Logic Synthesis and Verification

Jie－Hong Roland Jiang
 江介宏
 Department of Electrical Engineering National Taiwan University

Fall 2010

Multi－Level Logic Minimization

Reading：

Logic Synthesis in a Nutshell Section 3 （§3．3）

Finite State Machine

Delay element:

- Clocked: synchronous circuit
- single-phase clock, multiple-phase clocks
- Not clocked: asynchronous circuit

General Logic Structure

\square Combinational optimization
■ keep latches/registers at current positions, keep their function

- optimize combinational logic in between
\square Sequential optimization
- change latch position/function

Optimization Criteria for Synthesis

The optimization criteria for multi-level logic is to minimize some function of:

1. Area occupied by the logic gates and interconnect (approximated by literals = transistors in technology independent optimization)
2. Critical path delay of the longest path through the logic
3. Degree of testability of the circuit, measured in terms of the percentage of faults covered by a specified set of test vectors for an approximate fault model (e.g. single or multiple stuck-at faults)
4. Power consumed by the logic gates
5. Noise immunity
6. Placeability, routability
while simultaneously satisfying upper or lower bound constraints placed on these physical quantities

Area-Delay Trade-off

-Example
sMall design

Two-Level (PLA) vs. Multi-Level

E.g. Standard Cell Layout

\square PLA

- Control logic
- Constrained layout
- Highly automatic
- Technology independent
- Multi-valued logic
- Input, output, state encoding
- Predictable
\square Multi-level logic
- Control logic, data path
- General layout
- Automatic
- Partially technology independent
- Some ideas of multi-valued logic
- Occasionally involving encoding
- Hard to predict

General Approaches to Synthesis

- PLA synthesis:
- theory well understood
- predictable results in a top-down flow

ㅁ Multi-level synthesis:
■ optimization criteria very complex
\square except special cases, no general theory available

- greedy optimization approach
\square incrementally improve along various dimensions of the criteria
works on common design representation (circuit or network representation)
-attempt a change, accept if criteria improve, reject otherwise

Transformation-based Synthesis

ㅁ All modern synthesis systems are transformation based
■ set of transformations that change network representation

- work on uniform network representation

■ "script" of "scenario" that can orchestrate various transformationsTransformations differ in:
■ the scope they are applied
\square Local vs. global restructuring

- the domain they optimize
\square combinational vs. sequential
\square timing vs. area
\square technology independent vs. technology dependent
- the underlying algorithms they use
\square BDD based, SAT based, structure based

Network Representation

Boolean network- Directed acyclic graph (DAG)
- Node logic function representation $f_{j}(x, y)$
- Node variable $y_{j}: y_{j}=f_{j}(x, y)$
- Edge (i, j) if f_{j} depends explicitly on y_{i}
\square Inputs: $x=\left(x_{1}, \ldots, x_{n}\right)$
\square Outputs: $z=\left(z_{1}, \ldots, z_{p}\right)$
- External don't cares:
$d_{1}(x), \ldots, d_{p}(x)$ for outputs

Typical Synthesis Scenario

- read Verilog
- control/datapath analysis
- basic logic restructuring
- crude measures for goals
- use logic gates from target cell library
- timing optimization
- physically driven optimization
- improve testability
- test logic insertion

Local vs. Global Transformation

ㅁ Local transformations optimize one node's function in the network

- smaller area
- faster performance
- map to a particular set of cells

ㅁ Global transformations restructure the entire network

- merging nodes
- spitting nodes
- removing/changing connections between nodesNode representation:
■ keep size bounded to avoid blow-up of local transformations - SOP, POS
\square BDD
\square Factored forms

Sum-of-Products (SOP)

\square Example
abc'+a'bd+b'd'+b'e'f
\square Advantages:

- Easy to manipulate and minimize

■ many algorithms available (e.g. AND, OR, TAUTOLOGY)
two-level theory applies
\square Disadvantages:

- Not representative of logic complexity
-E.g., $f=a d+a e+b d+b e+c d+c e$ and $f^{\prime}=a^{\prime} b^{\prime} c^{\prime}+d^{\prime} e^{\prime}$
differ in their implementation by an inverter
- Not easy to estimate logic; difficult to estimate progress during logic manipulation

Reduced Ordered BDD

- Represents both function and its
complement, like factored forms to be discussed
- Like network of muxes, but restricted since controlled by primary input variables
- not really a good estimator for implementation complexity
\square Given an ordering, reduced BDD is canonical, hence a good replacement for truth tables
- For a good

BDDs remain reasonably small for complicated functions (but not multipliers, for instance)

\square Manipulations are well defined and efficient
\square Only true support variables (dependency on primary input variables) are displayed

Factor Form

Example $\left(a d+b^{\prime} c\right)\left(c+d^{\prime}\left(e+a c^{\prime}\right)\right)+(d+e) f g$Advantages- good representative of logic complexity
- $\mathrm{f}=\mathrm{ad}+\mathrm{ae}+\mathrm{bd}+\mathrm{be}+\mathrm{cd}+\mathrm{ce}$

■ $f^{\prime}=a{ }^{\prime} b^{\prime} c^{\prime}+d^{\prime} e^{\prime} \Rightarrow f=(a+b+c)(d+e)$

- in many designs (e.g. complex gate CMOS) the implementation of a function corresponds directly to its factored form
- good estimator of logic implementation complexity

■ doesn't blow up easily
\square Disadvantages
■ not as many algorithms available for manipulation
■ usually converted into SOP before manipulation

Factor Form

Note:

literal count \approx transistor count \approx area
however, area also depends on wiring, gate size, etc.

- therefore very crude measure

Factored Form

\square Definition: f is an algebraic expression if f is a set of cubes (SOP), such that no single cube contains another (minimal with respect to single cube containment)

- Example
$a+a b$ is not an algebraic expression (factoring gives $a(1+b)$)
\square Definition: The product of two expressions f and g is a set defined by $\mathrm{fg}=\{\mathrm{cd} \mid \mathrm{c} \in \mathrm{f}$ and $\mathrm{d} \in \mathrm{g}$ and $\mathrm{cd} \neq 0\}$
- Example
$(a+b)\left(c+d+a^{\prime}\right)=a c+a d+b c+b d+a^{\prime} b$
\square Definition: fg is an algebraic product if f and g are algebraic expressions and have disjoint support (that is, they have no input variables in common)
- Example
$(a+b)(c+d)=a c+a d+b c+b d$ is an algebraic product

Factored Form

\square Definition: A factored form can be defined recursively by the following rules. A factored form is either a product or sum where:

- a product is either a single literal or a product of factored forms
- a sum is either a single literal or a sum of factored forms
\square A factored form is a parenthesized algebraic expression ■ In effect a factored form is a product of sums of products or a sum of products of sums
\square Any logic function can be represented by a factored form, and any factored form is a representation of some logic function

Factored Form

-Example

■ x, y', abc', a+b’c, ((a’+b)cd+e)(a+b') +e' are factored forms
$\square(a+b)$ ' c is not a factored form since complement is not allowed, except on literals
\square Factored forms are not unique - Three equivalent factored forms $a b+c(a+b), \quad b c+a(b+c), a c+b(a+c)$

Factored Form

\square Definition: The factorization value of an algebraic factorization $F=G_{1} G_{2}+R$ is defined to be fact_val(F, $\left.G_{2}\right)=\operatorname{lits}(F)-\left(\operatorname{lits}\left(G_{1}\right)+\operatorname{lits}\left(G_{2}\right)+\operatorname{lits}(R)\right)$ $=\left(\left|G_{1}\right|-1\right) \operatorname{lits}\left(G_{2}\right)+\left(\left|G_{2}\right|-1\right) \operatorname{lits}\left(G_{1}\right)$

- Assuming G_{1}, G_{2} and R are algebraic expressions, where $|H|$ is the number of cubes in the SOP form of H
- Example

F = ae+af+ag+bce+bcf+bcg+bde+bdf+bdg
can be expressed in the form $F=(a+b(c+d))(e+f+g)$, which requires 7 literals, rather than 24

- If $G_{1}=(a+b c+b d)$ and $G_{2}=(e+f+g)$, then $R=\varnothing$ and fact_val $\left(F, G_{2}\right)=2 \times 3+2 \times 5=16$
\square The above factored form saves 17 literals, not 16. The extra literal comes from recursively applying the formula to the factored form of G_{1}.

Factored Form

\square Factored forms are more compact representations of logic functions than the traditional SOP forms

- Example:
$(a+b)(c+d(e+f(g+h+i+j)))$
when represented as an SOP form is
$a c+a d e+a d f g+a d f h+a d f i+a d f j+b c+b d e+b d f g+$ bdfh+bdfi+bdfj
\square SOP is a factored form, but it may not be a good factorization

Factored Form

\square There are functions whose size is exponential in SOP representation, but polynomial in factored form

- Example:

Achilles' heel function $\prod_{i=1}^{i=n / 2}\left(x_{2 i-1}+x_{2 i}\right)$
n literals in factored form and ($n / 2$) $\times 2^{n / 2}$ literals in SOP form

Factored forms are useful in estimating area and delay in a multi-level synthesis and optimization system. In many design styles (e.g. complex gate CMOS design) the implementation of a function corresponds directly to its factored form.

Factored Form

Factored forms can be graphically represented as labeled trees, called factoring trees, in which each internal node including the root is labeled with either + or \times, and each leaf has a label of either a variable or its complement

- Example
factoring tree of $\left(\left(a^{\prime}+b\right) c d+e\right)\left(a+b^{\prime}\right)+e^{\prime}$

Factored Form

\square Definition: The size of a factored form F (denoted $\rho(F)$) is the number of literals in the factored form
■ E.g., $\rho\left((a+b) c a^{\prime}\right)=4, \rho\left((a+b+c d)\left(a^{\prime}+b^{\prime}\right)\right)=6$
\square A factored form of a function is optimal if no other factored form has less literals
\square A factored form is positive unate in x, if x appears in F, but x^{\prime} does not. A factored form is negative unate in x, if x^{\prime} appears in F, but x does not.
$\square F$ is unate in x if it is either positive or negative unate in x, otherwise F is binate in x
E.g., $F=\left(a+b^{\prime}\right) c+a^{\prime}$
positive unate in c; negative unate in b; binate in a

Factored Form
 Cofactor

\square The cofactor of a factored form F, with respect a literal $X_{1}\left(\right.$ or $\left.X_{1}^{\prime}\right)$, is the factored form $F_{x_{1}}=$ $\mathrm{F}_{\mathrm{x}_{1}=1}(\mathrm{x})$ (or $\mathrm{F}_{\mathrm{x}_{1}}=\mathrm{F}_{\mathrm{x}_{1}=0}(\mathrm{x})$) obtained by
${ }^{1}$ replacing all occurrences of x_{1} by 1 , and x_{1}. by 0
\square simplifying the factored form using the Boolean algebra identities

$$
1 y=y \quad 1+y=1 \quad 0 y=0 \quad 0+y=y
$$

after constant propagation (all constants are removed), part of the factored form may appear as $\mathrm{G}+\mathrm{G}$. In general, G is in a factored form.

Factored Form
 Cofactor

\square The cofactor of a factored form F, with
respect to a cube c, is a factored form obtained by successively cofactoring F with each literal in c
■ Example

$$
\mathrm{F}=\left(x+y^{\prime}+z\right)\left(x^{\prime} u+z^{\prime} y^{\prime}\left(v+u^{\prime}\right)\right) \text { and } c=v z^{\prime} .
$$

Then

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{x}^{\prime}}=\left(x+y^{\prime}\right)\left(x^{\prime} u+y^{\prime}\left(v+u^{\prime}\right)\right) \\
& \mathrm{F}_{z^{\prime} v}=\left(x+y^{\prime}\right)\left(x^{\prime} u+y^{\prime}\right)
\end{aligned}
$$

Factored Form
 Optimality

\square Definition
Let f be a completely specified Boolean function, and $\rho(\mathrm{f})$ is the minimum number of literals in any factored form of f

Recall $\rho(\mathrm{F})$ is the number of literals of a factored form F
\square Definition
Let sup(f) be the true support variable of f, i.e. the set of variables that f depends on. Two functions f and g are orthogonal, $f \perp g$, if $\sup (f) \cap$
$\sup (\mathrm{g})=\varnothing$

Factored Form Optimality

Lemma: Let $\mathrm{f}=\mathrm{g}+\mathrm{h}$ such that $\mathrm{g} \perp \mathrm{h}$, then $\rho(\mathrm{f})=\rho(\mathrm{g})+\rho(\mathrm{h})$- Proof:

Let F, G and H be the optimum factored forms of f, g and h. Since $G+H$ is a factored form,

Let c be a minterm, on $\sup (\mathrm{g})$, of g '. Since g and h have disjoint support, we have $f_{c}=(g+h)_{c}=g_{c}+h_{c}=0+h_{c}=h_{c}=h$. Similarly, if d is a minterm of $\mathrm{h}^{\prime}, \mathrm{f}_{\mathrm{d}}=\mathrm{g}$. Because $\rho(\mathrm{h})=\rho\left(\mathrm{f}_{\mathrm{c}}\right) \leq \rho\left(\mathrm{F}_{\mathrm{c}}\right)$ and $\rho(\mathrm{g})=\rho\left(\mathrm{f}_{\mathrm{d}}\right) \leq \rho\left(\mathrm{F}_{\mathrm{d}}\right)$,
$\rho(\mathrm{h})+\rho(\mathrm{g}) \leq \rho\left(\mathrm{F}_{\mathrm{c}}\right)+\rho\left(\mathrm{F}_{\mathrm{d}}\right)$.
Let m (n) be the number of literals in F that are from SUPPORT (g) (SUPPORT(h)). When computing $\mathrm{F}_{\mathrm{c}}\left(\mathrm{F}_{\mathrm{d}}\right)$, we replace all the literals from SUPPORT(g) (SUPPORT(h)) by the appropriate values and simplify the factored form by eliminating all the constants and possibly some literals from $\sup (\mathrm{g})$ ($\sup (\mathrm{h})$) by using the Boolean identities. Hence $\rho\left(\mathrm{F}_{\mathrm{c}}\right) \leq \mathrm{n}$ and $\rho\left(\mathrm{F}_{\mathrm{d}}\right) \leq \mathrm{m}$. Since $\rho(\mathrm{F})=\mathrm{m}+\mathrm{n}$
We have $\rho(\mathrm{f}) \leq \rho(\mathrm{g})+\rho(\mathrm{h}) \leq \rho\left(\mathrm{F}_{\mathrm{c}}\right)+\rho\left(\mathrm{F}_{\mathrm{d}}\right) \leq \rho(\mathrm{F}) \Rightarrow \rho(\mathrm{f})=\rho(\mathrm{g})+\rho(\mathrm{h})$ since $\rho(\mathrm{f})=\rho(\mathrm{F})$.

Factored Form
 Optimality

\square Note, the previous result does not imply that all minimum literal factored forms of f are sums of the minimum literal factored forms of g and h
\square Corollary: Let $\mathrm{f}=\mathrm{gh}$ such that $\mathrm{g} \perp \mathrm{h}$, then $\rho(\mathrm{f})=\rho(\mathrm{g})+\rho(\mathrm{h})$

- Proof:

Let F' denote the factored form obtained using DeMorgan's law. Then $\rho(\mathrm{F})=\rho\left(\mathrm{F}^{\prime}\right)$, and therefore $\rho(\mathrm{f})=\rho\left(\mathrm{f}^{\prime}\right)$. From the above lemma, we have $\rho(\mathrm{f})=\rho\left(\mathrm{f}^{\prime}\right)=\rho\left(\mathrm{g}^{\prime}+\mathrm{h}^{\prime}\right)=\rho\left(\mathrm{g}^{\prime}\right)+\rho\left(\mathrm{h}^{\prime}\right)=\rho(\mathrm{g})+\rho(\mathrm{h})$.
Theorem: Let $f=\sum_{i=1}^{n} \prod_{j=1}^{m} f_{i j} \quad$ such that $f_{i j} \perp f_{k l}, \forall i \neq j$ or $k \neq \neq$, then $\rho(f)=\sum_{i=1}^{n} \sum_{j=1}^{m} \rho\left(f_{i j}\right)$

Proof:
Use induction on m and then n, and the above lemma and corollary.

Factored Form

SOP forms are used as the internal representation of logic functions in most multi-level logic optimization systemsAdvantages- good algorithms for manipulating them are available
\square Disadvantages
- performance is unpredictable - they may accidentally generate a function whose SOP form is too large
- factoring algorithms have to be used constantly to provide an estimate for the size of the Boolean network, and the time spent on factoring may become significant
\square Possible solution
■ avoid SOP representation by using factored forms as the internal representation
- still not practical unless we know how to perform logic operations directly on factored forms without converting to SOP forms
- the most common logic operations over factored form have been partially provided

Boolean Network Manipulation

\square Basic techniques

\square Structural operations (change topology)
\square Algebraic
\square Boolean
Node simplification (change node functions) \square Node minimization using don't cares

Structural Operation

Restructuring: Given initial network, find best network- Example
$f_{1}=a b c d+a b{ }^{\prime} c d^{\prime}+a c d^{\prime} e+a b^{\prime} c^{\prime} d^{\prime}+a^{\prime} c+c d f+a b c^{\prime} d^{\prime} e^{\prime}+a b^{\prime} c^{\prime} d f^{\prime}$
$f_{2}=b d g+b^{\prime} d f g+b^{\prime} d^{\prime} g+b d$ 'eg
minimizing
$f_{1}=b c d+b^{\prime} c d^{\prime}+c d^{\prime} e+a^{\prime} c+c d f+a b c^{\prime} d^{\prime} e^{\prime}+a b^{\prime} c^{\prime} d f^{\prime}$
$f_{2}=b d g+d f g+b^{\prime} d^{\prime} g+d^{\prime} e g$
factoring
$f_{1}=c\left(d(b+f)+d^{\prime}\left(b^{\prime}+e\right)+a^{\prime}\right)+a c^{\prime}\left(b d^{\prime} e^{\prime}+b^{\prime} d f^{\prime}\right)$
$f_{2}=g\left(d(b+f)+d^{\prime}\left(b^{\prime}+e\right)\right)$
decompose
$f_{1}=c\left(x+a^{\prime}\right)+a c^{\prime} x^{\prime}$
$f_{2}=g x$
$x=d(b+f)+d^{\prime}\left(b^{\prime}+e\right)$Two problems:
- find good common subfunctions
- effect the division

Structural Operation

\square Basic Operations:

- Decomposition (single function)
$f=a b c+a b d+a^{\prime} c^{\prime} d^{\prime}+b^{\prime} c^{\prime} d^{\prime} \quad \Rightarrow$
$f=x y+x^{\prime} y^{\prime} \quad x=a b \quad y=c+d$
- Extraction (multiple functions)
$\mathrm{f}=\left(\mathrm{az}+\mathrm{bz} z^{\prime}\right) \mathrm{cd}+\mathrm{e} \quad \mathrm{g}=(\mathrm{az+bz}) \mathrm{e}^{\prime} \quad \mathrm{h}=\mathrm{cde} \quad \Rightarrow$
$f=x y+e \quad g=x e^{\prime} \quad h=y e \quad x=a z+b z \prime \quad y=c d$
- Factoring (series-parallel decomposition)
$f=a c+a d+b c+b d+e \quad \Rightarrow$
$f=(a+b)(c+d)+e$
- Substitution
$g=a+b \quad f=a+b c \Rightarrow$
$f=g(a+c)$
- Collapsing (also called elimination)
$f=g a+g^{\prime} b \quad g=c+d \quad \Rightarrow$
$f=a c+a d+b c^{\prime} d^{\prime} \quad g=c+d$
"Division" plays a key role in all of these operations

Factoring vs. Decomposition

ㅁ Factoring:

- $\mathrm{f}=\left(\mathrm{e}+\mathrm{g}^{\prime}\right)\left(\mathrm{d}(\mathrm{a}+\mathrm{c})+\mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{c}^{\prime}\right)$ $+b(a+c)$
- Decomposition:
- $y(b+d x)+x b^{\prime} y^{\prime}$
\square Similar to merging common nodes and using negative pointers in BDD. However, not canonical, so have no perfect identification of common nodes.

$$
y(b+d x)+x \bar{b} \bar{y}
$$

Structural Operation
 Node Elimination

$$
\operatorname{value}(j)=\left(\sum_{i \in F O(j)} n_{i}\right)\left(l_{j}-1\right)-l_{j}
$$

where
$n_{i}=$ number of times literals y_{j} and y_{j}, occur in factored form f_{i}
■ can treat y_{j} and $y_{j}{ }^{\prime}$ the same since $\rho\left(F_{j}\right)=\rho\left(F_{j}{ }^{\prime}\right)$
$l_{j}=$ number of literals in factored f_{j}
with factoring

$$
l_{j}+\sum_{i \in F O(j)} n_{i}+c
$$

without factoring

$$
l_{j} \sum_{i \in F O(j)} n_{i}+c
$$

value $=($ without factoring $)-($ with factoring $)$

Structural Operation Node Elimination

\square Example
Literals before
$5+7+5=17$
Literals after
$9+15=24$
Difference:
after - before = value $=7$

BEFORE

$$
\text { value }(3)=(1+2-1)(5-1)-1=7
$$

AFTER

(2)
$\left(a^{\prime} c+a b y\right)\left(a b+a^{\prime} b^{\prime}\right)$ $a+\left(a^{\prime} c+a b y\right)(y+z)+b d\left(a+c^{\prime}\right)\left(a^{\prime}+b^{\prime}+y^{\prime}\right)$

$$
\begin{aligned}
\operatorname{value}(j) & =\left(\sum_{i \in F O(j)} n_{i}\right)\left(l_{j}-1\right)-l_{j} \\
& =\left(n_{1}+n_{2}\right)\left(l_{3}-1\right)-l_{3} \\
& =(1+2)(5-1)-5=7
\end{aligned}
$$

Structural Operation Node Elimination

Note: Value of a node can change during elimination

Factorization

\square Given a SOP, how do we generate a "good" factored form

- Division operation:
- is central in many operations
- find a good divisor
- apply division
\square results in quotient and remainder
ㅁ Applications:
- factoring
- decomposition
- substitution
- extraction

Division

\square Definition: An operation op is called division if, given two SOP expressions F and G, it generates expressions H and $R(<H, R>=\mathbf{o p}(F, G))$ such that $F=G H+R$
$\square G$ is called the divisor

- H is called the quotient

■ R is called the remainder
\square Definition: If GH is an algebraic product, then op is called an algebraic division (denoted F // G), otherwise GH is a Boolean product and op is called a Boolean division (denoted F : G)

Division

\square Example:

$$
\begin{aligned}
& f=a d+a e+b c d+j \\
& g_{1}=a+b c \\
& g_{2}=a+b
\end{aligned}
$$

- Algebraic division:
$\boldsymbol{\square f} / / a=d+e, r=b c d+j$
Also, $\mathrm{f} / / \mathrm{a}=\mathrm{d}$ or $\mathrm{f} / / \mathrm{a}=\mathrm{e}$, i.e. algebraic division is not unique
-f // (bc) $=d, r=a d+a e+j$
$\square h_{1}=f / / g_{1}=d, r_{1}=a e+j$
\square Boolean division:
$\Delta h_{2}=f \div g_{2}=(a+c) d, r_{2}=a e+j$. i.e. $f=(a+b)(a+c) d+a e+j$

