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Finite State Machine

Finite-State Machine F(Q,Q0,X,Y,,) 
where:
Q:  Set of internal states
Q0:  Set of initial states
X:  Input alphabet
Y:  Output alphabet
:  X x Q  Q    (next state function)
:  X x Q  Y    (output function)

Delay element:
• Clocked: synchronous circuit

• single-phase clock, multiple-phase clocks
• Not clocked: asynchronous circuit

x=(x1,x2,…,xn) y=(y1,y2,…,yn)


s=(s1,s2,…,sn) s’ =(s’1,s’2,…,s’n)

D
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General Logic Structure
 Combinational 

optimization
 keep latches/registers 

at current positions, 
keep their function

 optimize combinational 
logic in between

 Sequential 
optimization
 change latch 

position/function 
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Optimization Criteria for Synthesis
The optimization criteria for multi-level logic is to minimize

some function of:
1. Area occupied by the logic gates and interconnect

(approximated by literals = transistors in technology 
independent optimization)

2. Critical path delay of the longest path through the logic
3. Degree of testability of the circuit, measured in terms 

of the percentage of faults covered by a specified set of 
test vectors for an approximate fault model (e.g. single  
or multiple stuck-at faults)

4. Power consumed by the logic gates
5. Noise immunity
6. Placeability, routability

while simultaneously satisfying upper or lower bound 
constraints placed on these physical quantities
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Area-Delay Trade-off

Example
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Two-Level (PLA) vs. Multi-Level

 PLA
 Control logic 
 Constrained layout
 Highly automatic
 Technology independent
 Multi-valued logic
 Input, output, state encoding
 Predictable

 Multi-level logic
 Control logic, data path
 General layout 
 Automatic
 Partially technology independent
 Some ideas of multi-valued logic
 Occasionally involving encoding
 Hard to predict

E.g. Standard Cell Layout
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General Approaches to Synthesis
 PLA synthesis:

 theory well understood
 predictable results in a top-down flow

Multi-level synthesis:
 optimization criteria very complex

except special cases, no general theory available
 greedy optimization approach

 incrementally improve along various dimensions of the 
criteria

 works on common design representation (circuit or 
network representation)
attempt a change, accept if criteria improve, reject 

otherwise
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Transformation-based Synthesis
 All modern synthesis systems are transformation based

 set of transformations that change network representation
work on uniform network representation

 “script” of “scenario” that can orchestrate various 
transformations

 Transformations differ in:
 the scope they are applied

 Local vs. global restructuring
 the domain they optimize

 combinational vs. sequential
 timing vs. area
 technology independent vs. technology dependent

 the underlying algorithms they use
 BDD based, SAT based, structure based
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Network Representation
 Boolean network

 Directed acyclic graph 
(DAG)

 Node logic function 
representation fj(x,y)

 Node variable yj: yj=fj(x,y)
 Edge (i,j) if fj depends 

explicitly on yi

 Inputs: x = (x1, …, xn)
 Outputs: z = (z1, …, zp)
 External don’t cares: 

d1(x), …, dp(x) for outputs
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Typical Synthesis Scenario

RTL to Network Transformation

Technology Independent Optimizations

Technology Mapping

Technology Dependent Optimizations

Test Preparation

- read Verilog
- control/datapath analysis

- basic logic restructuring
- crude measures for goals

- use logic gates from target
cell library

- timing optimization
- physically driven optimization

- improve testability
- test logic insertion
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Local vs. Global Transformation
 Local transformations optimize one node’s function in the

network
 smaller area
 faster performance
 map to a particular set of cells

 Global transformations restructure the entire network
 merging nodes
 spitting nodes
 removing/changing connections between nodes

 Node representation:
 keep size bounded to avoid blow-up of local transformations

 SOP, POS
 BDD
 Factored forms
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Sum-of-Products (SOP)
 Example

abc’+a’bd+b’d’+b’e’f

 Advantages:
 Easy to manipulate and minimize
 many algorithms available (e.g. AND, OR, TAUTOLOGY)
 two-level theory applies

 Disadvantages:
 Not representative of logic complexity

E.g., f=ad+ae+bd+be+cd+ce and f’=a’b’c’+d’e’
differ in their implementation by an inverter

 Not easy to estimate logic; difficult to estimate progress
during logic manipulation
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Reduced Ordered BDD
 Represents both function and its 

complement, like factored forms to be 
discussed

 Like network of muxes, but restricted since 
controlled by primary input variables
 not really a good estimator for 

implementation complexity
 Given an ordering, reduced BDD is 

canonical, hence a good replacement for 
truth tables

 For a good ordering, BDDs remain 
reasonably small for complicated functions 
(but not multipliers, for instance)

 Manipulations are well defined and efficient
 Only true support variables (dependency 

on primary input variables) are displayed
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Factor Form
 Example

(ad+b’c)(c+d’(e+ac’))+(d+e)fg

 Advantages
 good representative of logic complexity
 f=ad+ae+bd+be+cd+ce
 f’=a’b’c’+d’e’  f=(a+b+c)(d+e)
 in many designs (e.g. complex gate CMOS) the 

implementation of a function corresponds directly to its 
factored form

 good estimator of logic implementation complexity
 doesn’t blow up easily

 Disadvantages
 not as many algorithms available for manipulation
 usually converted into SOP before manipulation
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Factor Form

Note:
literal count   transistor 
count  area 
 however, area also 
depends on wiring, gate 
size, etc.
 therefore very crude 
measure
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Factored Form
 Definition: f is an algebraic expression if f is a set of cubes (SOP), 

such that no single cube contains another (minimal with respect 
to single cube containment)
 Example

a+ab is not an algebraic expression (factoring gives a(1+b) )

 Definition: The product of two expressions f and g is a set defined 
by fg = {cd | c  f  and d  g  and cd  0}
 Example

(a+b)(c+d+a’)=ac+ad+bc+bd+a’b

 Definition: fg is an algebraic product if f and g are algebraic 
expressions and have disjoint support (that is, they have no input 
variables in common)
 Example

(a+b)(c+d)=ac+ad+bc+bd is an algebraic product
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Factored Form
 Definition: A factored form can be defined recursively by 

the following rules. A factored form is either a product or 
sum where:
 a product is either a single literal or a product of 

factored forms
 a sum is either a single literal or a sum of factored forms

 A factored form is a parenthesized algebraic expression
 In effect a factored form is a product of sums of 

products or a sum of products of sums

 Any logic function can be represented by a factored form, 
and any factored form is a representation of some logic 
function
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Factored Form

Example
 x, y’, abc’, a+b’c, ((a’+b)cd+e)(a+b’)+e’ are 

factored forms
 (a+b)’c is not a factored form since 

complement is not allowed, except on literals

Factored forms are not unique
 Three equivalent factored forms

ab+c(a+b),    bc+a(b+c),    ac+b(a+c)

20

Factored Form
 Definition: The factorization value of an algebraic 

factorization F=G1G2+R is defined to be
fact_val(F,G2) = lits(F) - ( lits(G1) + lits(G2) + lits(R) ) 
= (|G1|-1) lits(G2) + (|G2|-1) lits(G1)
 Assuming G1, G2 and R are algebraic expressions, where |H| is 

the number of cubes in the SOP form of H
 Example

F = ae+af+ag+bce+bcf+bcg+bde+bdf+bdg
can be expressed in the form F = (a+b(c+d))(e+f+g), which 
requires 7 literals, rather than 24

 If G1=(a+bc+bd) and G2=(e+f+g), then R= and
fact_val(F,G2) = 23+25=16
 The above factored form saves 17 literals, not 16. The extra literal 

comes from recursively applying the formula to the factored form
of G1.
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Factored Form
 Factored forms are more compact

representations of logic functions than the 
traditional SOP forms
 Example:

(a+b)(c+d(e+f(g+h+i+j)))
when represented as an SOP form is
ac+ade+adfg+adfh+adfi+adfj+bc+bde+bdfg+ 
bdfh+bdfi+bdfj

 SOP is a factored form, but it may not be a good 
factorization
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Factored Form
 There are functions whose size is exponential in SOP 

representation, but polynomial in factored form
 Example:

Achilles’ heel function

n literals in factored form and (n/2)2n/2 literals in SOP form
  

(x2i1  x2i )
i1

in / 2



Factored forms are useful in estimating
area and delay in a multi-level synthesis 
and optimization system. In many design 
styles (e.g. complex gate CMOS design) 
the implementation of a function 
corresponds directly to its factored form.
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Factored Form
 Factored forms can be graphically represented as labeled 

trees, called factoring trees, in which each internal node 
including the root is labeled with either + or , and each 
leaf has a label of either a variable or its complement
 Example

factoring tree of ((a’+b)cd+e)(a+b’)+e’
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Factored Form
 Definition: The size of a factored form F (denoted (F )) is 

the number of literals in the factored form
 E.g., ((a+b)ca’) = 4, ((a+b+cd)(a’+b’)) = 6

 A factored form of a function is optimal if no other factored 
form has less literals

 A factored form is positive unate in x, if x appears in F, but 
x’ does not. A factored form is negative unate in x, if x’
appears in F, but x does not.

 F is unate in x if it is either positive or negative unate in x, 
otherwise F is binate in x
 E.g., F = (a+b’)c+a’

positive unate in c; negative unate in b; binate in a
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Factored Form
Cofactor
 The cofactor of a factored form F, with respect a 

literal x1 (or x1’ ), is the factored form Fx1
= 

Fx1=1(x) (or Fx1’=Fx1=0(x) ) obtained by
 replacing all occurrences of x1 by 1, and x1’

by 0
 simplifying the factored form using the 

Boolean algebra identities 
1y=y    1+y=1    0y=0    0+y=y

 after constant propagation (all constants are 
removed), part of the factored form may 
appear as G+G.  In general, G is in a factored 
form.
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Factored Form
Cofactor

The cofactor of a factored form F, with 
respect to a cube c, is a factored form FC
obtained by successively cofactoring F
with each literal in c
 Example

F = (x+y’+z)(x’u+z’y’(v+u’)) and c = vz’. 
Then
Fz’ = (x+y’)(x’u+y’(v+u’))
Fz’ v = (x+y’)(x’u+y’)
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Factored Form
Optimality

 Definition
Let f be a completely specified Boolean function, 
and (f) is the minimum number of literals in any 
factored form of f
 Recall (F) is the number of literals of a factored form F

 Definition
Let sup(f) be the true support variable of f, i.e. 
the set of variables that f depends on. Two 
functions f and g are orthogonal, f  g, if sup(f) 
sup(g) = 
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Factored Form
Optimality
 Lemma: Let f = g + h such that g  h, then (f) = (g) + (h)

 Proof:
Let F, G and H be the optimum factored forms of f, g and h. Since G+H
is a factored form, (f)=(F)  (G+H)=(g)+(h).

Let c be a minterm, on sup(g), of g’. Since g and h have disjoint 
support, we have fc=(g+h)c=gc+hc=0+hc=hc=h. Similarly, if d is a 
minterm of h’, fd=g. Because (h)=(fc)(Fc) and (g)=(fd)(Fd), 
(h)+(g)  (Fc)+(Fd).

Let m (n) be the number of literals in F that are from SUPPORT(g)
(SUPPORT(h)). When computing Fc (Fd), we replace all the literals from 
SUPPORT(g) (SUPPORT(h)) by the appropriate values and simplify the 
factored form by eliminating all the constants and possibly some literals 
from sup(g) (sup(h)) by using the Boolean identities. Hence (Fc)  n 
and (Fd)  m. Since (F) = m+n, (Fc)+(Fd)  m+n = (F).
We have (f)  (g)+(h)  (Fc)+(Fd)  (F)  (f) = (g) + (h) since
(f)=(F).
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Factored Form
Optimality
 Note, the previous result does not imply that all minimum literal 

factored forms of f are sums of the minimum literal factored forms 
of g and h

 Corollary: Let f = gh such that g  h, then (f)=(g)+(h)
 Proof:

Let F’ denote the factored form obtained using DeMorgan’s law. Then 
(F) = (F’), and therefore (f)=(f’). From the above lemma, we have 
(f) = (f’) = (g’+h’) = (g’)+(h’) = (g)+(h).

 Theorem: Let such that fijfkl, ij or kl, then

 Proof:
Use induction on m and then n, and the above lemma and corollary.

f  fij
j1

m


i1

n



  
( f )  ( fij )

j1

m


i1

n
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Factored Form
 SOP forms are used as the internal representation of logic 

functions in most multi-level logic optimization systems
 Advantages

 good algorithms for manipulating them are available
 Disadvantages

 performance is unpredictable - they may accidentally generate a 
function whose SOP form is too large

 factoring algorithms have to be used constantly to provide an estimate 
for the size of the Boolean network, and the time spent on factoring 
may become significant

 Possible solution
 avoid SOP representation by using factored forms as the internal 

representation
 still not practical unless we know how to perform logic operations 

directly on factored forms without converting to SOP forms
 the most common logic operations over factored form have been 

partially provided
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Boolean Network Manipulation

Basic techniques
Structural operations (change topology)

Algebraic
Boolean

Node simplification (change node functions)
Node minimization using don’t cares
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Structural Operation
 Restructuring: Given initial network, find best network

 Example
f1  = abcd+ab’cd’+acd’e+ab’c’d’+a’c+cdf+abc’d’e’+ab’c’df’
f2 = bdg+b’dfg+b’d’g+bd’eg
minimizing
f1 = bcd+b’cd’+cd’e+a’c+cdf+abc’d’e’+ab’c’df’
f2 = bdg+dfg+b’d’g+d’eg
factoring
f1 = c(d(b+f)+d’(b’+e)+a’)+ac’(bd’e’+b’df’)
f2 = g(d(b+f)+d’(b’+e))
decompose
f1 = c(x+a’)+ac’x’
f2 = gx
x = d(b+f)+d’(b’+e)

 Two problems:
 find good common subfunctions
 effect the division
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Structural Operation
 Basic Operations:

 Decomposition (single function)
f = abc+abd+a’c’d’+b’c’d’ 
f = xy+x’y’ x = ab y = c+d

 Extraction (multiple functions)
f = (az+bz’)cd+e g = (az+bz’)e’ h = cde 
f = xy+e g = xe’ h = ye    x = az+bz’ y = cd

 Factoring (series-parallel decomposition)
f = ac+ad+bc+bd+e 
f = (a+b)(c+d)+e

 Substitution
g = a+b f = a+bc 
f = g(a+c)

 Collapsing (also called elimination)
f = ga+g’b g = c+d 
f = ac+ad+bc’d’ g = c+d

“Division” plays a key role in all of these operations
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Factoring vs. Decomposition
 Factoring:

 f=(e+g’)(d(a+c)+a’b’c’)
+b(a+c)

 Decomposition:
 y(b+dx)+xb’y’

Similar to merging 
common nodes and 
using negative 
pointers in BDD. 
However, not
canonical, so have no 
perfect identification 
of common nodes.

Tree

DAG

35

Structural Operation 
Node Elimination

where 
ni =  number of times literals yj and yj’ occur in factored form fi
 can treat yj and yj’ the same since ( Fj ) = ( Fj’ )

lj =  number of literals in factored fj
with factoring

without factoring

value = (without factoring) - (with factoring)

  
value( j)  ni

iFO( j )










 l j1  l j

  
l j  ni

iFO( j )
  c

  
l j ni

iFO( j )
  c
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Structural Operation 
Node Elimination

 Example
 Literals before

5+7+5 = 17
 Literals after

9+15 = 24
 Difference: 

after - before = 
value = 7

xx

  

value( j)  ni
iFO( j )










 l j1  l j

 (n1  n2 )(l3 1)  l3

 (1 2)(51)  5  7
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Structural Operation 
Node Elimination

Note: Value of a node can change during elimination

value=3
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Factorization
 Given a SOP, how do we generate a “good” factored form

 Division operation:
 is central in many operations
 find a good divisor
 apply division

results in quotient and remainder

 Applications:
 factoring
 decomposition
 substitution
 extraction
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Division
 Definition: An operation op is called division if, 

given two SOP expressions F and G, it generates 
expressions H and R (<H,R> = op(F,G)) such 
that F = GH + R
 G is called the divisor
 H is called the quotient
 R is called the remainder

 Definition: If GH is an algebraic product, then op
is called an algebraic division (denoted F // G),
otherwise GH is a Boolean product and op is 
called a Boolean division (denoted F  G)
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Division
 Example:

f   = ad + ae + bcd + j
g1 = a + bc
g2 = a + b

 Algebraic division: 
f // a = d + e, r = bcd + j 

Also, f // a = d or f // a = e, i.e. algebraic division is 
not unique

f // (bc) = d, r = ad + ae + j
h1 = f // g1 = d, r1 = ae + j

 Boolean division: 
h2 = f  g2 = (a + c)d, r2 = ae + j.

i.e. f = (a+b)(a+c)d + ae + j


