
1

Logic Synthesis and
Verification

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Fall 2010

2

Multi-Level Logic
Minimization

Reading:
Logic Synthesis in a Nutshell

Section 3 (§3.3)

most of the following slides are by
courtesy of Andreas Kuehlmann

3

Finite State Machine

Finite-State Machine F(Q,Q0,X,Y,,)
where:
Q: Set of internal states
Q0: Set of initial states
X: Input alphabet
Y: Output alphabet
: X x Q Q (next state function)
: X x Q Y (output function)

Delay element:
• Clocked: synchronous circuit

• single-phase clock, multiple-phase clocks
• Not clocked: asynchronous circuit

x=(x1,x2,…,xn) y=(y1,y2,…,yn)

s=(s1,s2,…,sn) s’ =(s’1,s’2,…,s’n)

D

4

General Logic Structure
 Combinational

optimization
 keep latches/registers

at current positions,
keep their function

 optimize combinational
logic in between

 Sequential
optimization
 change latch

position/function

5

Optimization Criteria for Synthesis
The optimization criteria for multi-level logic is to minimize

some function of:
1. Area occupied by the logic gates and interconnect

(approximated by literals = transistors in technology
independent optimization)

2. Critical path delay of the longest path through the logic
3. Degree of testability of the circuit, measured in terms

of the percentage of faults covered by a specified set of
test vectors for an approximate fault model (e.g. single
or multiple stuck-at faults)

4. Power consumed by the logic gates
5. Noise immunity
6. Placeability, routability

while simultaneously satisfying upper or lower bound
constraints placed on these physical quantities

6

Area-Delay Trade-off

Example

7

Two-Level (PLA) vs. Multi-Level

 PLA
 Control logic
 Constrained layout
 Highly automatic
 Technology independent
 Multi-valued logic
 Input, output, state encoding
 Predictable

 Multi-level logic
 Control logic, data path
 General layout
 Automatic
 Partially technology independent
 Some ideas of multi-valued logic
 Occasionally involving encoding
 Hard to predict

E.g. Standard Cell Layout

8

General Approaches to Synthesis
 PLA synthesis:

 theory well understood
 predictable results in a top-down flow

Multi-level synthesis:
 optimization criteria very complex

except special cases, no general theory available
 greedy optimization approach

 incrementally improve along various dimensions of the
criteria

 works on common design representation (circuit or
network representation)
attempt a change, accept if criteria improve, reject

otherwise

9

Transformation-based Synthesis
 All modern synthesis systems are transformation based

 set of transformations that change network representation
work on uniform network representation

 “script” of “scenario” that can orchestrate various
transformations

 Transformations differ in:
 the scope they are applied

 Local vs. global restructuring
 the domain they optimize

 combinational vs. sequential
 timing vs. area
 technology independent vs. technology dependent

 the underlying algorithms they use
 BDD based, SAT based, structure based

10

Network Representation
 Boolean network

 Directed acyclic graph
(DAG)

 Node logic function
representation fj(x,y)

 Node variable yj: yj=fj(x,y)
 Edge (i,j) if fj depends

explicitly on yi

 Inputs: x = (x1, …, xn)
 Outputs: z = (z1, …, zp)
 External don’t cares:

d1(x), …, dp(x) for outputs

11

Typical Synthesis Scenario

RTL to Network Transformation

Technology Independent Optimizations

Technology Mapping

Technology Dependent Optimizations

Test Preparation

- read Verilog
- control/datapath analysis

- basic logic restructuring
- crude measures for goals

- use logic gates from target
cell library

- timing optimization
- physically driven optimization

- improve testability
- test logic insertion

12

Local vs. Global Transformation
 Local transformations optimize one node’s function in the

network
 smaller area
 faster performance
 map to a particular set of cells

 Global transformations restructure the entire network
 merging nodes
 spitting nodes
 removing/changing connections between nodes

 Node representation:
 keep size bounded to avoid blow-up of local transformations

 SOP, POS
 BDD
 Factored forms

13

Sum-of-Products (SOP)
 Example

abc’+a’bd+b’d’+b’e’f

 Advantages:
 Easy to manipulate and minimize
 many algorithms available (e.g. AND, OR, TAUTOLOGY)
 two-level theory applies

 Disadvantages:
 Not representative of logic complexity

E.g., f=ad+ae+bd+be+cd+ce and f’=a’b’c’+d’e’
differ in their implementation by an inverter

 Not easy to estimate logic; difficult to estimate progress
during logic manipulation

14

Reduced Ordered BDD
 Represents both function and its

complement, like factored forms to be
discussed

 Like network of muxes, but restricted since
controlled by primary input variables
 not really a good estimator for

implementation complexity
 Given an ordering, reduced BDD is

canonical, hence a good replacement for
truth tables

 For a good ordering, BDDs remain
reasonably small for complicated functions
(but not multipliers, for instance)

 Manipulations are well defined and efficient
 Only true support variables (dependency

on primary input variables) are displayed

15

Factor Form
 Example

(ad+b’c)(c+d’(e+ac’))+(d+e)fg

 Advantages
 good representative of logic complexity
 f=ad+ae+bd+be+cd+ce
 f’=a’b’c’+d’e’ f=(a+b+c)(d+e)
 in many designs (e.g. complex gate CMOS) the

implementation of a function corresponds directly to its
factored form

 good estimator of logic implementation complexity
 doesn’t blow up easily

 Disadvantages
 not as many algorithms available for manipulation
 usually converted into SOP before manipulation

16

Factor Form

Note:
literal count transistor
count area
 however, area also
depends on wiring, gate
size, etc.
 therefore very crude
measure

17

Factored Form
 Definition: f is an algebraic expression if f is a set of cubes (SOP),

such that no single cube contains another (minimal with respect
to single cube containment)
 Example

a+ab is not an algebraic expression (factoring gives a(1+b))

 Definition: The product of two expressions f and g is a set defined
by fg = {cd | c f and d g and cd 0}
 Example

(a+b)(c+d+a’)=ac+ad+bc+bd+a’b

 Definition: fg is an algebraic product if f and g are algebraic
expressions and have disjoint support (that is, they have no input
variables in common)
 Example

(a+b)(c+d)=ac+ad+bc+bd is an algebraic product

18

Factored Form
 Definition: A factored form can be defined recursively by

the following rules. A factored form is either a product or
sum where:
 a product is either a single literal or a product of

factored forms
 a sum is either a single literal or a sum of factored forms

 A factored form is a parenthesized algebraic expression
 In effect a factored form is a product of sums of

products or a sum of products of sums

 Any logic function can be represented by a factored form,
and any factored form is a representation of some logic
function

19

Factored Form

Example
 x, y’, abc’, a+b’c, ((a’+b)cd+e)(a+b’)+e’ are

factored forms
 (a+b)’c is not a factored form since

complement is not allowed, except on literals

Factored forms are not unique
 Three equivalent factored forms

ab+c(a+b), bc+a(b+c), ac+b(a+c)

20

Factored Form
 Definition: The factorization value of an algebraic

factorization F=G1G2+R is defined to be
fact_val(F,G2) = lits(F) - (lits(G1) + lits(G2) + lits(R))
= (|G1|-1) lits(G2) + (|G2|-1) lits(G1)
 Assuming G1, G2 and R are algebraic expressions, where |H| is

the number of cubes in the SOP form of H
 Example

F = ae+af+ag+bce+bcf+bcg+bde+bdf+bdg
can be expressed in the form F = (a+b(c+d))(e+f+g), which
requires 7 literals, rather than 24

 If G1=(a+bc+bd) and G2=(e+f+g), then R= and
fact_val(F,G2) = 23+25=16
 The above factored form saves 17 literals, not 16. The extra literal

comes from recursively applying the formula to the factored form
of G1.

21

Factored Form
 Factored forms are more compact

representations of logic functions than the
traditional SOP forms
 Example:

(a+b)(c+d(e+f(g+h+i+j)))
when represented as an SOP form is
ac+ade+adfg+adfh+adfi+adfj+bc+bde+bdfg+
bdfh+bdfi+bdfj

 SOP is a factored form, but it may not be a good
factorization

22

Factored Form
 There are functions whose size is exponential in SOP

representation, but polynomial in factored form
 Example:

Achilles’ heel function

n literals in factored form and (n/2)2n/2 literals in SOP form

(x2i1 x2i)
i1

in / 2

Factored forms are useful in estimating
area and delay in a multi-level synthesis
and optimization system. In many design
styles (e.g. complex gate CMOS design)
the implementation of a function
corresponds directly to its factored form.

23

Factored Form
 Factored forms can be graphically represented as labeled

trees, called factoring trees, in which each internal node
including the root is labeled with either + or , and each
leaf has a label of either a variable or its complement
 Example

factoring tree of ((a’+b)cd+e)(a+b’)+e’

24

Factored Form
 Definition: The size of a factored form F (denoted (F)) is

the number of literals in the factored form
 E.g., ((a+b)ca’) = 4, ((a+b+cd)(a’+b’)) = 6

 A factored form of a function is optimal if no other factored
form has less literals

 A factored form is positive unate in x, if x appears in F, but
x’ does not. A factored form is negative unate in x, if x’
appears in F, but x does not.

 F is unate in x if it is either positive or negative unate in x,
otherwise F is binate in x
 E.g., F = (a+b’)c+a’

positive unate in c; negative unate in b; binate in a

25

Factored Form
Cofactor
 The cofactor of a factored form F, with respect a

literal x1 (or x1’), is the factored form Fx1
=

Fx1=1(x) (or Fx1’=Fx1=0(x)) obtained by
 replacing all occurrences of x1 by 1, and x1’

by 0
 simplifying the factored form using the

Boolean algebra identities
1y=y 1+y=1 0y=0 0+y=y

 after constant propagation (all constants are
removed), part of the factored form may
appear as G+G. In general, G is in a factored
form.

26

Factored Form
Cofactor

The cofactor of a factored form F, with
respect to a cube c, is a factored form FC
obtained by successively cofactoring F
with each literal in c
 Example

F = (x+y’+z)(x’u+z’y’(v+u’)) and c = vz’.
Then
Fz’ = (x+y’)(x’u+y’(v+u’))
Fz’ v = (x+y’)(x’u+y’)

27

Factored Form
Optimality

 Definition
Let f be a completely specified Boolean function,
and (f) is the minimum number of literals in any
factored form of f
 Recall (F) is the number of literals of a factored form F

 Definition
Let sup(f) be the true support variable of f, i.e.
the set of variables that f depends on. Two
functions f and g are orthogonal, f g, if sup(f)
sup(g) =

28

Factored Form
Optimality
 Lemma: Let f = g + h such that g h, then (f) = (g) + (h)

 Proof:
Let F, G and H be the optimum factored forms of f, g and h. Since G+H
is a factored form, (f)=(F) (G+H)=(g)+(h).

Let c be a minterm, on sup(g), of g’. Since g and h have disjoint
support, we have fc=(g+h)c=gc+hc=0+hc=hc=h. Similarly, if d is a
minterm of h’, fd=g. Because (h)=(fc)(Fc) and (g)=(fd)(Fd),
(h)+(g) (Fc)+(Fd).

Let m (n) be the number of literals in F that are from SUPPORT(g)
(SUPPORT(h)). When computing Fc (Fd), we replace all the literals from
SUPPORT(g) (SUPPORT(h)) by the appropriate values and simplify the
factored form by eliminating all the constants and possibly some literals
from sup(g) (sup(h)) by using the Boolean identities. Hence (Fc) n
and (Fd) m. Since (F) = m+n, (Fc)+(Fd) m+n = (F).
We have (f) (g)+(h) (Fc)+(Fd) (F) (f) = (g) + (h) since
(f)=(F).

29

Factored Form
Optimality
 Note, the previous result does not imply that all minimum literal

factored forms of f are sums of the minimum literal factored forms
of g and h

 Corollary: Let f = gh such that g h, then (f)=(g)+(h)
 Proof:

Let F’ denote the factored form obtained using DeMorgan’s law. Then
(F) = (F’), and therefore (f)=(f’). From the above lemma, we have
(f) = (f’) = (g’+h’) = (g’)+(h’) = (g)+(h).

 Theorem: Let such that fijfkl, ij or kl, then

 Proof:
Use induction on m and then n, and the above lemma and corollary.

f fij
j1

m

i1

n

(f) (fij)

j1

m

i1

n

30

Factored Form
 SOP forms are used as the internal representation of logic

functions in most multi-level logic optimization systems
 Advantages

 good algorithms for manipulating them are available
 Disadvantages

 performance is unpredictable - they may accidentally generate a
function whose SOP form is too large

 factoring algorithms have to be used constantly to provide an estimate
for the size of the Boolean network, and the time spent on factoring
may become significant

 Possible solution
 avoid SOP representation by using factored forms as the internal

representation
 still not practical unless we know how to perform logic operations

directly on factored forms without converting to SOP forms
 the most common logic operations over factored form have been

partially provided

31

Boolean Network Manipulation

Basic techniques
Structural operations (change topology)

Algebraic
Boolean

Node simplification (change node functions)
Node minimization using don’t cares

32

Structural Operation
 Restructuring: Given initial network, find best network

 Example
f1 = abcd+ab’cd’+acd’e+ab’c’d’+a’c+cdf+abc’d’e’+ab’c’df’
f2 = bdg+b’dfg+b’d’g+bd’eg
minimizing
f1 = bcd+b’cd’+cd’e+a’c+cdf+abc’d’e’+ab’c’df’
f2 = bdg+dfg+b’d’g+d’eg
factoring
f1 = c(d(b+f)+d’(b’+e)+a’)+ac’(bd’e’+b’df’)
f2 = g(d(b+f)+d’(b’+e))
decompose
f1 = c(x+a’)+ac’x’
f2 = gx
x = d(b+f)+d’(b’+e)

 Two problems:
 find good common subfunctions
 effect the division

33

Structural Operation
 Basic Operations:

 Decomposition (single function)
f = abc+abd+a’c’d’+b’c’d’
f = xy+x’y’ x = ab y = c+d

 Extraction (multiple functions)
f = (az+bz’)cd+e g = (az+bz’)e’ h = cde
f = xy+e g = xe’ h = ye x = az+bz’ y = cd

 Factoring (series-parallel decomposition)
f = ac+ad+bc+bd+e
f = (a+b)(c+d)+e

 Substitution
g = a+b f = a+bc
f = g(a+c)

 Collapsing (also called elimination)
f = ga+g’b g = c+d
f = ac+ad+bc’d’ g = c+d

“Division” plays a key role in all of these operations

34

Factoring vs. Decomposition
 Factoring:

 f=(e+g’)(d(a+c)+a’b’c’)
+b(a+c)

 Decomposition:
 y(b+dx)+xb’y’

Similar to merging
common nodes and
using negative
pointers in BDD.
However, not
canonical, so have no
perfect identification
of common nodes.

Tree

DAG

35

Structural Operation
Node Elimination

where
ni = number of times literals yj and yj’ occur in factored form fi
 can treat yj and yj’ the same since (Fj) = (Fj’)

lj = number of literals in factored fj
with factoring

without factoring

value = (without factoring) - (with factoring)

value(j) ni

iFO(j)

 l j1 l j

l j ni

iFO(j)
 c

l j ni

iFO(j)
 c

36

Structural Operation
Node Elimination

 Example
 Literals before

5+7+5 = 17
 Literals after

9+15 = 24
 Difference:

after - before =
value = 7

xx

value(j) ni
iFO(j)

 l j1 l j

 (n1 n2)(l3 1) l3

 (1 2)(51) 5 7

37

Structural Operation
Node Elimination

Note: Value of a node can change during elimination

value=3

38

Factorization
 Given a SOP, how do we generate a “good” factored form

 Division operation:
 is central in many operations
 find a good divisor
 apply division

results in quotient and remainder

 Applications:
 factoring
 decomposition
 substitution
 extraction

39

Division
 Definition: An operation op is called division if,

given two SOP expressions F and G, it generates
expressions H and R (<H,R> = op(F,G)) such
that F = GH + R
 G is called the divisor
 H is called the quotient
 R is called the remainder

 Definition: If GH is an algebraic product, then op
is called an algebraic division (denoted F // G),
otherwise GH is a Boolean product and op is
called a Boolean division (denoted F G)

40

Division
 Example:

f = ad + ae + bcd + j
g1 = a + bc
g2 = a + b

 Algebraic division:
f // a = d + e, r = bcd + j

Also, f // a = d or f // a = e, i.e. algebraic division is
not unique

f // (bc) = d, r = ad + ae + j
h1 = f // g1 = d, r1 = ae + j

 Boolean division:
h2 = f g2 = (a + c)d, r2 = ae + j.

i.e. f = (a+b)(a+c)d + ae + j

