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Division
 Definition:

G is an algebraic factor of F if there exists an algebraic 
expression H such that F = GH (using algebraic 
multiplication)

 Definition:
G is an Boolean factor of F if there exists an expression H 
such that F = GH (using Boolean multiplication)

 Example
 f = ac + ad + bc + bd

 (a+b) is an algebraic factor of f since f = (a+b)(c+d)
 f = ab + ac + bc

 (a+b) is a Boolean factor of f since f = (a+b)(a+c)
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Why Algebraic Methods?

Algebraic methods provide fast algorithms 
for various operations
 Treat logic functions as polynomials 
 Fast algorithms for polynomials exist
 Lost of optimality but results are still good
Can iterate and interleave with Boolean 

operations
In specific instances, slight extensions are available 

to include Boolean methods



43

Weak Division

 Weak division is a specific example of algebraic 
division

 Definition:  Given two algebraic expressions F 
and G, a division is called a weak division if 
1. it is algebraic and
2. R has as few cubes as possible
 The quotient H resulting from weak division is denoted 

by F/G

 Theorem:  Given expressions F and G, H and R 
generated by weak division are unique
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Weak Division
ALGORITHM WEAK_DIV(F,G) { 
// G = {g1,g2,...}, F = {f1,f2,...} are sets of cubes 
foreach gi {

Vgi = 
foreach fj {

if(fj contains all literals of gi) {
vij = fj - literals of gi
Vgi = Vgi  vij

}
}

}

H = ÇiVgi

R = F - GH
return (H,R);

}
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Weak Division
 Example

F = ace + ade + bc + bd + be +a’b + ab
G = ae + b

Vae= c + d

Vb = c + d + e + a’ + a

H = c + d  =  F/G H =  Vgi

R = be + a’b + ab R = F \ GH

F = (ae + b)(c + d) + be + a’b + ab
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Weak Division

We use filters to prevent trying a division
G is not an algebraic divisor of F if

G contains a literal not in F, 
G has more terms than F, 
For any literal, its count in G exceeds that in F, or
F is in the transitive fanin of G
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Weak Division

Weak_Div provides a method to divide an 
expression for a given divisor

How do we find a “good” divisor?
Restrict to algebraic divisors
Generalize to Boolean divisors

Problem:
Given a set of functions { Fi }, find 
common weak (algebraic) divisors.
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Divisor Identification
Primary Divisor

 Definition: 
An expression is cube-free if no cube divides the expression 
evenly (i.e. there is no literal that is common to all the 
cubes)

“ab+c” is cube-free
“ab+ac” and “abc” are not cube-free

 Note: A cube-free expression must have more than one cube

 Definition:
The primary divisors of an expression F are the set of 
expressions

D(F) = {F/c | c is a cube} 
Note that F/c is the quotient of a weak division
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Divisor Identification 
Kernel and Co-Kernel

 Definition:
The kernels of an expression F are the set of 
expressions
K(F) = {G | G  D(F) and G is cube-free}
 In other words, the kernels of an expression F are the 

cube-free primary divisors of F

 Definition:   
A cube c used to obtain the kernel K = F/c is 
called a co-kernel of K
 C(F) is used to denote the set of co-kernels of F
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Divisor Identification 
Kernel and Co-Kernel

Example
x = adf + aef + bdf + bef + cdf + cef + g

= (a + b + c)(d + e)f + g

kernels co-kernels
a+b+c df, ef
d+e af,  bf, cf
(a+b+c)(d+e)f+g 1
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Divisor Identification 
Kernel and Kernel Intersection

 Fundamental Theorem
If two expressions F and G have the property 
that

kF  K(F), kG  K(G)  | kG  kF |  1
(kG and kF have at most one term in common), 
then F and G have no common algebraic divisors 
with more than one cube

 Important:
If we “kernel” all functions and there are no nontrivial 
intersections, then the only common algebraic divisors 
left are single cube divisors
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Divisor Identification 
Kernel Level

 Definition:
A kernel is of level 0 (K0) if it contains no kernels except itself

A kernel is of level n or less (Kn) if it contains at least one kernel 
of level (n-1) or less, but no kernels (except itself) of level n or 
greater

 Kn(F) is the set of kernels of level n or less
 K0(F)  K1(F)  K2(F)  ...  Kn(F)  K(F)
 level-n kernels = Kn(F) \ Kn-1(F) 

 Example:
F  =  (a + b(c + d))(e + g)
k1 =  a + b(c + d)  K1

 K0 ==> level-1
k2 =  c + d  K0

k3 =  e + g  K0
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Divisor Identification 
Kerneling Algorithm

Algorithm KERNEL(j, G) {

R = 
if(CUBE_FREE(G)) R = {G}

for(i=j+1,...,n) {

if(li appears only in one term)   continue

if(k  i, lk  all cubes of G/li) continue

R = R  KERNEL(i, MAKE_CUBE_FREE(G/li))
}

return R

}
MAKE_CUBE_FREE(F) removes algebraic cube factor from F
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Divisor Identification 
Kerneling Algorithm

 KERNEL(0, F) returns all the kernels of F

 Note:
 The test “(k  i, lk  all cubes of G/li )” in the kerneling

algorithm is a major efficiency factor. It also guarantees 
that no co-kernel is tried more than once

 Can be used to generate all co-kernels
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Divisor Identification 
Kerneling Algorithm

 Example
F = abcd + abce + adfg + aefg + adbe + acdef + 
beg

a b

c
(a)

c
d e

(a)

(a)
ac+d+g

fg

d+ecd+g

ef

ce+g

f

b+cf

e

d

b+df

e

b+ef

d

c

d+e

c+e

c+d

b

c d e

(bc + fg)(d + e) + de(b + cf)

c(d+e) + de=
d(c+e) + ce =
...

a(d+e)
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Divisor Identification 
Kerneling Algorithm

 Example
co-kernels kernels

1 a((bc + fg)(d + e) + de(b + cf))) + beg
a (bc + fg)(d + e) + de(b + cf)
ab c(d+e) + de
abc d + e
abd c + e
abe c + d
ac b(d + e) + def
acd b + ef

Note: F/bc = ad + ae = a(d + e)
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Factor
Algorithm FACTOR(F) {

if(F has no factor) return F
// e.g. if |F|=1, or F is an OR of single literals 
// or of no literal appears more than once
D     = CHOOSE_DIVISOR(F)
(Q,R) = DIVIDE(F,D)
return FACTOR(Q)×FACTOR(D) + FACTOR(R) //recur

}

 different heuristics can be applied for CHOOSE_DIVISOR
 different DIVIDE routines may be applied (algebraic division, 

Boolean division)
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Factor
 Example:

F = abc + abd + ae + af + g
D = c + d
Q = ab
P = ab(c + d) + ae + af + g
O = ab(c + d) + a(e + f) + g

 Problem 1: 
O is not optimal since not maximally factored and can be 
further factored to “a(b(c + d) + e + f) + g”
 It occurs when quotient Q is a single cube, and some of the literals 

of Q also appear in the remainder R

Notation:
F  =  original function
D  = divisor
Q  = quotient
P  =  partial factored form
O  = final factored form by 
FACTOR restricting to 
algebraic operations only
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Factor

To solve Problem 1 
Check if the quotient Q is not a single cube, 

then done
 Else, pick a literal l1 in Q which occurs most 

frequently in cubes of F. Divide F by l1 to 
obtain a new divisor D1.
Now, F has a new partial factored form

(l1)(D1) + (R1)
and literal l1 does not appear in R1.
Note: The new divisor D1 contains the original D as a 

divisor because l1 is a literal of Q. When recursively 
factoring D1, D can be discovered again.
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Factor
 Example:

F = ace + ade + bce + bde + cf + df
D = a + b
Q = ce + de
P = (ce + de)(a + b) + (c + d) f
O = e(c + d)(a + b) + (c + d)f

 Problem 2: 
O is not maximally factored because “(c + d)” is common to 
both products “e(c + d)(a + b)” and “(c + d)f”
 The final factored form should have been “(c+d)(e(a + b) + f)”

Notation:
F  =  original function
D  = divisor
Q  = quotient
P  =  partial factored form
O  = final factored form by 
FACTOR restricting to 
algebraic operations only
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Factor

To solve Problem 2
 Essentially, we reverse D and Q!!

Make Q cube-free to get Q1

Obtain a new divisor D1 by dividing F by Q1

If D1 is cube-free, the partial factored form is 
F = (Q1)(D1) + R1, and can recursively factor Q1, D1, 
and R1

If D1 is not cube-free, let D1 = cD2 and D3 = Q1D2. 
We have the partial factoring F = cD3 + R1. Now 
recursively factor D3 and R1.
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Factor
Algorithm GFACTOR(F, DIVISOR, DIVIDE) { // good factor 
D = DIVISOR(F)
if(D = 0) return F
Q = DIVIDE(F,D)
if (|Q| = 1) return LF(F, Q, DIVISOR, DIVIDE)
Q = MAKE_CUBE_FREE(Q)
(D, R) = DIVIDE(F,Q)
if (CUBE_FREE(D)) {

Q = GFACTOR(Q, DIVISOR, DIVIDE)
D = GFACTOR(D, DIVISOR, DIVIDE)
R = GFACTOR(R, DIVISOR, DIVIDE)
return Q × D + R    

} 
else {

C = COMMON_CUBE(D) // common cube factor
return LF(F, C, DIVISOR, DIVIDE) 

}
}
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Factor

Algorithm LF(F, C, DIVISOR, DIVIDE) { // literal 
factor 

L = BEST_LITERAL(F, C)  //L  C most frequent in F 

(Q, R) = DIVIDE(F, L)

C = COMMON_CUBE(Q)      // largest one 

Q = CUBE_FREE(Q)

Q = GFACTOR(Q, DIVISOR, DIVIDE)

R = GFACTOR(R, DIVISOR, DIVIDE)

return L × C × Q + R

}
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Factor

 Various kinds of factoring can be obtained by choosing 
different forms of DIVISOR and DIVIDE

 CHOOSE_DIVISOR:
LITERAL - chooses most frequent literal
QUICK_DIVISOR - chooses the first level-0 kernel
BEST_DIVISOR - chooses the best kernel

 DIVIDE:
Algebraic Division
Boolean Division



65

Factor
 Example 

x = ac + ad + ae + ag + bc + bd +be + bf + ce + cf + df
+ dg

LITERAL_FACTOR:
x = a(c + d + e + g) + b(c + d + e + f) + c(e + f) + d(f + 
g)

QUICK_FACTOR:
x = g(a + d) + (a + b)(c + d + e) + c(e + f) + f(b + d)

GOOD_FACTOR:
(c + d + e)(a + b) + f(b + c + d) + g(a + d) + ce
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Factor
 QUICK_FACTOR uses GFACTOR, first level-0 kernel 

DIVISOR, and WEAK_DIV

 Example
x = ae + afg + afh + bce + bcfg + bcfh + bde + bdfg + 
bcfh
D = c + d                            ---- level-0 kernel (first found)
Q = x/D = b(e + f(g + h))    ---- weak division
Q = e + f(g + h)                  ---- make cube-free
(D, R) = WEAK_DIV(x, Q)     ---- second division
D = a + b(c + d)
x = QD + R    R = 0
x = (e + f(g + h)) (a + b(c + d))
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Decomposition
 Decomposition is the same as factoring except:

 divisors are added as new nodes in the network.
 the new nodes may fan out elsewhere in the network in both positive 

and negative phases

Algorithm DECOMP(fi) {
k = CHOOSE_KERNEL(fi)
if (k == 0) return
fm+j = k                      // create new node m + j
fi = (fi/k)ym+j+(fi/k’)y’m+j+r // change node i using             

// new node for kernel
DECOMP(fi)
DECOMP(fm+j)

}

Similar to factoring, we can define
QUICK_DECOMP: pick a level 0 kernel and improve it
GOOD_DECOMP: pick the best kernel
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Substitution
 Idea: An existing node in a network may be a useful divisor in 

another node. If so, no loss in using it (unless delay is a factor).

 Algebraic substitution consists of the process of algebraically 
dividing the function fi at node i in the network by the function fj
(or by f’j) at node j. During substitution, if fj is an algebraic divisor 
of fi, then fi is transformed into 
fi = qyj + r    (or fi = q1yj + q0y’j + r )

 In practice, this is tried for each node pair of the network. n nodes 
in the network  O(n2) divisions.

ffii

ffjj

yyjj
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Extraction
 Recall: Extraction operation identifies common sub-

expressions and restructures a Boolean network
 Combine decomposition and substitution to provide an 

effective extraction algorithm

Algorithm EXTRACT
foreach node n {

DECOMP(n) // decompose all network nodes
}
foreach node n {

RESUB(n)  // resubstitute using existing nodes
}
ELIMINATE_NODES_WITH_SMALL_VALUE

}
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Extraction

 Kernel Extraction:
1. Find all kernels of all functions
2. Choose kernel intersection with best “value”
3. Create new node with this as function
4. Algebraically substitute new node everywhere
5. Repeat 1,2,3,4 until best value  threshold

New Node
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Extraction
 Example

f1 = ab(c(d + e) + f + g) + h
f2 = ai(c(d + e) + f + j) + k

(only level-0 kernels used in this example)
1. Extraction:

K0(f1) = K0(f2) = {d + e}
K0(f1)  K0(f2) = {d + e}
l = d + e
f1 = ab(cl + f + g) + h
f2 = ai(cl + f + j) + k

2. Extraction: 
K0(f1) = {cl + f + g}; K0(f2) = {cl + f + j)
K0(f1)  K0(f2) = cl + f
m = cl + f 
f1 = ab(m + g) + h
f2 = ai(m + j) + k

No kernel intersections anymore!!
3. Cube extraction:

n = am
f1 = b(n + ag) + h
f2 = i(n + aj) + k
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Extraction
Rectangle Covering

 Alternative method for extraction

 Build co-kernel cube matrix M = RT C
 rows correspond to co-kernels of individual functions
 columns correspond to individual cubes of kernel
 mij = cubes of functions
 mij = 0 if cube not there

 Rectangle covering:
 identify sub-matrix M* = R*T C*, where R*  R, C*  C, 

and m*ij 0
 construct divisor d corresponding to M* as new node
 extract d from all functions
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Extraction
Rectangle Covering

 Example
F = af + bf + ag + cg + ade + bde + cde
G = af + bf + ace + bce
H = ade + cde

Kernels/Co-kernels:
F: (de+f+g)/a

(de + f)/b
(a+b+c)/de
(a + b)/f
(de+g)/c
(a+c)/g

G: (ce+f)/{a,b}
(a+b)/{f,ce}

H: (a+c)/de

a b c ce de f g

F a ade af ag

F b bde bf

F de ade bde cde

F f af bf

M F c cde cg

F g ag cg

G a ace af

G b bce bf

G ce ace bce

G f af bf

H de ade cde
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Extraction
Rectangle Covering
 Example (cont’d)

F = af + bf + ag + cg + ade + bde + cde
G = af + bf + ace + bce
H = ade + cde

 Pick sub-matrix M’
 Extract new expression X

F = fx + ag + cg + dex + cde
G = fx + cex
H =ade + cde
X = a + b

 Update M

a b c ce de f g

F a ade af ag

F b bde bf

F de cde

F f

M F c cde cg

F g ag cg

G a ace af

G b b

ade bde

af bf

ac

ce bf

G ce

G f

H

e b

de

ce

a

a

f b

e

f

de cd
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Extraction
Rectangle Covering

 Number literals before - Number of literals after

 For prior example
 V = 20 - 10 - 2 = 8

, '

( ', ')

:  Number of literals of cube 

: (Number of literals of the cube associated with row ) 1

: Number of literals of the cube associated with column 

r c
ij i j

i R j C i R j C

ij ij

r
i

c
j

V R C v w w

v m

w i

w j

   

  



  

a b c ce d e f g

F a a d e a f a g

F b b d e b f

F d e cd e

F f

M F c cd e cg

F g a g cg

G a a ce a f

G b b

a d e b d e

a f b f

a c

ce b f

G ce

G f

H

e b

d e

ce

a

a

f b

e

f

d e cd
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Extraction
Rectangle Covering 

 Pseudo Boolean Division
 Idea: consider entries in covering matrix that are don’t cares

overlap of rectangles (a+a = a)
product that cancel each other out (aa’ = 0)

 Example:
F = ab’ + ac’ + a’b + a’c + bc’ + b’

Result:
X = a’ + b’ + c’
F = ax + bx + cx

' ' '

' '

' '

' '

' ' '

'

*

*

*

*

' '

*' ' '

*

a b c a b c

F a ab ac

F b a b bc

M F c a c b c

F a a b a c

F b ab b c

F c ac bc
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Fast Kernel Computation
 Non-robustness of kernel extraction

 Recomputation of kernels after every substitution: 
expensive

 Some functions may have many kernels (e.g. symmetric 
functions)

 Cannot measure if kernel can be used as complemented 
node

 Solution: compute only subset of kernels:
 Two-cube “kernel” extraction [Rajski et al ‘90]
 Objects:

2-cube divisors
2-literal cube divisors

 Example: f = abd + a’b’d + a’cd
ab + a’b’, b’ + c and ab + a’c are 2-cube divisors.
a’d is a 2-literal cube divisor.
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Fast Kernel Computation

 Properties of fast divisor (kernel) extraction:
 O(n2) number of 2-cube divisors in an n-cube Boolean 

expression
 Concurrent extraction of 2-cube divisors and 2-literal 

cube divisors
 Handle divisor and complemented divisor simultaneously 

 Example:
f = abd + a’b’d + a’cd

k = ab + a’b’,  k’ = ab’ + a’b (both 2-cube divisors)
j = ab + a’c,    j’ = ab’ + a’c’ (both 2-cube divisors)
c = ab (2-literal cube),     c’ = a’ + b’ (2-cube divisor)
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Fast Kernel Computation
 Generating all two cube divisors

F = {ci}
D(F) = {d | d = make_cube_free(ci + cj)}
 ci, cj are any pair of cubes of cubes in F

 I.e., take all pairs of cubes in F and makes them cube-free
 Divisor generation is O(n2), where n = number of cubes in F

 Example:
F = axe + ag + bcxe + bcg
make_cube_free(ci + cj) =  {xe + g, a + bc, axe + bcg, ag
+ bcxe}
 Note: Function F is made into an algebraic expression before 

generating double-cube divisors
 Not all 2-cube divisors are kernels (why?)

80

Fast Kernel Computation
 Key results of 2-cube divisors

Theorem: Expressions F and G have a common multiple-
cube divisors if and only if D(F)  D(G)  0

Proof:
If:

If D(F)  D(G)  0 then d  D(F)  D(G) which is a double-
cube divisor of F and G. d is a multiple-cube divisor of F and of 
G.

Only if:
Suppose C = {c1, c2, ..., cm} is a multiple-cube divisor of F and 
of G. Take any e = (ci + cj).  If e is cube-free, then e  D(F) 
D(G). If e is not cube-free, then let d = make_cube_free(ci + 
cj).  d has 2 cubes since F and G are algebraic expressions. 
Hence d  D(F)  D(G). 
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Fast Kernel Computation

 Example:
Suppose that C = ab + ac + f is a multiple divisor 
of F and G

If e = ac + f, e is cube-free and e  D(F)  D(G)

If e = ab + ac, d = {b + c}  D(F)  D(G)

As a result of the Theorem, all multiple-cube 
divisors can be “discovered” by using just double-
cube divisors
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Fast Kernel Computation

 Algorithm:
 Generate and store all 2-cube kernels (2-literal cubes) 

and recognize complement divisors
 Find the best 2-cube kernel or 2-literal cube divisor at 

each stage and extract it
 Update 2-cube divisor (2-literal cubes) set after 

extraction
 Iterate extraction of divisors until no more improvement

 Results:
 Much faster
 Quality as good as that of kernel extraction
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Boolean Division

What’s wrong with algebraic division?
Divisor and quotient are orthogonal!
Better factored form might be:

(g1+ g2+ …+gn) (d1+d2+…+dm)
gi and dj may share same literals
redundant product literals

 Example
abe+ace+abd+cd / (ae+d) = 
But: aabe+ace+abd+cd / (ae+d) = (ab+c)

gi and dj may share opposite literals  
product terms are non-existing

 Example
a’b+ac+bc / (a’+c) = 
But: a’a+a’b+ac+bc / (a’+c) = (a+b)
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Boolean Division

 Definition:
g is a Boolean divisor of f if h and r exist such 
that f = gh + r, gh  0

g is said to be a factor of f if, in addition, r = 0, 
i.e., f = gh

 h is called the quotient
 r is called the remainder
 h and r may not be unique
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Boolean Division

Theorem:
A logic function g is a Boolean factor of a 
logic function f if and only if f  g (i.e. fg’
= 0, i.e. g’  f’)

fg
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Boolean Division

Proof:
() g is a Boolean factor of f. Then h such that f = gh; 
Hence, f  g (as well as h).

() f  g  f = gf = g(f + r) = gh.  (Here r is any function 
r  g’.)

 Note:
 h = f works fine for the proof
 Given f and g, h is not unique
 To get a small h is the same as to get a small f + r. Since rg = 

0, this is the same as minimizing (simplifying) f with DC = g’.
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Boolean Division

Theorem:
g is a Boolean divisor of f if and only if fg 
0

f g
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Boolean Division

Proof:
() f = gh + r, gh  0  fg = gh + gr. Since gh 
0, fg  0.

() Assume that fg  0. f = fg + fg’ = g(f + k) + 
fg’. (Here k  g’.) 
Then f = gh + r, with h = f + k, r = fg’. Since gh
= fg  0, then gh  0.

 Note:
 f has many divisors. We are looking for some g such 

that f = gh+r, where g, h, r are simple functions. 
(simplify f with DC = g’) 
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Boolean Division
Incomplete Specified Function

 F = (f,d,r)

 Definition:  
A completely specified logic function g is a 
Boolean divisor of F if there exist h, e 
(completely specified) such that

f   gh + e   f + d
and gh  d.

 Definition:
g is a Boolean factor of F if there exists h such 
that

f   gh  f + d
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Boolean Division
Incomplete Specified Function
 Lemma: 

f  g if and only if g is a Boolean factor of F.

Proof:
() Assume that f  g. Let h = f + k where kg  d. 

Then hg = (f + k) g  (f + d). 
Since f  g, fg = f and thus f   (f + k) g = gh.

Thus
f   (f + k) g   f + d

() Assume that f = gh. 
Suppose  minterm m such that f(m) = 1 but g(m) = 0. 
Then f(m) = 1 but g(m)h(m) = 0 implying that  f  gh. 
Thus f(m) = 1 implies g(m) = 1, i.e. f  g 

 Note: 
 Since kg  d, k  (d + g’). Hence obtain 

h = f + k  by simplifying f with DC = (d + g’).
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Boolean Division
Incomplete Specified Function

 Lemma:
fg  0 if and only if g is a Boolean divisor of F.

Proof:
() Assume fg  0. 

Let fg  h  (f + d + g’) and fg’  e  (f + d). 
Then f = fg + fg’  gh + e  g(f + d + g’) + f + d = f + d
Also, 0  fg  gh  ghf  0. 
Now gh  d, since otherwise ghf = 0 (since fd = 0), 
verifying the conditions of Boolean division.

() Assume that g is a Boolean divisor. 
Then h such that gh  d and
f  gh + e  f + d
Since gh = (ghf + ghd)  d, then fgh  0 implying that fg  0.
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Boolean Division
Incomplete Specified Function

 Recipe for Boolean division:
( f   gh + e   f + d )
 Choose g such that fg  0
 Simplify fg with DC = (d + g’ ) to get  h
 Simplify fg’ with DC = (d + fg) to get  e (could use DC = 

d + gh )

 fg  h   f + d + g’
fg’  e   fg’ + d + fg = f + d 
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Boolean Division

 Given F = (f,d,r), write a cover for F in the form gh + e
where h and e are minimal in some sense

Algorithm:
1. Create a new variable x to “represent” g
2. Form the don’t care set (    = xg’ + x’g)

(Since x = g we don’t care if x  g)
3. Minimize (f    , d +   , r    ) to get    
4. Return (h =    /x, e) where e is the remainder of    

(These are simply the terms not containing x)
5. f/x denote weak algebraic division

d
~

'
~
d '

~
dd

~

f
~

f
~

f
~
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Boolean Division
 Note that (f    , d +    , r     ) is a partition. We can use ESPRESSO to 

minimize it, but the objective there is to minimize the number of cubes -
not completely appropriate.

 Example:
f = a + bc
g = a + b

= xa’b’ + x’(a+b) where x = g = (a+b)

 Minimize (a + bc) = (a + bc) (x’a’b’ + x(a+b)) = xa + xbc
with  DC = xa’b’ + x ’(a+b)

 A minimum cover is a + bc but it does not use x or x’ !
 Force x in the cover. This yields f = a + xc = a + (a+b) c.

Heuristic: 
Find answer with x in it and which also uses the least variables (or literals)
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Boolean Division
Assume F is a cover for  = (f,d,r) and D is a cover for d.

First Algorithm:
Algorithm Boolean_Divide1(F,D,G) {
D1 = D + xG’ + x’G // (don’t care)
F1 = FD1’ // (care on-set)
R1 = (F1 + D1)’ = F1’D1’ = F’D1’ // (care off-set)
F2 = remove x’ from F1 // positive substitution only
F3 = MIN_LITERAL(F2, R1, x) // Filter for Espresso

// (minimum literal support including x)
F4 = ESPRESSO(F3,D1,R1)
H = F4/x                       // (quotient)
E = F4 - {xH}                  // (remainder)
return (HG+E)    

}
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Boolean Division
Assume F is a cover for  = (f,d,r) and D is a cover for d.

Second Algorithm:
Algorithm Boolean_Divide2(F,D,G) {
D1 = D + xG’ + x’G // (don’t care)
F1 = FD1’ // (on-set)
R1 = (F1 + D1)’ = F1’D1’ = F’D1’ // (off-set)
// F2 = remove x’ from F1   (difference to first alg.)
F3 = MIN_LITERAL(F2, R1, x, x’) // Filter for Espresso

// (minimum literal support including x)
F4 = ESPRESSO(F3,D1,R1)
H1 = F4/x                      // (first quotient)
H0 = F4/x’ // (first quotient)
E = F4 - ({xH1}+{x’H0})        // (remainder)
return (GH1+G’H0+E)    

}
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Boolean Division
Minimal Literal Support

 Support minimization (MINVAR)

Given:
 = (f,d,r)
F = {c1, c2, ...., ck}       (a cover of )
R = {r1, r2, ..., rm}        (a cover of r)
1. Construct blocking matrix Bi for each ci

2. Form “super” blocking matrix B

3. Find a minimum cover S of B, 

S = { j1, j2, ..., jv }.

4. Modify                                  where
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Boolean Division
Minimal Literal Support

 Given:
 = (f,d,r)
F = {c1, c2, ...., ck}      (a cover of )
R = {r1, r2, ..., rm}       (a cover of r)
n: number of variables
Literal Blocking Matrix:

 Example: 
ci = ad’e’, rq = a’ce
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Boolean Division
Minimal Literal Support

 Example (literal blocking matrix)
on-set cube:   ci = ab’d
off-set:   r = a’b’d’ + abd’ + acd’ + bcd + c’d’

 Minimum column cover {d,b’}
 Thus b’d is the maximum prime covering ab’d

 Note: 
For one cube, minimum literal support is the same as 
minimum variable support

a b c d a’ b’ c’ d’
a’b’d’ 1 0 0 1 0 0 0 0
abd’ 0 0 0 1 0 1 0 0
acd’ 0 0 0 1 0 0 0 0
bcd 0 0 0 0 0 1 0 0
c’d’ 0 0 0 1 0 0 0 0
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Boolean Division
 Example

F = a + bc
Algebraic division: F/(a + b) = 0
Boolean division:  F  (a + b) = a + c
1. Let x = a + b
2. Generate don’t care set: D1 = x’(a + b) + xa’b’.
3. Generate care on-set: 

 F1 = F  D1’ = (a + bc)(xa + xb +x’a’b’) =ax + bcx.
 Let C = {c1 = ax, c2 = bcx}

4. Generate care off-set: 
 R1 = F’D1’ = (a’b’ + a’c’)(xa + xb + x’a’b’) =a’bc’x + a’b’x’. 
 Let R = {r1 = a’bc’x, r2 = a’b’x’}.

5. Form super-variable blocking matrix using column order (a, b, c, x), 
with a’,b’,c’,x’ omitted.
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Boolean Division
 Example (cont’d)

6. Find minimum column cover = {a, c, x}
7. Eliminate in F1 all variables associated with b 

So F1 = ax + bcx = ax + cx = x(a + c)
8. Simplifying (applying expand, irredundant on F1 ), we get F1 = a + xc
9. Thus quotient = F1/x = c, remainder = a
10.F = a + bc = a + cx = a + c(a + b)

It is important that x is forced in the cover!
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