Division

Definition:

G is an algebraic factor of F if there exists an algebraic expression H such that F = GH (using algebraic multiplication)

Definition:

G is an Boolean factor of F if there exists an expression H such that F = GH (using Boolean multiplication)

Example

- f = ac + ad + bc + bd
 (a+b) is an algebraic factor of f since f = (a+b)(c+d)
- f = ¬ab + ac + bc
 □ (a+b) is a Boolean factor of f since f = (a+b)(¬a+c)

Why Algebraic Methods?

Algebraic methods provide fast algorithms for various operations

- Treat logic functions as polynomials
- Fast algorithms for polynomials exist
- Lost of optimality but results are still good
- Can iterate and interleave with Boolean operations

In specific instances, slight extensions are available to include Boolean methods

Weak Division

- Weak division is a specific example of algebraic division
- Definition: Given two algebraic expressions F and G, a division is called a weak division if
 - 1. it is algebraic and
 - 2. R has as few cubes as possible
 - The quotient H resulting from weak division is denoted by F/G

Theorem: Given expressions F and G, H and R generated by weak division are unique

Weak Division

```
ALGORITHM WEAK_DIV(F,G) {

// G = {g<sub>1</sub>,g<sub>2</sub>,...}, F = {f<sub>1</sub>,f<sub>2</sub>,...} are sets of cubes

foreach g<sub>i</sub> {

V^{gi} = \emptyset

foreach f<sub>j</sub> {

if(f<sub>j</sub> contains all literals of g<sub>i</sub>) {

v_{ij} = f_j - literals of g<sub>i</sub>

V^{gi} = V^{gi} \cup v_{ij}

}

H = Q_i V^{gi}

R = F - GH

return (H,R);

}
```

Weak Division

```
Example
F = ace + ade + bc + bd + be + a'b + ab
G = ae + b

V<sup>ae</sup> = c + d
V<sup>b</sup> = c + d + e + a' + a

H = c + d = F/G H = C + O<sup>g</sup>i
R = be + a'b + ab
F = (ae + b)(c + d) + be + a'b + ab
```

45

Weak Division

We use filters to prevent trying a division
G is not an algebraic divisor of F if
G contains a literal not in F,
G has more terms than F,
For any literal, its count in G exceeds that in F, or
F is in the transitive fanin of G

Weak Division

Weak_Div provides a method to divide an expression for a given divisor

□ How do we find a "good" divisor?

- Restrict to algebraic divisors
- Generalize to Boolean divisors

Problem:

Given a set of functions { F_i }, find common weak (algebraic) divisors.

Divisor Identification Primary Divisor

Definition:

An expression is cube-free if no cube divides the expression evenly (i.e. there is no literal that is common to all the cubes)

"ab+c" is cube-free

- "ab+ac" and "abc" are not cube-free
- Note: A cube-free expression must have more than one cube

Definition:

The primary divisors of an expression F are the set of expressions

D(F) = {F/c | c is a cube} Note that F/c is the quotient of a weak division 47

Divisor Identification Kernel and Co-Kernel

Definition:

The kernels of an expression F are the set of expressions

 $K(F) = \{G \mid G \in D(F) \text{ and } G \text{ is cube-free} \}$

In other words, the kernels of an expression F are the cube-free primary divisors of F

Definition:

A cube c used to obtain the kernel K = F/c is called a co-kernel of K

C(F) is used to denote the set of co-kernels of F

Divisor Identification Kernel and Co-Kernel

Divisor Identification Kernel and Kernel Intersection

Fundamental Theorem

If two expressions F and G have the property that

 $\forall k_F \in K(F), \forall k_G \in K(G) \rightarrow | k_G \cap k_F | \le 1$ (k_G and k_F have at most one term in common),

then F and G have no common algebraic divisors with more than one cube

Important:

If we "kernel" all functions and there are no nontrivial intersections, then the only common algebraic divisors left are single cube divisors

Divisor Identification Kernel Level

Definition:

A kernel is of level O (K⁰) if it contains no kernels except itself

A kernel is of level n or less (K^n) if it contains at least one kernel of level (n-1) or less, but no kernels (except itself) of level n or greater

- Kn(F) is the set of kernels of level n or less
- $K^0(F) \subset K^1(F) \subset K^2(F) \subset ... \subset K^n(F) \subset K(F)$
- level-n kernels = $K^n(F) \setminus K^{n-1}(F)$

Example:

F = (a + b(c + d))(e + g) $k_1 = a + b(c + d) \in K^1$ $\notin K^0 = = > \text{level-1}$ $k_2 = c + d \in K^0$ $k_3 = e + g \in K^0$

Divisor Identification Kerneling Algorithm

```
Algorithm KERNEL(j, G) {
    R = Ø
    if(CUBE_FREE(G)) R = {G}
    for(i=j+1,...,n) {
        if(l<sub>i</sub> appears only in one term) continue
        if(3k ≤ i, l<sub>k</sub> ∈ all cubes of G/l<sub>i</sub>) continue
        R = R ∪ KERNEL(i, MAKE_CUBE_FREE(G/l<sub>i</sub>))
    }
    return R
}
MAKE_CUBE_FREE(F) removes algebraic cube factor from F
```

Divisor Identification Kerneling Algorithm

KERNEL(0, F) returns all the kernels of F

Note:

- The test "(∃k ≤ i, l_k ∈ all cubes of G/l_i)" in the kerneling algorithm is a major efficiency factor. It also guarantees that no co-kernel is tried more than once
- Can be used to generate all co-kernels

Divisor Identification Kerneling Algorithm

Divisor Identification Kerneling Algorithm

Example

1 ab abc abd abd ac acd

co-kernels

kernels

a((bc + fg)(d + e) + de(b + cf))) + beg
(bc + fg)(d + e) + de(b + cf)
c(d+e) + de
d + e
c + e
c + d
b(d + e) + def
b + ef

Note: F/bc = ad + ae = a(d + e)

different heuristics can be applied for CHOOSE_DIVISOR
 different DIVIDE routines may be applied (algebraic division, Boolean division)

Factor

Example:
F = abc + abd + ae + af + g
D = c + d
Q = ab
P = ab(c + d) + ae + af + g
O = ab(c + d) + a(e + f) + g

Notation:

- F = original function
- D = divisor
- Q = quotient
- P = partial factored form
- O = final factored form by FACTOR restricting to algebraic operations only

Problem 1:

O is not optimal since not maximally factored and can be further factored to "a(b(c + d) + e + f) + g"

It occurs when quotient Q is a single cube, and some of the literals of Q also appear in the remainder R

To solve Problem 1

- Check if the quotient Q is not a single cube, then done
- Else, pick a literal I₁ in Q which occurs most frequently in cubes of F. Divide F by I₁ to obtain a new divisor D₁.

Now, F has a new partial factored form $(I_1)(D_1) + (R_1)$

and literal I_1 does not appear in R_1 .

DNote: The new divisor D_1 contains the original D as a divisor because I_1 is a literal of Q. When recursively factoring D_1 , D can be discovered again.

Factor

Example: F = ace + ade + bce + bde + cf + df D = a + b Q = ce + de P = (ce + de)(a + b) + (c + d) f O = e(c + d)(a + b) + (c + d)f

Notation:

- F = original function
- D = divisor
- Q = quotient
- P = partial factored form
- O = final factored form by FACTOR restricting to algebraic operations only

Problem 2:

O is not maximally factored because "(c + d)" is common to both products "e(c + d)(a + b)" and "(c + d)f" ■ The final factored form should have been "(c+d)(e(a + b) + f)"

□ To solve Problem 2

Essentially, we reverse D and Q!!

■Make Q cube-free to get Q₁

DObtain a new divisor D_1 by dividing F by Q_1

□ If D_1 is cube-free, the partial factored form is $F = (Q_1)(D_1) + R_1$, and can recursively factor Q_1 , D_1 , and R_1

□ If D_1 is not cube-free, let $D_1 = cD_2$ and $D_3 = Q_1D_2$. We have the partial factoring $F = cD_3 + R_1$. Now recursively factor D_3 and R_1 .

Factor

```
Algorithm GFACTOR(F, DIVISOR, DIVIDE) { // good factor
  D = DIVISOR(F)
  if(D = 0) return F
  Q = DIVIDE(F,D)
  if (|Q| = 1) return LF(F, Q, DIVISOR, DIVIDE)
  Q = MAKE_CUBE_FREE(Q)
  (D, R) = DIVIDE(F,Q)
  if (CUBE_FREE(D)) {
    Q = GFACTOR(Q, DIVISOR, DIVIDE)
    D = GFACTOR(D, DIVISOR, DIVIDE)
    R = GFACTOR(R, DIVISOR, DIVIDE)
    return O X D + R
  }
  else {
   C = COMMON_CUBE(D) // common cube factor
    return LF(F, C, DIVISOR, DIVIDE)
  }
}
```

```
Algorithm LF(F, C, DIVISOR, DIVIDE) { // literal
factor
L = BEST_LITERAL(F, C) //L ∈ C most frequent in F
(Q, R) = DIVIDE(F, L)
C = COMMON_CUBE(Q) // largest one
Q = CUBE_FREE(Q)
Q = GFACTOR(Q, DIVISOR, DIVIDE)
R = GFACTOR(R, DIVISOR, DIVIDE)
return L × C × Q + R
}
```

63

Factor

Various kinds of factoring can be obtained by choosing different forms of DIVISOR and DIVIDE

CHOOSE_DIVISOR:

LITERAL - chooses most frequent literal QUICK_DIVISOR - chooses the first level-0 kernel BEST_DIVISOR - chooses the best kernel

DIVIDE:

Algebraic Division Boolean Division

Example
x = ac + ad + ae + ag + bc + bd + be + bf + ce + cf + df
+ dg
LITERAL_FACTOR:
x = a(c + d + e + g) + b(c + d + e + f) + c(e + f) + d(f + g)
OUICK_FACTOR:
x = g(a + d) + (a + b)(c + d + e) + c(e + f) + f(b + d)

GOOD_FACTOR: (c + d + e)(a + b) + f(b + c + d) + g(a + d) + ce

Factor

QUICK_FACTOR uses GFACTOR, first level-0 kernel DIVISOR, and WEAK_DIV

Example

Decomposition

Decomposition is the same as factoring except:

- divisors are added as new nodes in the network.
- the new nodes may fan out elsewhere in the network in both positive and negative phases

Similar to factoring, we can define QUICK_DECOMP: pick a level 0 kernel and improve it GOOD_DECOMP: pick the best kernel

Substitution

- Idea: An existing node in a network may be a useful divisor in another node. If so, no loss in using it (unless delay is a factor).
- Algebraic substitution consists of the process of algebraically dividing the function f_i at node i in the network by the function f_j (or by f'_j) at node j. During substitution, if f_j is an algebraic divisor of f_i, then f_i is transformed into

 $f_i = qy_j + r$ (or $f_i = q_1y_j + q_0y'_j + r$)

□ In practice, this is tried for each node pair of the network. n nodes in the network \Rightarrow O(n²) divisions.

Extraction

```
Recall: Extraction operation identifies common sub-
expressions and restructures a Boolean network
Combine decomposition and substitution to provide an
effective extraction algorithm
Algorithm EXTRACT
foreach node n {
DECOMP(n) // decompose all network nodes
foreach node n {
RESUB(n) // resubstitute using existing nodes
ELIMINATE_NODES_WITH_SMALL_VALUE
}
```

Extraction

□ Kernel Extraction:

- 1. Find all kernels of all functions
- 2. Choose kernel intersection with best "value"
- 3. Create new node with this as function
- 4. Algebraically substitute new node everywhere
- 5. Repeat 1,2,3,4 until best value \leq threshold

Extraction

Example $f_1 = ab(c(d + e) + f + g) + h$ $f_2 = ai(c(d + e) + f + j) + k$ (only level-0 kernels used in this example) 1. Extraction: $\begin{array}{l} K^{0}(f_{1}) \,=\, K^{0}(f_{2}) \,=\, \{\, d \,+\, e \,\} \\ K^{0}(f_{1}) \,\cap\, K^{0}(f_{2}) \,=\, \{\, d \,+\, e \,\} \end{array}$ I = d + e $\begin{array}{l} f_1 = ab(cl+f+g)+h\\ f_2 = ai(cl+f+j)+k \end{array}$ 2. Extraction: $K^{0}(f_{1}) = \{cl + f + g\}; K^{0}(f_{2}) = \{cl + f + j\}$ $\mathsf{K}^{\scriptscriptstyle 0}(\mathsf{f}_1^{\scriptscriptstyle \cdot}) \, \cap \, \mathsf{K}^{\scriptscriptstyle 0}(\mathsf{f}_2^{\scriptscriptstyle \cdot}) \, = \, \mathsf{cI} \, + \, \mathsf{f}$ m = cl + f $f_1 = ab(m + g) + h$ $f_2 = ai(m + j) + k$ No kernel intersections anymore!! 3. Cube extraction: n = am $\begin{array}{l} f_1 = b(n + ag) + h \\ f_2 = i(n + aj) + k \end{array}$

Extraction Rectangle Covering

- Alternative method for extraction
- Build co-kernel cube matrix M = R^T C
 - rows correspond to co-kernels of individual functions
 - columns correspond to individual cubes of kernel
 - m_{ii} = cubes of functions
 - m_{ii} = 0 if cube not there

Rectangle covering:

- identify sub-matrix $M^* = R^{*T} C^*$, where $R^* \subseteq R$, $C^* \subseteq C$, and $m^*_{ii} \neq 0$
- construct divisor d corresponding to M* as new node
- extract d from all functions

71

Extraction Rectangle Covering

Example

F = af + bf + ag + cg + ade + bde + cde									
G = af + bf + ace + bce	e		a	b	С	ce	de	f	8
H = ade + cde	F	а					ade	af	ag
Kernels/Co-kernels:	F	b					bde	bf	
F: (de+f+g)/a (de + f)/b	F	de	ade	bde	cde				
(a+b+c)/de (a + b)/f	F	f	af	bf					
(de+g)/c	M = F	с					cde		cg
(a+c)/g G: (ce+f)/{a,b} (a+b)/{f,ce} H: (a+c)/de	F	g	ag		cg				
	G	а				ace		af	
	G	b				bce		bf	
	G	се	ace	bce					
	G	f	af	bf					
	Н	de	ade		cde				73

Extraction Rectangle Covering

	Example (cont'd) F = af + bf + ag + cg + ade + bde	+ cd	e		1				C	
	G = af + bf + ace + bce			а	b	С	се	de	f	8
H = ade + cde	H = ade + cde	F	а					ade	af	ag
	Pick sub-matrix M'Extract new expression X	F	b					bde	bf	
	F = fx + ag + cg + dex + cde	F	de	ade	bde	cde				
	G = fx + cex H = ade + cde	F	f	af	bf					
X = a + b Update M		<i>F</i>	С					cde		cg
		F	g	ag		cg				
		G	а				ace		af	
		G	b				bce		bf	
		G	ce	ace	bce					
		G	f	af	bf					
		H	de	ade		cde				
									74	

Extraction Rectangle Covering

□ Number literals before - Number of literals after $V(R', C') = \sum_{i \in R, j \in C} v_{ij} - \sum_{i \in R'} w_i^r - \sum_{j \in C} w_j^c$

 v_{ij} : Number of literals of cube m_{ij}

 w_i^r : (Number of literals of the cube associated with row i) +1

 w_i^c : Number of literals of the cube associated with column j

For prior example
 V = 20 - 10 - 2 = 8

Extraction Rectangle Covering

Pseudo Boolean Division

- Idea: consider entries in covering matrix that are don't cares
 overlap of rectangles (a+a = a)
 - **\Box** product that cancel each other out (a·a' = 0)
- Example:

F

$$= ab' + ac' + a'b + a'c + bc' + b'$$

			a	b	С	<i>a</i> '	b'	<i>c</i> '	
	F	a				*	ab'	ac'	
Result: X = a' + b' + c' F = ax + bx + cx	F	b				a'b	*	bc'	
	M = F	С				a'c	b'c	*	
	F	<i>a</i> '	*	a'b	a'c				
			ab'						
	F	<i>c</i> '	ac'	bc'	*				

Fast Kernel Computation

- Non-robustness of kernel extraction
 Recomputation of kernels after evenus
 - Recomputation of kernels after every substitution: expensive
 - Some functions may have many kernels (e.g. symmetric functions)
- Cannot measure if kernel can be used as complemented node

Solution: compute only subset of kernels:

- Two-cube "kernel" extraction [Rajski et al '90]
- Objects:
 - 2-cube divisors
 - 2-literal cube divisors
- Example: f = abd + a'b'd + a'cd
 - \Box ab + a'b', b' + c and ab + a'c are 2-cube divisors.
 - a'd is a 2-literal cube divisor.

Fast Kernel Computation

Properties of fast divisor (kernel) extraction:

- O(n²) number of 2-cube divisors in an n-cube Boolean expression
- Concurrent extraction of 2-cube divisors and 2-literal cube divisors
- Handle divisor and complemented divisor simultaneously

Example:

 $f = abd + a'b'd + a'cd \\ k = ab + a'b', k' = ab' + a'b (both 2-cube divisors) \\ j = ab + a'c, j' = ab' + a'c' (both 2-cube divisors) \\ c = ab (2-literal cube), c' = a' + b' (2-cube divisor)$

Fast Kernel Computation

Generating all two cube divisors

 $\mathsf{F} = \{\mathsf{C}_{\mathsf{i}}\}$

- $D(F) = \{d \mid d = make_cube_free(c_i + c_i)\}$
 - c_i, c_j are any pair of cubes of cubes in F
 I.e., take all pairs of cubes in F and makes them cube-free
- Divisor generation is $O(n^2)$, where n = number of cubes in F

Example:

F = axe + ag + bcxe + bcg

make_cube_free($c_i + c_j$) = {xe + g, a + bc, axe + bcg, ag + bcxe}

- Note: Function F is made into an algebraic expression before generating double-cube divisors
- Not all 2-cube divisors are kernels (why?)

Fast Kernel Computation

Key results of 2-cube divisors

Theorem: Expressions F and G have a common multiplecube divisors if and only if $D(F) \cap D(G) \neq 0$

Proof:

lf:

If $D(F) \cap D(G) \neq 0$ then $\exists d \in D(F) \cap D(G)$ which is a doublecube divisor of F and G. d is a multiple-cube divisor of F and of G.

Only if:

Suppose C = {c₁, c₂, ..., c_m} is a multiple-cube divisor of F and of G. Take any e = (c_i + c_j). If e is cube-free, then $e \in D(F) \cap D(G)$. If e is not cube-free, then let d = make_cube_free(c_i + c_j). d has 2 cubes since F and G are algebraic expressions. Hence d $\in D(F) \cap D(G)$.

Fast Kernel Computation

Example:

Suppose that C = ab + ac + f is a multiple divisor of F and G

If e = ac + f, e is cube-free and $e \in D(F) \cap D(G)$

If e = ab + ac, $d = \{b + c\} \in D(F) \cap D(G)$

As a result of the Theorem, all multiple-cube divisors can be "discovered" by using just doublecube divisors

Fast Kernel Computation

Algorithm:

- Generate and store all 2-cube kernels (2-literal cubes) and recognize complement divisors
- Find the best 2-cube kernel or 2-literal cube divisor at each stage and extract it
- Update 2-cube divisor (2-literal cubes) set after extraction
- Iterate extraction of divisors until no more improvement

Results:

- Much faster
- Quality as good as that of kernel extraction

Boolean Division

```
Definition:
```

g is a Boolean divisor of f if h and r exist such that f = gh + r, $gh \neq 0$

g is said to be a factor of f if, in addition, r = 0, i.e., f = gh

h is called the quotient
r is called the remainder
h and r may not be unique

Theorem:

A logic function g is a Boolean factor of a logic function f if and only if $f \subseteq g$ (i.e. fg' = 0, i.e. g' \subseteq f')

Boolean Division

Proof:

(⇒) g is a Boolean factor of f. Then $\exists h$ such that f = gh; Hence, f ⊆ g (as well as h).

(\Leftarrow) f \subseteq g \Rightarrow f = gf = g(f + r) = gh. (Here r is any function r \subseteq g'.)

Note:

- h = f works fine for the proof
- Given f and g, h is not unique
- To get a small h is the same as to get a small f + r. Since rg = 0, this is the same as minimizing (simplifying) f with DC = g'.

□Theorem:

g is a Boolean divisor of f if and only if fg \neq 0

Boolean Division

Proof:

 $(\Rightarrow) f = gh + r, gh \neq 0 \Rightarrow fg = gh + gr. Since gh \neq 0, fg \neq 0.$

(\Leftarrow) Assume that fg \neq 0. f = fg + fg' = g(f + k) + fg'. (Here k \subseteq g'.) Then f = gh + r, with h = f + k, r = fg'. Since gh = fg \neq 0, then gh \neq 0.

□ Note:

f has many divisors. We are looking for some g such that f = gh+r, where g, h, r are simple functions. (simplify f with DC = g') 87

Boolean Division Incomplete Specified Function

 $\Box F = (f,d,r)$

Definition: A completely specified logic function g is a Boolean divisor of F if there exist h, e (completely specified) such that $f \subseteq gh + e \subseteq f + d$ and $qh \not\subset d$.

Definition:

g is a Boolean factor of *F* if there exists h such that

 $f \subseteq gh \subseteq f + d$

Boolean Division Incomplete Specified Function

Lemma: $f \subseteq g$ if and only if g is a Boolean factor of F. Proof: (⇒) Assume that $f \subseteq g$. Let h = f + k where $kg \subseteq d$. Then hg = $(f + k) g \subseteq (f + d)$. Since $f \subset q$, fg = f and thus $f \subset (f + k) g = gh$. Thus $f \subseteq (f + k) g \subseteq f + d$ (\Leftarrow) Assume that f = gh. Suppose \exists minterm m such that f(m) = 1 but g(m) = 0. Then f(m) = 1 but g(m)h(m) = 0 implying that $f \not\subset gh$. Thus f(m) = 1 implies g(m) = 1, i.e. $f \subseteq g$ Note: Since $kg \subseteq d$, $k \subseteq (d + g')$. Hence obtain h = f + k by simplifying f with DC = (d + g').

89

Boolean Division Incomplete Specified Function

Lemma: fg ≠ 0 if and only if g is a Boolean divisor of F.

Proof:

(⇒) Assume fg ≠ 0. Let fg ⊆ h ⊆ (f + d + g') and fg' ⊆ e ⊆ (f + d). Then f = fg + fg' ⊆ gh + e ⊆ g(f + d + g') + f + d = f + d Also, 0 ≠ fg ⊆ gh → ghf ≠ 0. Now gh ⊄ d, since otherwise ghf = 0 (since fd = 0), verifying the conditions of Boolean division.

(\Leftarrow) Assume that g is a Boolean divisor. Then $\exists h$ such that $gh \not\subset d$ and $f \subseteq gh + e \subseteq f + d$ Since $gh = (ghf + ghd) \not\subset d$, then $fgh \neq 0$ implying that $fg \neq 0$.

Boolean Division Incomplete Specified Function

Recipe for Boolean division:

 $(f \subseteq gh + e \subseteq f + d)$

- Choose g such that $fg \neq 0$
- Simplify fg with DC = (d + g') to get h
- Simplify fg' with DC = (d + fg) to get e (could use DC = d + gh)

$$\begin{array}{rrrr} \Box fg \ \subseteq \ h \ \subseteq \ f + d + g' \\ fg' \ \subseteq \ e \ \subseteq \ fg' + d + fg \ = f + d \end{array}$$

Given F = (f,d,r), write a cover for F in the form gh + ewhere h and e are minimal in some sense

Algorithm:

- 1. Create a new variable x to "represent" g
- 2. Form the don't care set ($\tilde{d} = xg' + x'g$) (Since x = g we don't care if x \neq g)
- 3. Minimize (f \tilde{d} ', d + \tilde{d} , r \tilde{d} ') to get \tilde{f}
- 4. Return (h = \tilde{f} /x, e) where e is the remainder of \tilde{f} (These are simply the terms not containing x)
- 5. f/x denote weak algebraic division

Boolean Division

■ Note that (f \tilde{d} ', d + \tilde{d} , r \tilde{d} ') is a partition. We can use ESPRESSO to minimize it, but the objective there is to minimize the number of cubes - not completely appropriate.

Example:

f = a + bcg = a + b

d = xa'b' + x'(a+b) where x = g = (a+b)

- Minimize $(a + bc) \tilde{d}' = (a + bc) (x'a'b' + x(a+b)) = xa + xbc$ with DC = xa'b' + x '(a+b)
- A minimum cover is a + bc but it does not use x or x' !
- Force x in the cover. This yields f = a + xc = a + (a+b) c.

Heuristic:

Find answer with x in it and which also uses the least variables (or literals)

Assume F is a cover for $\Im = (f,d,r)$ and D is a cover for d.

```
First Algorithm:
Algorithm Boolean_Divide1(F,D,G) {
  D_1 = D + xG' + x'G
                                    // (don't care)
  F_1 = FD_1'
                                    // (care on-set)
  R_1 = (F_1 + D_1)' = F_1'D_1' = F'D_1' // (care off-set)
  F_2 = remove x' from F_1 // positive substitution only
  F_3 = MIN\_LITERAL(F_2, R_1, x) // Filter for Espresso
             // (minimum literal support including x)
  F_4 = ESPRESSO(F_3, D_1, R_1)
  H = F_4/x
                                    // (quotient)
                                    // (remainder)
  E = F_4 - \{xH\}
  return (HG+E)
}
```

```
95
```

Boolean Division

Assume F is a cover for $\Im = (f,d,r)$ and D is a cover for d.

```
Second Algorithm:
Algorithm Boolean_Divide2(F,D,G) {
                                      // (don't care)
  D_1 = D + xG' + x'G
  F_1 = FD_1'
                                      // (on-set)
  R_1 = (F_1 + D_1)' = F_1'D_1' = F'D_1' // (off-set)
  // F_2 = remove x' from F_1 (difference to first alg.)
  F_3 = MIN\_LITERAL(F_2, R_1, x, x') // Filter for Espresso
                 // (minimum literal support including x)
  F_4 = ESPRESSO(F_3, D_1, R_1)
  H_1 = F_4/x
                                     // (first quotient)
  H_0 = F_4 / x'
                                    // (first quotient)
  E = F_4 - ( \{ xH_1 \} + \{ x'H_0 \} )
                                   // (remainder)
  return (GH_1+G'H_0+E)
}
```

Boolean Division Minimal Literal Support

■ Support minimization (MINVAR) Given: $\Im = (f,d,r)$ $F = \{c^1, c^2, ..., c^k\}$ (a cover of \Im) $R = \{r^1, r^2, ..., r^m\}$ (a cover of r) 1. Construct blocking matrix Bⁱ for each cⁱ 2. Form "super" blocking matrix B 3. Find a minimum cover S of B, $S = \{ j_{1'}, j_{2'}, ..., j_{V} \}$. 4. Modify $\widetilde{F} \leftarrow \{ \widetilde{c}^1, \widetilde{c}^2, ..., \widetilde{c}^k \}$ where $(\widetilde{c}^i)_i = \begin{cases} (\widetilde{c}^i)_j & \text{if } j \in S \end{cases}$

$$\{0,1\} = 2$$
 otherwise

 B^2 \vdots

Boolean Division Minimal Literal Support

Given: $\Im = (f,d,r)$ $F = \{c^{1}, c^{2}, \dots, c^{k}\} \text{ (a cover of } \Im)$ $R = \{r^{1}, r^{2}, \dots, r^{m}\} \text{ (a cover of } r)$ n: number of variables Literal Blocking Matrix: $\left(\hat{B}^{i}\right)_{q,j} = \begin{cases} 1 \text{ if } v_{j} \in c^{i} \text{ and } v_{j} \in r^{q} \\ 0 \text{ otherwise} \end{cases}$ $\left(\hat{B}^{i}\right)_{q,j+n} = \begin{cases} 1 \text{ if } v_{j} \in c^{i} \text{ and } v_{j} \in r^{q} \\ 0 \text{ otherwise} \end{cases}$ $\left(\hat{B}^{i}\right)_{q,j+n} = \begin{cases} 1 \text{ if } v_{j} \in c^{i} \text{ and } v_{j} \in r^{q} \\ 0 \text{ otherwise} \end{cases}$ Example: $c^{i} = ad'e', r^{q} = a'ce$ $\hat{B}^{i}_{q} = \frac{abcdeabc'd'e'}{1000000001}$ 97

Boolean Division Minimal Literal Support

Example (literal blocking matrix) on-set cube: cⁱ = ab'd off-set: r = a'b'd' + abd' + acd' + bcd + c'd'

b' c' ď b d a С 0 a'b'd' 0 0 1 0 0 0 1 abd' 0 0 0 1 0 0 0 1 acd' 0 0 0 1 0 0 0 0 bcd 0 0 0 0 0 1 0 0 c'd' 0 0 0 0 0 0 0 1

Minimum column cover {d,b'}

Thus b'd is the maximum prime covering ab'd

Note:

For one cube, minimum literal support is the same as minimum variable support

99

Boolean Division

Example

F = a + bcAlgebraic division: F/(a + b) = 0Boolean division: $F \div (a + b) = a + c$

- 1. Let x = a + b
- 2. Generate don't care set: $D_1 = x'(a + b) + xa'b'$.
- 3. Generate care on-set:
 - **D** $F_1 = F \cap D_1' = (a + bc)(xa + xb + x'a'b') = ax + bcx.$
 - Let $C = \{c^1 = ax, c^2 = bcx\}$
- 4. Generate care off-set:
 - $\square R_1 = F'D_1' = (a'b' + a'c')(xa + xb + x'a'b') = a'bc'x + a'b'x'.$
 - Let $R = \{r^1 = a'bc'x, r^2 = a'b'x'\}.$
- 5. Form super-variable blocking matrix using column order (a, b, c, x), with a',b',c',x' omitted.

$$B = \begin{bmatrix} B^{1} \\ B^{2} \end{bmatrix} = \begin{bmatrix} 1 \ 0 \ 0 \ 1 \\ 0 \ 0 \ 1 \ 0 \end{bmatrix}$$

Example (cont'd)

- 6. Find minimum column cover = $\{a, c, x\}$
- 7. Eliminate in F_1 all variables associated with b So $F_1 = ax + bcx = ax + cx = x(a + c)$
- 8. Simplifying (applying expand, irredundant on F_1), we get $F_1 = a + xc$
- 9. Thus quotient = $F_1/x = c$, remainder = a
- 10.F = a + bc = a + cx = a + c(a + b)

It is important that x is forced in the cover!

$$B = \begin{bmatrix} B^{1} \\ B^{2} \end{bmatrix} = \begin{bmatrix} a b c x \\ 1000 \\ 1001 \\ 0010 \\ 0101 \end{bmatrix}$$