Division

- Definition:
G is an algebraic factor of F if there exists an algebraic
expression H such that $\mathrm{F}=\mathrm{GH}$ (using algebraic
multiplication)
\square Definition:
G is an Boolean factor of F if there exists an expression H such that $\mathrm{F}=\mathrm{GH}$ (using Boolean multiplication)
- Example

■ $f=a c+a d+b c+b d$
$\boldsymbol{\square}(a+b)$ is an algebraic factor of f since $f=(a+b)(c+d)$
$\square f=\neg a b+a c+b c$
$\boldsymbol{\square}(a+b)$ is a Boolean factor of f since $f=(a+b)(\neg a+c)$

Why Algebraic Methods?

\square Algebraic methods provide fast algorithms for various operations

- Treat logic functions as polynomials

■ Fast algorithms for polynomials exist
■ Lost of optimality but results are still good
\square Can iterate and interleave with Boolean operations
IIn specific instances, slight extensions are available to include Boolean methods

Weak Division

\square Weak division is a specific example of algebraic division

- Definition: Given two algebraic expressions F and G, a division is called a weak division if

1. it is algebraic and
2. R has as few cubes as possible

- The quotient H resulting from weak division is denoted by F/G
\square Theorem: Given expressions F and G, H and R generated by weak division are unique

Weak Division

```
ALGORITHM WEAK_DIV(F,G) {
    // G = {g}\mp@subsup{g}{1}{},\mp@subsup{g}{2}{},\ldots},F={\mp@subsup{f}{1}{},\mp@subsup{f}{2}{},\ldots}\mathrm{ are sets of cubes
    foreach gi {
        Vgi}=
        foreach f}\mp@subsup{f}{j}{{
            if(f}\mp@subsup{f}{j}{}\mathrm{ contains all literals of }\mp@subsup{g}{i}{}) 
                    vij}=\mp@subsup{f}{j}{}\mathrm{ - literals of gi
                    Vgi}=\giv vi
            }
        }
    }
    H = Çi \gi
    R = F - GH
    return (H,R);
}
```


Weak Division

Example

$$
\begin{aligned}
& F=a c e+a d e+b c+b d+b e+a \prime b+a b \\
& G=a e+b
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}^{\mathrm{ae}}=\mathrm{c}+\mathrm{d} \\
& \mathrm{~V}^{\mathrm{b}}=\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{a}^{\prime}+\mathrm{a}
\end{aligned}
$$

$$
\begin{array}{ll}
H=c+d=F / G & H=\cap V^{g_{i}} \\
R=b e+a^{\prime} b+a b & R=F \backslash G H
\end{array}
$$

$$
F=(a e+b)(c+d)+b e+a \prime b+a b
$$

Weak Division

\square We use filters to prevent trying a division
$\square G$ is not an algebraic divisor of F if
\quad G contains a literal not in F,
$\square G$ has more terms than F,
DFor any literal, its count in G exceeds that in F, or $\square F$ is in the transitive fanin of G

Weak Division

-Weak_Div provides a method to divide an expression for a given divisor
-How do we find a "good" divisor?
■ Restrict to algebraic divisors
■ Generalize to Boolean divisors

-Problem:

Given a set of functions $\left\{F_{i}\right.$ \}, find common weak (algebraic) divisors.

Divisor Identification
 Primary Divisor

ㅁ Definition:
An expression is cube-free if no cube divides the expression evenly (i.e. there is no literal that is common to all the cubes)
"ab+c" is cube-free
"ab+ac" and "abc" are not cube-free
■ Note: A cube-free expression must have more than one cube
\square Definition:
The primary divisors of an expression F are the set of expressions $D(F)=\{F / c \mid c$ is a cube $\}$
Note that F / C is the quotient of a weak division

Divisor Identification
 Kernel and Co-Kernel

\square Definition:
The kernels of an expression F are the set of expressions
$K(F)=\{G \mid G \in D(F)$ and G is cube-free $\}$
■ In other words, the kernels of an expression F are the cube-free primary divisors of F
\square Definition:
A cube c used to obtain the kernel $\mathrm{K}=\mathrm{F} / \mathrm{c}$ is called a co-kernel of K
■ C(F) is used to denote the set of co-kernels of F

Divisor Identification

Kernel and Co-Kernel
-Example

$$
\begin{aligned}
x & =a d f+a e f+b d f+b e f+c d f+c e f+g \\
& =(a+b+c)(d+e) f+g
\end{aligned}
$$

kernels
$a+b+c$
$d+e$
$(a+b+c)(d+e) f+g$

co-kernels
df, ef
af, bf, cf
1

Divisor Identification
 Kernel and Kernel Intersection

- Fundamental Theorem

If two expressions F and G have the property that
$\forall \mathrm{k}_{\mathrm{F}} \in \mathrm{K}(\mathrm{F}), \forall \mathrm{k}_{\mathrm{G}} \in \mathrm{K}(\mathrm{G}) \rightarrow\left|\mathrm{k}_{\mathrm{G}} \cap \mathrm{k}_{\mathrm{F}}\right| \leq 1$
(k_{G} and k_{F} have at most one term in common),
then F and G have no common algebraic divisors with more than one cube

- Important:

If we "kernel" all functions and there are no nontrivial intersections, then the only common algebraic divisors left are single cube divisors

Divisor Identification Kernel Level

\square Definition:
A kernel is of level $0\left(\mathrm{~K}^{0}\right)$ if it contains no kernels except itself
A kernel is of level n or less (K^{n}) if it contains at least one kernel of level ($\mathrm{n}-1$) or less, but no kernels (except itself) of level n or greater

- $K^{n}(F)$ is the set of kernels of level n or less
- $K^{0}(F) \subset K^{1}(F) \subset K^{2}(F) \subset \ldots \subset K^{n}(F) \subset K(F)$

■ level-n kernels $=K^{n}(F) \backslash K^{n-1}(F)$
\square Example:
$F=(a+b(c+d))(e+g)$
$k_{1}=a+b(c+d) \quad \in K^{1}$
$\notin \mathrm{K}^{0}=\mathbf{=}$ |evel-1
$k_{2}=c+d \in K^{0}$
$k_{3}=e+g \in K^{0}$

Divisor Identification Kerneling Algorithm

```
Algorithm KERNEL(j, G) {
    R = \varnothing
    if(CUBE_FREE(G)) R = {G}
    for(i=j+1,...,n) {
        if(li appears only in one term) continue
        if(\existsk \leq i, l}\mp@subsup{l}{k}{}\in\mathrm{ all cubes of G/l i})\quadcontinu
        R = R \cup KERNEL(i, MAKE_CUBE_FREE(G/I i})
    }
    return R
}
MAKE_CUBE_FREE(F) removes algebraic cube factor from F
```


Divisor Identification
 Kerneling Algorithm

$\square \operatorname{KERNEL}(0, F)$ returns all the kernels of F
\square Note:
■ The test " $\left(\exists \mathrm{k} \leq \mathrm{i}, \mathrm{I}_{\mathrm{k}} \in\right.$ all cubes of $\left.\mathrm{G} / \mathrm{I}_{\mathrm{i}}\right)$ " in the kerneling algorithm is a major efficiency factor. It also guarantees that no co-kernel is tried more than once

- Can be used to generate all co-kernels

Divisor Identification
 Kerneling Algorithm

\square Example
F = abcd + abce + adfg + aefg + adbe + acdef + beg
$(b c+f g)(d+e)+d e(b+c f)$

Divisor Identification
 Kerneling Algorithm

\square Example

co-kernels	kernels
1	$a((b c+f g)(d+e)+d e(b+c f)))+b e g$
a	$(b c+f g)(d+e)+d e(b+c f)$
$a b$	$c(d+e)+d e$
$a b c$	$d+e$
$a b d$	$c+e$
$a b e$	$c+d$
$a c$	$b(d+e)+d e f$
$a c d$	$b+e f$

Note: $\mathrm{F} / \mathrm{bc}=\mathrm{ad}+\mathrm{ae}=\mathrm{a}(\mathrm{d}+\mathrm{e})$

Factor

```
Algorithm FACTOR(F) {
    if(F has no factor) return F
    // e.g. if |F|=1, or F is an OR of single literals
    // or of no literal appears more than once
    D = CHOOSE_DIVISOR(F)
    (Q,R) = DIVIDE(F,D)
    return FACTOR(Q)xFACTOR(D) + FACTOR(R) //recur
}
\square different heuristics can be applied for CHOOSE_DIVISOR
\square different DIVIDE routines may be applied (algebraic division,
    Boolean division)
```


Factor

- Example:
$F=a b c+a b d+a e+a f+g$
$D=c+d$
$\mathrm{Q}=\mathrm{ab}$
$P=a b(c+d)+a e+a f+g$
$O=a b(c+d)+a(e+f)+g$

Notation:
F = original function
$D=$ divisor
$\mathrm{Q}=$ quotient
$\mathrm{P}=$ partial factored form
$\mathrm{O}=$ final factored form by
FACTOR restricting to
algebraic operations only

- Problem 1:

O is not optimal since not maximally factored and can be further factored to "a(b(c + d) + e + f) +g "
-It occurs when quotient Q is a single cube, and some of the literals of Q also appear in the remainder R

Factor

-To solve Problem 1

■ Check if the quotient Q is not a single cube, then done
■ Else, pick a literal I_{1} in Q which occurs most frequently in cubes of F. Divide F by I_{1} to obtain a new divisor D_{1}.
Now, F has a new partial factored form
and literal I_{1} does not appear in R_{1}.
\square Note: The new divisor D_{1} contains the original D as a divisor because I_{1} is a literal of Q. When recursively factoring $\mathrm{D}_{1}, \mathrm{D}$ can be discovered again.

Factor

- Example:
$F=$ ace + ade + bce + bde + cf + df
$D=a+b$
$Q=c e+d e$
$P=(c e+d e)(a+b)+(c+d) f$
$O=e(c+d)(a+b)+(c+d) f$

Notation:
F = original function
D = divisor
$\mathrm{Q}=$ quotient
P = partial factored form
$\mathrm{O}=$ final factored form by
FACTOR restricting to
algebraic operations only

- Problem 2:

O is not maximally factored because " $(\mathrm{c}+\mathrm{d})$ " is common to both products "e(c+d)(a+b)" and " $(c+d) f$ "
\square The final factored form should have been " $(c+d)(e(a+b)+f)$ "

Factor

-To solve Problem 2

Essentially, we reverse D and Q!!
\square Make Q cube-free to get Q_{1}
\square Obtain a new divisor D_{1} by dividing F by Q_{1}
ㅁIf D_{1} is cube-free, the partial factored form is $F=\left(Q_{1}\right)\left(D_{1}\right)+R_{1}$, and can recursively factor Q_{1}, D_{1}, and R_{1}
IIf D_{1} is not cube-free, let $D_{1}=c D_{2}$ and $D_{3}=Q_{1} D_{2}$. We have the partial factoring $F=c D_{3}+R_{1}$. Now recursively factor D_{3} and R_{1}.

Factor

```
Algorithm GFACTOR(F, DIVISOR, DIVIDE) { // good factor
    D = DIVISOR(F)
    if(D = 0) return F
    Q = DIVIDE(F,D)
    if (|Q| = 1) return LF(F, Q, DIVISOR, DIVIDE)
    Q = MAKE_CUBE_FREE(Q)
    (D, R) = DIVIDE(F,Q)
    if (CUBE_FREE(D)) {
        Q = GFACTOR(Q, DIVISOR, DIVIDE)
        D = GFACTOR(D, DIVISOR, DIVIDE)
        R = GFACTOR(R, DIVISOR, DIVIDE)
        return Q x D + R
    }
    else {
        C = COMMON_CUBE(D) // common cube factor
        return LF(F, C, DIVISOR, DIVIDE)
    }
}
```


Factor

```
Algorithm LF(F, C, DIVISOR, DIVIDE) { // literal
    factor
    L = BEST_LITERAL(F, C) //L \in C most frequent in F
    (Q, R) = DIVIDE(F, L)
    C = COMMON_CUBE(Q) // largest one
    Q = CUBE_FREE(Q)
    Q = GFACTOR(Q, DIVISOR, DIVIDE)
    R = GFACTOR(R, DIVISOR, DIVIDE)
    return L}\timesC\timesQ+
}
```


Factor

\square Various kinds of factoring can be obtained by choosing different forms of DIVISOR and DIVIDE

- CHOOSE_DIVISOR:

LITERAL - chooses most frequent literal
QUICK_DIVISOR - chooses the first level-0 kernel
BEST_DIVISOR - chooses the best kernel

- DIVIDE:

Algebraic Division
Boolean Division

Factor

Example
$x=a c+a d+a e+a g+b c+b d+b e+b f+c e+c f+d f$ $+\mathrm{dg}$

LITERAL FACTOR:
$x=a(c \overline{+} d+e+g)+b(c+d+e+f)+c(e+f)+d(f+$ g)

QUICK FACTOR:
$x=g(\bar{a}+d)+(a+b)(c+d+e)+c(e+f)+f(b+d)$
GOOD FACTOR:
$\left(c+d^{-}+e\right)(a+b)+f(b+c+d)+g(a+d)+c e$

Factor

\square QUICK_FACTOR uses GFACTOR, first level-0 kernel DIVISŌR, and WEAK_DIV

Example

$$
x=a e+a f g+a f h+b c e+b c f g+b c f h+b d e+b d f g+
$$

bcfh
$D=c+d \quad$---- level-0 kernel (first found)
$Q=x / D=b(e+f(g+h)) \quad----$ weak division
$Q=e+f(g+h) \quad----m a k e ~ c u b e-f r e e$
$(\mathrm{D}, \mathrm{R})=$ WEAK_DIV(x, Q) ---- second division
$\mathrm{D}=\mathrm{a}+\mathrm{b}(\mathrm{c}+\mathrm{d})$
$x=Q D+R \quad R=0$
$x=(e+f(g+h))(a+b(c+d))$

Decomposition

\square Decomposition is the same as factoring except:

- divisors are added as new nodes in the network.
- the new nodes may fan out elsewhere in the network in both positive and negative phases

```
Algorithm DECOMP(fic) {
    k = CHOOSE_KERNEL(fi
    if (k == 0) return
    fm+j = k // create new node m + j
    fi
                                    // new node for kernel
    DECOMP(fi
    DECOMP(f}\mp@subsup{f}{m+j}{}
}
```

Similar to factoring, we can define
QUICK_DECOMP: pick a level 0 kernel and improve it
GOOD_DECOMP: pick the best kernel

Substitution

Idea: An existing node in a network may be a useful divisor in another node. If so, no loss in using it (unless delay is a factor).\square Algebraic substitution consists of the process of algebraically dividing the function f_{i} at node i in the network by the function f_{j} (or by f_{j}) at node j . During substitution, if f_{j} is an algebraic divisor of f_{i}, then f_{i} is transformed into $f_{i}=q y_{j}+r \quad\left(\right.$ or $\left.f_{i}=q_{1} y_{j}+q_{0} y_{j}^{\prime}+r\right)$
\square In practice, this is tried for each node pair of the network. n nodes in the network $\Rightarrow \mathrm{O}\left(\mathrm{n}^{2}\right)$ divisions.

Extraction

\square Recall: Extraction operation identifies common subexpressions and restructures a Boolean network

- Combine decomposition and substitution to provide an effective extraction algorithm

Algorithm EXTRACT
foreach node n \{
DECOMP(n) // decompose all network nodes
\}
foreach node n \{
RESUB(n) // resubstitute using existing nodes \}
ELIMINATE_NODES_WITH_SMALL_VALUE
\}

Extraction

- Kernel Extraction:

1. Find all kernels of all functions
2. Choose kernel intersection with best "value"
3. Create new node with this as function
4. Algebraically substitute new node everywhere
5. Repeat $1,2,3,4$ until best value \leq threshold

Extraction

\square Example
$f_{1}=a b(c(d+e)+f+g)+h$
$f_{2}=a i(c(d+e)+f+j)+k$
(only level-0 kernels used in this example)

1. Extraction

$$
\begin{aligned}
& K^{0}\left(f_{1}\right)=K^{0}\left(f_{2}\right)=\{d+e\} \\
& K^{0}\left(f_{1}^{1}\right) \cap K^{0}\left(f_{2}\right)=\{d+e\} \\
& l=d+e \\
& f_{1}=a b(c l+f+g)+h \\
& f_{2}^{1}=a i(c l+f+j)+k \\
& K^{0}\left(f_{1}\right)=\{c l+f+g\} ; K^{0}\left(f_{2}\right)=\{c l+f+j) \\
& K^{0}\left(f_{1}\right) \cap K^{0}\left(f_{2}\right)=c l+f \\
& m=c l+f \\
& f_{1}=a b(m+g)+h \\
& f_{2}=a i(m+j)+K
\end{aligned}
$$

2. Extraction:

No kernel intersections anymore!!
3. Cube extraction:

$$
\begin{aligned}
& n=a m \\
& f_{1}=b(n+a g)+h \\
& f_{2}=i(n+a j)+k
\end{aligned}
$$

Extraction

Rectangle Covering

Alternative method for extractionBuild co-kernel cube matrix $M=R^{T} C$rows correspond to co-kernels of individual functions

- columns correspond to individual cubes of kernel
- $\mathrm{m}_{\mathrm{ij}}=$ cubes of functions
- $m_{\mathrm{ij}}=0$ if cube not there

Rectangle covering:

\square identify sub-matrix $\mathrm{M}^{*}=\mathrm{R}^{* T} \mathrm{C}^{*}$, where $\mathrm{R}^{*} \subseteq \mathrm{R}, \mathrm{C}^{*} \subseteq \mathrm{C}$, and $\mathrm{m}^{*}{ }_{\mathrm{ij}} \neq 0$
■ construct divisor d corresponding to M^{*} as new node

- extract d from all functions

Extraction

Rectangle Covering

- Example
$F=a f+b f+a g+c g+a d e+b d e+c d e$
$G=a f+b f+a c e+b c e$
H = ade + cde
Kernels/Co-kernels:
F: $(d e+f+g) / a$
$(d e+f) / b$
$(a+b+c) / d e$
$(a+b) / f$
$(d e+g) / c$
$(a+c) / g$
G: $(c e+f) /\{a, b\}$
$(a+b) /\{f, c e\}$
$H:(a+c) / d e$

		a	b	c	$c e$	$d e$	f	g
F	a					$a d e$	$a f$	$a g$
F	b					$b d e$	$b f$	
F	$d e$	$a d e$	$b d e$	$c d e$				
F	f	$a f$	$b f$					
F	c					$c d e$		$c g$
F	g	$a g$		$c g$				
G	a				$a c e$		$a f$	
G	b				$b c e$		$b f$	
G	$c e$	$a c e$	$b c e$					
G	f	$a f$	$b f$					
H	$d e$	$a d e$		$c d e$				

Extraction

Rectangle Covering

Example (cont'd)

Extraction
 Rectangle Covering

\square Number literals before - Number of literals after
$V\left(R^{\prime}, C^{\prime}\right)=\sum_{i \in R, j \in C} v_{i j}-\sum_{i \in R^{\prime}} w_{i}^{r}-\sum_{j \in C} w_{j}^{c}$
$v_{i j}$: Number of literals of cube $m_{i j}$
w_{i}^{r} : (Number of literals of the cube associated with row $\left.i\right)+1$
w_{j}^{c} : Number of literals of the cube associated with column j

For prior example

$\square \mathrm{V}=20-10-2=8$

		a	b	c	$c e$	$d e$	f	g
F	a					$a d e$	$a f$	$a g$
F	b					$b d e$	$b f$	
F	$d e$	$a d e$	$b d e$	$c d e$				
F	f	$a f$	$b f$					
F	c					$c d e$		$c g$
F	g	$a g$		$c g$				
G	a				$a c e$		$a f$	
G	b				$b c e$	$b f$		
G	$c e$	$a c e$	$b c e$					
G	f	$a f$	$b f$					
H	$d e$	$a d e$		cde				

Extraction

Rectangle Covering

Pseudo Boolean Division

\square Idea: consider entries in covering matrix that are don't cares \square overlap of rectangles $(a+a=a)$
\square product that cancel each other out ($a \cdot a$ ' $=0$)
Example:
$F=a b^{\prime}+a c^{\prime}+a^{\prime} b+a^{\prime} c+b c^{\prime}+b^{\prime}$

Fast Kernel Computation

Non-robustness of kernel extraction- Recomputation of kernels after every substitution: expensive
- Some functions may have many kernels (e.g. symmetric functions)Cannot measure if kernel can be used as complemented node
\square Solution: compute only subset of kernels:
■ Two-cube "kernel" extraction [Rajski et al '90]
- Objects:
$\square 2$-cube divisors
-2-literal cube divisors
Example: $\mathrm{f}=\mathrm{abd}+\mathrm{a} \mathrm{a}^{\prime} \mathrm{d}+\mathrm{a}$ 'cd
$\square a b+a^{\prime} b^{\prime}, b^{\prime}+c$ and $a b+a^{\prime} c$ are 2 -cube divisors.
$\square a$ 'd is a 2 -literal cube divisor.

Fast Kernel Computation

\square Properties of fast divisor (kernel) extraction:
$\mathrm{O}\left(\mathrm{n}^{2}\right)$ number of 2 -cube divisors in an n -cube Boolean expression
Concurrent extraction of 2-cube divisors and 2-literal cube divisors
■ Handle divisor and complemented divisor simultaneously
\square Example:

$$
\begin{aligned}
& f= a b d+a^{\prime} b^{\prime} d+a^{\prime} c d \\
& k=a b+a^{\prime} b^{\prime}, \quad k^{\prime}=a b^{\prime}+a^{\prime} b \\
& \text { (both 2-cube divisors) } \\
& j=a b+a^{\prime} c, \quad j^{\prime}=a b+a^{\prime}+a^{\prime} c^{\prime} \\
& \text { (both 2-cube divisors) } \\
&\text { (2-literal cube }), \quad c^{\prime}=a^{\prime}+b^{\prime}(2 \text {-cube divisor })
\end{aligned}
$$

Fast Kernel Computation

\square Generating all two cube divisors
$\mathrm{F}=\left\{\mathrm{c}_{\mathrm{i}}\right\}$
$D(F)=\left\{d \mid d=\right.$ make_cube_free $\left.\left(c_{i}+c_{j}\right)\right\}$

- c_{i}, c_{j} are any pair of cubes of cubes in F
-l.e., take all pairs of cubes in F and makes them cube-free
- Divisor generation is $O\left(\mathrm{n}^{2}\right)$, where $\mathrm{n}=$ number of cubes in F
- Example:
$F=a x e+a g+b c x e+b c g$
make_cube_free $\left(c_{i}+c_{j}\right)=\{x e+g, a+b c, a x e+b c g, a g$
+ bcxe $\}$
- Note: Function F is made into an algebraic expression before generating double-cube divisors
Not all 2-cube divisors are kernels (why?)

Fast Kernel Computation

\square Key results of 2-cube divisors
Theorem: Expressions F and G have a common multiplecube divisors if and only if $D(F) \cap D(G) \neq 0$

Proof:
If:
If $D(F) \cap D(G) \neq 0$ then $\exists d \in D(F) \cap D(G)$ which is a doublecube divisor of F and G. d is a multiple-cube divisor of F and of G.

Only if:
Suppose $C=\left\{c_{1}, C_{2}, \ldots, C_{m}\right\}$ is a multiple-cube divisor of F and of G. Take any $e=\left(c_{i}+c_{j}\right)$. If e is cube-free, then $e \in D(F) \cap$ $D(G)$. If e is not cube-free, then let $d=$ make_cube free($c_{i}+$ c_{i}). d has 2 cubes since F and G are algebraic exprēssions. Hence $d \in D(F) \cap D(G)$.

Fast Kernel Computation

\square Example:
Suppose that $C=a b+a c+f$ is a multiple divisor of F and G

If $e=a c+f, e$ is cube-free and $e \in D(F) \cap D(G)$
If $e=a b+a c, d=\{b+c\} \in D(F) \cap D(G)$

As a result of the Theorem, all multiple-cube divisors can be "discovered" by using just doublecube divisors

Fast Kernel Computation

\square Algorithm:
■ Generate and store all 2-cube kernels (2-literal cubes) and recognize complement divisors
\square Find the best 2 -cube kernel or 2 -literal cube divisor at each stage and extract it

- Update 2-cube divisor (2-literal cubes) set after extraction
■ Iterate extraction of divisors until no more improvement
\square Results:
Much faster
■ Quality as good as that of kernel extraction

Boolean Division

\square What's wrong with algebraic division?

- Divisor and quotient are orthogonal!
- Better factored form might be:
$\left(g_{1}+g_{2}+\ldots+g_{n}\right)\left(d_{1}+d_{2}+\ldots+d_{m}\right)$
$\square g_{i}$ and d_{j} may share same literals
-redundant product literals
- Example abe+ace+abd+cd $/(a e+d)=\varnothing$ But: aabe+ace+abd+cd / (ae+d) $=(a b+c)$
$\square g_{i}$ and d_{j} may share opposite literals
\square product terms are non-existing
- Example $a^{\prime} b+a c+b c /\left(a^{\prime}+c\right)=\varnothing$ But: $a^{\prime} a+a^{\prime} b+a c+b c /\left(a^{\prime}+c\right)=(a+b)$

Boolean Division

\square Definition:
g is a Boolean divisor of f if h and r exist such that $f=g h+r, g h \neq 0$
g is said to be a factor of f if, in addition, $r=0$, i.e., $f=g h$
$\square \mathrm{h}$ is called the quotient
$\square r$ is called the remainder
$\square h$ and r may not be unique

Boolean Division

-Theorem:

A logic function g is a Boolean factor of a logic function f if and only if $f \subseteq g$ (i.e. fg' $=0$, i.e. $g^{\prime} \subseteq f^{\prime}$)

Boolean Division

Proof:
$(\Rightarrow) g$ is a Boolean factor of f. Then $\exists \mathrm{h}$ such that $\mathrm{f}=\mathrm{gh}$;
Hence, $\mathrm{f} \subseteq \mathrm{g}$ (as well as h).
$(\Leftarrow) \mathrm{f} \subseteq \mathrm{g} \Rightarrow \mathrm{f}=\mathrm{gf}=\mathrm{g}(\mathrm{f}+\mathrm{r})=\mathrm{gh}$. (Here r is any function
$r \subseteq g^{\prime}$.)

Note:

- $\mathrm{h}=\mathrm{f}$ works fine for the proof
- Given f and g, h is not unique
- To get a small h is the same as to get a small $f+r$. Since $r g=$ 0 , this is the same as minimizing (simplifying) f with $D C=g^{\prime}$.

Boolean Division

-Theorem:
g is a Boolean divisor of f if and only if $f g \neq$ 0

Boolean Division

Proof:

$(\Rightarrow) f=g h+r, g h \neq 0 \Rightarrow f g=g h+g r$. Since $g h \neq$
$0, f g \neq 0$.
(\Leftarrow) Assume that $\mathrm{fg} \neq 0 . \mathrm{f}=\mathrm{fg}+\mathrm{fg}{ }^{\prime}=\mathrm{g}(\mathrm{f}+\mathrm{k})+$
fg'. (Here $\mathrm{k} \subseteq \mathrm{g}^{\prime}$.)
Then $f=g h+r$, with $h=f+k, r=f g$ '. Since $g h$ $=\mathrm{fg} \neq 0$, then $\mathrm{gh} \neq 0$.
\square Note:

- f has many divisors. We are looking for some g such that $f=g h+r$, where g, h, r are simple functions. (simplify f with $\mathrm{DC}=\mathrm{g}^{\prime}$)

Boolean Division Incomplete Specified Function

$\square F=(f, d, r)$
\square Definition:
A completely specified logic function g is a
Boolean divisor of F if there exist h, e (completely specified) such that $f \subseteq g h+e \subseteq f+d$ and $\mathrm{gh} \not \subset \mathrm{d}$.
\square Definition:
g is a Boolean factor of F if there exists h such that

$$
f \subseteq g h \subseteq f+d
$$

Boolean Division Incomplete Specified Function

ㅁ Lemma:
$f \subseteq g$ if and only if g is a Boolean factor of F.
Proof:
(\Rightarrow) Assume that $\mathrm{f} \subseteq \mathrm{g}$. Let $\mathrm{h}=\mathrm{f}+\mathrm{k}$ where $\mathrm{kg} \subseteq \mathrm{d}$.
Then $h g=(f+k) g \subseteq(f+d)$.
Since $f \subseteq g, f g=f$ and thus $f \subseteq(f+k) g=g h$.
Thus

$$
f \subseteq(f+k) g \subseteq f+d
$$

(\Leftarrow) Assume that $\mathrm{f}=\mathrm{gh}$.
Suppose \exists minterm m such that $f(m)=1$ but $g(m)=0$.
Then $f(m)=1$ but $g(m) h(m)=0$ implying that $f \not \subset g h$.
Thus $f(m)=1$ implies $g(m)=1$, i.e. $f \subseteq g$
\square Note:

- Since $\mathrm{kg} \subseteq \mathrm{d}, \mathrm{k} \subseteq(\mathrm{d}+\mathrm{g})$. Hence obtain
$h=f+k$ by simplifying f with $D C=\left(d+g^{\prime}\right)$.

Boolean Division Incomplete Specified Function

\square Lemma:
$f g \neq 0$ if and only if g is a Boolean divisor of F.
Proof:
(\Rightarrow) Assume $f g \neq 0$.
Let $f g \subseteq h \subseteq\left(f+d+g^{\prime}\right)$ and $\mathrm{fg}^{\prime} \subseteq \mathrm{e} \subseteq(\mathrm{f}+\mathrm{d})$.
Then $\mathrm{f}=\mathrm{fg}+\mathrm{fg}^{\prime} \subseteq \mathrm{gh}+\mathrm{e} \subseteq \mathrm{g}\left(\mathrm{f}+\mathrm{d}+\mathrm{g}^{\prime}\right)+\mathrm{f}+\mathrm{d}=\mathrm{f}+\mathrm{d}$
Also, $0 \neq \mathrm{fg} \subseteq \mathrm{gh} \xrightarrow{\rightarrow} \mathrm{ghf} \neq 0$.
Now gh $\not \subset \mathrm{d}$, since otherwise ghf $=0$ (since fd $=0$),
verifying the conditions of Boolean division.
(\Leftarrow) Assume that g is a Boolean divisor.
Then $\exists \mathrm{h}$ such that gh $\not \subset \mathrm{d}$ and
$f \subseteq g h+e \subseteq f+d$
Since $g h=(g h f+g h d) \not \subset d$, then $f g h \neq 0$ implying that $f g \neq 0$.

Boolean Division Incomplete Specified Function

\square Recipe for Boolean division:
$(f \subseteq g h+e \subseteq f+d)$

- Choose g such that $\mathrm{fg} \neq 0$

Simplify fg with $D C=\left(d+g^{\prime}\right)$ to get h
■ Simplify fg' with $D C=(d+f g)$ to get e (could use $D C=$ d + gh)
$\square f g \subseteq h \subseteq f+d+g^{\prime}$
$f^{\prime} \subseteq \mathrm{e} \subseteq \mathrm{fg}^{\prime}+\mathrm{d}+\mathrm{fg}=\mathrm{f}+\mathrm{d}$

Boolean Division

- Given $F=(f, d, r)$, write a cover for F in the form $g h+e$ where h and e are minimal in some sense

Algorithm:

1. Create a new variable x to "represent" g
2. Form the don't care set $\left(\tilde{d}=x g^{\prime}+x^{\prime} g\right)$
(Since $x=g$ we don't care if $x \neq g$)
3. Minimize ($\mathrm{f} \tilde{d}^{\prime}, \mathrm{d}+\tilde{d}, \mathrm{r} \tilde{d}^{\prime}$) to get \tilde{f}
4. Return ($\mathrm{h}=\tilde{f} / \mathrm{x}, \mathrm{e}$) where e is the remainder of \tilde{f} (These are simply the terms not containing x)
5. f / x denote weak algebraic division

Boolean Division

- Note that (f $\tilde{d}^{\prime}, \mathrm{d}+\tilde{d}, \mathrm{r} \tilde{d}^{\prime}$) is a partition. We can use ESPRESSO to minimize it, bu't the objective there is to minimize the number of cubes not completely appropriate.
- Example:
$f=a+b c$
$g=a+b$

$$
\tilde{d}=x a^{\prime} b^{\prime}+x^{\prime}(a+b) \text { where } x=g=(a+b)
$$

- Minimize $(a+b c) \tilde{d}^{\prime}=(a+b c)\left(x^{\prime} a^{\prime} b^{\prime}+x(a+b)\right)=x a+x b c$ with $D C=x a^{\prime} b^{\prime}+x^{\prime}(a+b)$
- A minimum cover is $a+b c$ but it does not use x or x^{\prime} !
- Force x in the cover. This yields $f=a+x c=a+(a+b) c$.

Heuristic:
Find answer with x in it and which also uses the least variables (or literals)

Boolean Division

Assume F is a cover for $\mathfrak{I}=(f, d, r)$ and D is a cover for d.
First Algorithm:

```
Algorithm Boolean_Divide1(F,D,G) {
    D
    F
    R
    F
    F
            // (minimum literal support including x)
    F
    H = F4/X // (quotient)
    E = F F - {xH} // (remainder)
    return (HG+E)
}
```


Boolean Division

Assume F is a cover for $\mathfrak{I}=(f, d, r)$ and D is a cover for d.

Second Algorithm:

```
Algorithm Boolean_Divide2(F,D,G)
    D
    F
    R1}=(\mp@subsup{F}{1}{\prime}+\mp@subsup{D}{1}{\prime}\mp@subsup{)}{}{\prime}=\mp@subsup{F}{1}{\prime}\mp@subsup{D}{1}{\prime}=\mp@subsup{F}{}{\prime}\mp@subsup{D}{1}{\prime}/// (off-set
    // F}\mp@subsup{F}{2}{\prime}= remove x' from F F (difference to first alg.
    F
        // (minimum literal support including x)
    F
    H
    H0}=\mp@subsup{F}{4}{}/\mp@subsup{X}{}{\prime}\quad// (first quotient
    E = F F - ({xH
    return (GH }+\mp@subsup{\textrm{G}}{}{\prime}\mp@subsup{\textrm{H}}{0}{}+\textrm{E}
}
```


Boolean Division Minimal Literal Support

\square Support minimization (MINVAR)
Given:
$\mathfrak{J}=(f, d, r)$
$\mathrm{F}=\left\{\mathrm{c}^{1}, \mathrm{c}^{2}, \ldots . \mathrm{c}^{k}\right\} \quad$ (a cover of \mathfrak{I})
$R=\left\{r^{1}, r^{2}, \ldots, r^{m}\right\} \quad$ (a cover of r)

1. Construct blocking matrix $\mathrm{B}^{\text {i }}$ for each c^{i}
2. Form "super" blocking matrix B
3. Find a minimum cover S of B ,
$B=\left[\begin{array}{c}B^{1} \\ B^{2} \\ \vdots \\ B^{k}\end{array}\right]$

$$
S=\left\{j_{1}, j_{\sim}, \ldots, j_{v}\right\} .
$$

4. Modify $\tilde{F} \leftarrow\left\{\tilde{c}_{1}, \tilde{c}^{2}, \ldots, \tilde{c}^{k}\right\}$ where

$$
\left(\tilde{c}^{i}\right)_{j}=\left\{\begin{array}{l}
\left(\tilde{c}^{i}\right)_{j} \text { if } \quad \mathrm{j} \in \mathrm{~S} \\
\{0,1\}=2 \text { otherwise }
\end{array}\right.
$$

Boolean Division Minimal Literal Support

\square Given:
$\mathfrak{I}=(f, d, r)$
$\mathrm{F}=\left\{\mathrm{c}^{1}, \mathrm{c}^{2}, \ldots, \mathrm{c}^{k}\right\} \quad$ (a cover of \mathfrak{I})
$R=\left\{r^{1}, r^{2}\right.$,
(a cover of r)
n : number of variables

Literal Blocking Matrix:

$\left(\hat{B}^{i}\right)_{q, j}=\left\{\begin{array}{l}1 \text { if } \mathrm{v}_{\mathrm{j}} \in \mathrm{c}^{\mathrm{i}} \text { and } \mathrm{v}_{\mathrm{j}}^{\prime} \in \mathrm{r}^{\mathrm{q}} \\ 0 \text { otherwise }\end{array}\right\}$
$\left(\hat{B}^{i}\right)_{q, j+n}=\left\{\begin{array}{l}1 \text { if } v_{j}^{\prime} \in c^{i} \text { and } v_{j} \in r^{q} \\ 0 \text { otherwise }\end{array}\right\}$
Example:
$c^{i}=a^{\prime} e^{\prime}, r^{q}=a^{\prime} c e$

$$
\hat{B}_{q}^{i}=\begin{aligned}
& a b c d e a^{\prime} b^{\prime} c^{\prime} d^{\prime} e^{\prime} \\
& 1000000001
\end{aligned}
$$

Boolean Division Minimal Literal Support

Example (literal blocking matrix)on-set cube: $\quad c^{i}=a b \prime d$
off-set: $\quad r=a a^{\prime} b^{\prime} d^{\prime}+a b d '+a c d^{\prime}+b c d+c^{\prime} d^{\prime}$

	a	b	c	d	a'	b $^{\prime}$	c $^{\prime}$	d'
a'b' $^{\prime} \mathbf{d}^{\prime}$	1	0	0	1	0	0	0	0
abd'	0	0	0	1	0	1	0	0
acd'	0	0	0	1	0	0	0	0
bcd	0	0	0	0	0	1	0	0
c'd' $^{\prime}$	0	0	0	1	0	0	0	0

Minimum column cover $\left\{d, b^{\prime}\right\}$

- Thus b'd is the maximum prime covering ab'd
- Note:

For one cube, minimum literal support is the same as minimum variable support

Boolean Division

\square Example
$F=a+b c$
Algebraic division: $F /(a+b)=0$
Boolean division: $F \div(a+b)=a+c$

1. Let $x=a+b$
2. Generate don't care set: $\mathrm{D}_{1}=\mathrm{x}^{\prime}(\mathrm{a}+\mathrm{b})+\mathrm{xa} \mathrm{b}^{\prime}$.
3. Generate care on-set:

$$
\square F_{1}=F \cap D_{1}^{\prime}=(a+b c)\left(x a+x b+x^{\prime} a^{\prime} b^{\prime}\right)=a x+b c x .
$$

$$
\square \text { Let } C=\left\{c^{1}=a x, c^{2}=b c x\right\}
$$

4. Generate care off-set:

- $R_{1}=F^{\prime} D_{1}^{\prime}=\left(a^{\prime} b^{\prime}+a^{\prime} c^{\prime}\right)\left(x a+x b+x^{\prime} a^{\prime} b^{\prime}\right)=a^{\prime} b c^{\prime} x+a^{\prime} b^{\prime} x^{\prime}$.
\square Let $R=\left\{r^{1}=a^{\prime} b c^{\prime} x, r^{2}=a^{\prime} b^{\prime} x^{\prime}\right\}$.

5. Form super-variable blocking matrix using column order (a, b, c, x), with $a^{\prime}, b^{\prime}, c^{\prime}, x^{\prime}$ omitted.

$$
B=\left[\begin{array}{c}
B^{1} \\
B^{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Boolean Division

\square Example (cont'd)
6. Find minimum column cover $=\{a, c, x\}$
7. Eliminate in F_{1} all variables associated with b

So $F_{1}=a x+b c x=a x+c x=x(a+c)$
8. Simplifying (applying expand, irredundant on F_{1}), we get $F_{1}=a+x c$
9. Thus quotient $=F_{1} / x=c$, remainder $=a$
10. $F=a+b c=a+c x=a+c(a+b)$

It is important that x is forced in the cover!

$$
B=\left[\begin{array}{c}
B^{1} \\
B^{2}
\end{array}\right]=\left[\begin{array}{ccc}
a b c x \\
1 & 0 & 0
\end{array}\right)
$$

