = op(F,G)) such 
that F = GH + R
 G is called the divisor
 H is called the quotient
 R is called the remainder

 Definition: If GH is an algebraic product, then op
is called an algebraic division (denoted F // G),
otherwise GH is a Boolean product and op is 
called a Boolean division (denoted F  G)
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Division

 Example:
f   = ad + ae + bcd + j
g1 = a + bc
g2 = a + b

 Algebraic division: 
f // a = d + e, r = bcd + j 

Also, f // a = d or f // a = e, i.e. algebraic division is 
not unique

f // (bc) = d, r = ad + ae + j
h1 = f // g1 = d, r1 = ae + j

 Boolean division: 
h2 = f  g2 = (a + c)d, r2 = ae + j.

i.e. f = (a+b)(a+c)d + ae + j


