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Division
 Definition:

G is an algebraic factor of F if there exists an algebraic 
expression H such that F = GH (using algebraic 
multiplication)

 Definition:
G is an Boolean factor of F if there exists an expression H 
such that F = GH (using Boolean multiplication)

 Example
 f = ac + ad + bc + bd

 (a+b) is an algebraic factor of f since f = (a+b)(c+d)
 f = ab + ac + bc

 (a+b) is a Boolean factor of f since f = (a+b)(a+c)
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Why Algebraic Methods?

Algebraic methods provide fast algorithms 
for various operations
 Treat logic functions as polynomials 
 Fast algorithms for polynomials exist
 Lost of optimality but results are still good
Can iterate and interleave with Boolean 

operations
In specific instances, slight extensions are available 

to include Boolean methods
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Weak Division
 Weak division is a specific example of algebraic 

division

 Definition:  Given two algebraic expressions F 
and G, a division is called a weak division if 
1. it is algebraic and
2. R has as few cubes as possible
 The quotient H resulting from weak division is denoted 

by F/G

 Theorem:  Given expressions F and G, H and R 
generated by weak division are unique
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Weak Division
ALGORITHM WEAK_DIV(F,G) { 
// G = {g1,g2,...}, F = {f1,f2,...} are sets of cubes 
foreach gi {

Vgi = 
foreach fj {

if(fj contains all literals of gi) {
vij = fj - literals of gi
Vgi = Vgi  vij

}
}

}
H = ÇiVgi
R = F - GH
return (H,R);

}
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Weak Division
 Example

F = ace + ade + bc + bd + be +a’b + ab
G = ae + b

Vae= c + d
Vb = c + d + e + a’ + a

H = c + d  =  F/G H =  Vgi

R = be + a’b + ab R = F \ GH

F = (ae + b)(c + d) + be + a’b + ab
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Weak Division

We use filters to prevent trying a division
G is not an algebraic divisor of F if

G contains a literal not in F, 
G has more terms than F, 
For any literal, its count in G exceeds that in F, or
F is in the transitive fanin of G
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Weak Division
Weak_Div provides a method to divide an 

expression for a given divisor

How do we find a “good” divisor?
Restrict to algebraic divisors
Generalize to Boolean divisors

Problem:
Given a set of functions { Fi }, find 
common weak (algebraic) divisors.
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Divisor Identification
Primary Divisor
 Definition: 

An expression is cube-free if no cube divides the expression 
evenly (i.e. there is no literal that is common to all the 
cubes)

“ab+c” is cube-free
“ab+ac” and “abc” are not cube-free

 Note: A cube-free expression must have more than one cube

 Definition:
The primary divisors of an expression F are the set of 
expressions

D(F) = {F/c | c is a cube} 
Note that F/c is the quotient of a weak division
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Divisor Identification 
Kernel and Co-Kernel

 Definition:
The kernels of an expression F are the set of 
expressions
K(F) = {G | G  D(F) and G is cube-free}
 In other words, the kernels of an expression F are the 

cube-free primary divisors of F

 Definition:   
A cube c used to obtain the kernel K = F/c is 
called a co-kernel of K
 C(F) is used to denote the set of co-kernels of F

50

Divisor Identification 
Kernel and Co-Kernel

Example
x = adf + aef + bdf + bef + cdf + cef + g

= (a + b + c)(d + e)f + g

kernels co-kernels
a+b+c df, ef
d+e af,  bf, cf
(a+b+c)(d+e)f+g 1
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Divisor Identification 
Kernel and Kernel Intersection
 Fundamental Theorem

If two expressions F and G have the property 
that

kF  K(F), kG  K(G)  | kG  kF |  1
(kG and kF have at most one term in common), 
then F and G have no common algebraic divisors 
with more than one cube

 Important:
If we “kernel” all functions and there are no nontrivial 
intersections, then the only common algebraic divisors 
left are single cube divisors
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Divisor Identification 
Kernel Level
 Definition:

A kernel is of level 0 (K0) if it contains no kernels except itself

A kernel is of level n or less (Kn) if it contains at least one kernel 
of level (n-1) or less, but no kernels (except itself) of level n or 
greater

 Kn(F) is the set of kernels of level n or less
 K0(F)  K1(F)  K2(F)  ...  Kn(F)  K(F)
 level-n kernels = Kn(F) \ Kn-1(F) 

 Example:
F  =  (a + b(c + d))(e + g)
k1 =  a + b(c + d)  K1

 K0 ==> level-1
k2 =  c + d  K0

k3 =  e + g  K0
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Divisor Identification 
Kerneling Algorithm
Algorithm KERNEL(j, G) {

R = 
if(CUBE_FREE(G)) R = {G}
for(i=j+1,...,n) {

if(li appears only in one term)   continue
if(k  i, lk  all cubes of G/li) continue
R = R  KERNEL(i, MAKE_CUBE_FREE(G/li))

}
return R

}
MAKE_CUBE_FREE(F) removes algebraic cube factor from F
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Divisor Identification 
Kerneling Algorithm

 KERNEL(0, F) returns all the kernels of F

 Note:
 The test “(k  i, lk  all cubes of G/li )” in the kerneling

algorithm is a major efficiency factor. It also guarantees 
that no co-kernel is tried more than once

 Can be used to generate all co-kernels
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Divisor Identification 
Kerneling Algorithm
 Example

F = abcd + abce + adfg + aefg + adbe + acdef + 
beg

a b
c

(a)
c

d e
(a)

(a) ac+d+g
fg

d+ecd+g
ef

ce+g
f

b+cf
e

d

b+df
e

b+ef
d

c

d+e

c+e

c+d

b

c d e

(bc + fg)(d + e) + de(b + cf)

c(d+e) + de=
d(c+e) + ce =
...

a(d+e)
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Divisor Identification 
Kerneling Algorithm

 Example
co-kernels kernels

1 a((bc + fg)(d + e) + de(b + cf))) + beg
a (bc + fg)(d + e) + de(b + cf)
ab c(d+e) + de
abc d + e
abd c + e
abe c + d
ac b(d + e) + def
acd b + ef

Note: F/bc = ad + ae = a(d + e)
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Factor
Algorithm FACTOR(F) {

if(F has no factor) return F
// e.g. if |F|=1, or F is an OR of single literals 
// or of no literal appears more than once
D     = CHOOSE_DIVISOR(F)
(Q,R) = DIVIDE(F,D)
return FACTOR(Q)×FACTOR(D) + FACTOR(R) //recur

}

 different heuristics can be applied for CHOOSE_DIVISOR
 different DIVIDE routines may be applied (algebraic division, 

Boolean division)
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Factor
 Example:

F = abc + abd + ae + af + g
D = c + d
Q = ab
P = ab(c + d) + ae + af + g
O = ab(c + d) + a(e + f) + g

 Problem 1: 
O is not optimal since not maximally factored and can be 
further factored to “a(b(c + d) + e + f) + g”
 It occurs when quotient Q is a single cube, and some of the literals 

of Q also appear in the remainder R

Notation:
F  =  original function
D  = divisor
Q  = quotient
P  =  partial factored form
O  = final factored form by 
FACTOR restricting to 
algebraic operations only
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Factor
To solve Problem 1 
Check if the quotient Q is not a single cube, 

then done
 Else, pick a literal l1 in Q which occurs most 

frequently in cubes of F. Divide F by l1 to 
obtain a new divisor D1.
Now, F has a new partial factored form

(l1)(D1) + (R1)
and literal l1 does not appear in R1.
Note: The new divisor D1 contains the original D as a 

divisor because l1 is a literal of Q. When recursively 
factoring D1, D can be discovered again.
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Factor
 Example:

F = ace + ade + bce + bde + cf + df
D = a + b
Q = ce + de
P = (ce + de)(a + b) + (c + d) f
O = e(c + d)(a + b) + (c + d)f

 Problem 2: 
O is not maximally factored because “(c + d)” is common to 
both products “e(c + d)(a + b)” and “(c + d)f”
 The final factored form should have been “(c+d)(e(a + b) + f)”

Notation:
F  =  original function
D  = divisor
Q  = quotient
P  =  partial factored form
O  = final factored form by 
FACTOR restricting to 
algebraic operations only
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Factor

To solve Problem 2
 Essentially, we reverse D and Q!!

Make Q cube-free to get Q1

Obtain a new divisor D1 by dividing F by Q1

If D1 is cube-free, the partial factored form is 
F = (Q1)(D1) + R1, and can recursively factor Q1, D1, 
and R1

If D1 is not cube-free, let D1 = cD2 and D3 = Q1D2. 
We have the partial factoring F = cD3 + R1. Now 
recursively factor D3 and R1.
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Factor
Algorithm GFACTOR(F, DIVISOR, DIVIDE) { // good factor 
D = DIVISOR(F)
if(D = 0) return F
Q = DIVIDE(F,D)
if (|Q| = 1) return LF(F, Q, DIVISOR, DIVIDE)
Q = MAKE_CUBE_FREE(Q)
(D, R) = DIVIDE(F,Q)
if (CUBE_FREE(D)) {

Q = GFACTOR(Q, DIVISOR, DIVIDE)
D = GFACTOR(D, DIVISOR, DIVIDE)
R = GFACTOR(R, DIVISOR, DIVIDE)
return Q × D + R    

} 
else {

C = COMMON_CUBE(D) // common cube factor
return LF(F, C, DIVISOR, DIVIDE) 

}
}
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Factor
Algorithm LF(F, C, DIVISOR, DIVIDE) { // literal 

factor 
L = BEST_LITERAL(F, C)  //L  C most frequent in F 
(Q, R) = DIVIDE(F, L)
C = COMMON_CUBE(Q)      // largest one 
Q = CUBE_FREE(Q)
Q = GFACTOR(Q, DIVISOR, DIVIDE)
R = GFACTOR(R, DIVISOR, DIVIDE)
return L × C × Q + R

}
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Factor
 Various kinds of factoring can be obtained by choosing 

different forms of DIVISOR and DIVIDE

 CHOOSE_DIVISOR:
LITERAL - chooses most frequent literal
QUICK_DIVISOR - chooses the first level-0 kernel
BEST_DIVISOR - chooses the best kernel

 DIVIDE:
Algebraic Division
Boolean Division
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Factor
 Example 

x = ac + ad + ae + ag + bc + bd +be + bf + ce + cf + df
+ dg

LITERAL_FACTOR:
x = a(c + d + e + g) + b(c + d + e + f) + c(e + f) + d(f + 
g)

QUICK_FACTOR:
x = g(a + d) + (a + b)(c + d + e) + c(e + f) + f(b + d)

GOOD_FACTOR:
(c + d + e)(a + b) + f(b + c + d) + g(a + d) + ce
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Factor
 QUICK_FACTOR uses GFACTOR, first level-0 kernel 

DIVISOR, and WEAK_DIV

 Example
x = ae + afg + afh + bce + bcfg + bcfh + bde + bdfg + 
bcfh
D = c + d                            ---- level-0 kernel (first found)
Q = x/D = b(e + f(g + h))    ---- weak division
Q = e + f(g + h)                  ---- make cube-free
(D, R) = WEAK_DIV(x, Q)     ---- second division
D = a + b(c + d)
x = QD + R    R = 0
x = (e + f(g + h)) (a + b(c + d))
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Decomposition
 Decomposition is the same as factoring except:

 divisors are added as new nodes in the network.
 the new nodes may fan out elsewhere in the network in both positive 

and negative phases

Algorithm DECOMP(fi) {
k = CHOOSE_KERNEL(fi)if (k == 0) return
fm+j = k                      // create new node m + j
fi = (fi/k)ym+j+(fi/k’)y’m+j+r // change node i using             

// new node for kernel
DECOMP(fi)DECOMP(fm+j)

}

Similar to factoring, we can define
QUICK_DECOMP: pick a level 0 kernel and improve it
GOOD_DECOMP: pick the best kernel
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Substitution
 Idea: An existing node in a network may be a useful divisor in 

another node. If so, no loss in using it (unless delay is a factor).

 Algebraic substitution consists of the process of algebraically 
dividing the function fi at node i in the network by the function fj
(or by f’j) at node j. During substitution, if fj is an algebraic divisor 
of fi, then fi is transformed into 
fi = qyj + r    (or fi = q1yj + q0y’j + r )

 In practice, this is tried for each node pair of the network. n nodes 
in the network  O(n2) divisions.

ffii

ffjj

yyjj
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Extraction
 Recall: Extraction operation identifies common sub-

expressions and restructures a Boolean network
 Combine decomposition and substitution to provide an 

effective extraction algorithm

Algorithm EXTRACT
foreach node n {

DECOMP(n) // decompose all network nodes
}
foreach node n {

RESUB(n)  // resubstitute using existing nodes
}
ELIMINATE_NODES_WITH_SMALL_VALUE

}
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Extraction

 Kernel Extraction:
1. Find all kernels of all functions
2. Choose kernel intersection with best “value”
3. Create new node with this as function
4. Algebraically substitute new node everywhere
5. Repeat 1,2,3,4 until best value  threshold

New Node
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Extraction
 Example

f1 = ab(c(d + e) + f + g) + h
f2 = ai(c(d + e) + f + j) + k

(only level-0 kernels used in this example)
1. Extraction:

K0(f1) = K0(f2) = {d + e}
K0(f1)  K0(f2) = {d + e}
l = d + e
f1 = ab(cl + f + g) + h
f2 = ai(cl + f + j) + k

2. Extraction: 
K0(f1) = {cl + f + g}; K0(f2) = {cl + f + j)
K0(f1)  K0(f2) = cl + f
m = cl + f 
f1 = ab(m + g) + h
f2 = ai(m + j) + k

No kernel intersections anymore!!
3. Cube extraction:

n = am
f1 = b(n + ag) + h
f2 = i(n + aj) + k
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Extraction
Rectangle Covering
 Alternative method for extraction

 Build co-kernel cube matrix M = RT C
 rows correspond to co-kernels of individual functions
 columns correspond to individual cubes of kernel
 mij = cubes of functions
 mij = 0 if cube not there

 Rectangle covering:
 identify sub-matrix M* = R*T C*, where R*  R, C*  C, 

and m*ij 0
 construct divisor d corresponding to M* as new node
 extract d from all functions
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Extraction
Rectangle Covering
 Example

F = af + bf + ag + cg + ade + bde + cde
G = af + bf + ace + bce
H = ade + cde

Kernels/Co-kernels:
F: (de+f+g)/a

(de + f)/b
(a+b+c)/de
(a + b)/f
(de+g)/c
(a+c)/g

G: (ce+f)/{a,b}
(a+b)/{f,ce}

H: (a+c)/de

a b c ce de f g
F a ade af ag
F b bde bf
F de ade bde cde
F f af bf

M F c cde cg
F g ag cg
G a ace af
G b bce bf
G ce ace bce
G f af bf
H de ade cde


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Extraction
Rectangle Covering
 Example (cont’d)

F = af + bf + ag + cg + ade + bde + cde
G = af + bf + ace + bce
H = ade + cde

 Pick sub-matrix M’
 Extract new expression X

F = fx + ag + cg + dex + cde
G = fx + cex
H =ade + cde
X = a + b

 Update M

a b c ce de f g
F a ade af ag
F b bde bf
F de cde
F f

M F c cde cg
F g ag cg
G a ace af
G b b

ade bde
af bf

ac
ce bf

G ce
G f
H

e b

de

ce
a
a

f b
e

f
de cd


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Extraction
Rectangle Covering
 Number literals before - Number of literals after

 For prior example
 V = 20 - 10 - 2 = 8

, '
( ', ')

:  Number of literals of cube 

: (Number of literals of the cube associated with row ) 1

: Number of literals of the cube associated with column 

r c
ij i j

i R j C i R j C

ij ij

r
i
c
j

V R C v w w

v m

w i
w j

   

  



  

a b c ce d e f g
F a a d e a f a g
F b b d e b f
F d e cd e
F f

M F c cd e cg
F g a g cg
G a a ce a f
G b b

a d e b d e
a f b f

a c
ce b f

G ce
G f
H

e b

d e

ce
a

a
f b

e
f

d e cd


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Extraction
Rectangle Covering 
 Pseudo Boolean Division

 Idea: consider entries in covering matrix that are don’t cares
overlap of rectangles (a+a = a)
product that cancel each other out (aa’ = 0)

 Example:
F = ab’ + ac’ + a’b + a’c + bc’ + b’

Result:
X = a’ + b’ + c’
F = ax + bx + cx

' ' '
' '

' '
' '

' ' '
'

*
*

*
*

' '
*' ' '

*

a b c a b c
F a ab ac
F b a b bc

M F c a c b c
F a a b a c
F b ab b c
F c ac bc


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Fast Kernel Computation
 Non-robustness of kernel extraction

 Recomputation of kernels after every substitution: 
expensive

 Some functions may have many kernels (e.g. symmetric 
functions)

 Cannot measure if kernel can be used as complemented 
node

 Solution: compute only subset of kernels:
 Two-cube “kernel” extraction [Rajski et al ‘90]
 Objects:

2-cube divisors
2-literal cube divisors

 Example: f = abd + a’b’d + a’cd
ab + a’b’, b’ + c and ab + a’c are 2-cube divisors.
a’d is a 2-literal cube divisor.
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Fast Kernel Computation
 Properties of fast divisor (kernel) extraction:

 O(n2) number of 2-cube divisors in an n-cube Boolean 
expression

 Concurrent extraction of 2-cube divisors and 2-literal 
cube divisors

 Handle divisor and complemented divisor simultaneously 

 Example:
f = abd + a’b’d + a’cd

k = ab + a’b’,  k’ = ab’ + a’b (both 2-cube divisors)
j = ab + a’c,    j’ = ab’ + a’c’ (both 2-cube divisors)
c = ab (2-literal cube),     c’ = a’ + b’ (2-cube divisor)
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Fast Kernel Computation
 Generating all two cube divisors

F = {ci}
D(F) = {d | d = make_cube_free(ci + cj)}
 ci, cj are any pair of cubes of cubes in F

 I.e., take all pairs of cubes in F and makes them cube-free
 Divisor generation is O(n2), where n = number of cubes in F

 Example:
F = axe + ag + bcxe + bcg
make_cube_free(ci + cj) =  {xe + g, a + bc, axe + bcg, ag
+ bcxe}
 Note: Function F is made into an algebraic expression before 

generating double-cube divisors
 Not all 2-cube divisors are kernels (why?)
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Fast Kernel Computation
 Key results of 2-cube divisors

Theorem: Expressions F and G have a common multiple-
cube divisors if and only if D(F)  D(G)  0

Proof:
If:

If D(F)  D(G)  0 then d  D(F)  D(G) which is a double-
cube divisor of F and G. d is a multiple-cube divisor of F and of 
G.

Only if:
Suppose C = {c1, c2, ..., cm} is a multiple-cube divisor of F and 
of G. Take any e = (ci + cj).  If e is cube-free, then e  D(F) 
D(G). If e is not cube-free, then let d = make_cube_free(ci + 
cj).  d has 2 cubes since F and G are algebraic expressions. 
Hence d  D(F)  D(G). 



81

Fast Kernel Computation
 Example:

Suppose that C = ab + ac + f is a multiple divisor 
of F and G

If e = ac + f, e is cube-free and e  D(F)  D(G)

If e = ab + ac, d = {b + c}  D(F)  D(G)

As a result of the Theorem, all multiple-cube 
divisors can be “discovered” by using just double-
cube divisors
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Fast Kernel Computation
 Algorithm:

 Generate and store all 2-cube kernels (2-literal cubes) 
and recognize complement divisors

 Find the best 2-cube kernel or 2-literal cube divisor at 
each stage and extract it

 Update 2-cube divisor (2-literal cubes) set after 
extraction

 Iterate extraction of divisors until no more improvement

 Results:
 Much faster
 Quality as good as that of kernel extraction
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Boolean Division
What’s wrong with algebraic division?
Divisor and quotient are orthogonal!
Better factored form might be:

(g1+ g2+ …+gn) (d1+d2+…+dm)
gi and dj may share same literals
redundant product literals

 Example
abe+ace+abd+cd / (ae+d) = 
But: aabe+ace+abd+cd / (ae+d) = (ab+c)

gi and dj may share opposite literals  
product terms are non-existing

 Example
a’b+ac+bc / (a’+c) = 
But: a’a+a’b+ac+bc / (a’+c) = (a+b)
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Boolean Division
 Definition:

g is a Boolean divisor of f if h and r exist such 
that f = gh + r, gh  0

g is said to be a factor of f if, in addition, r = 0, 
i.e., f = gh

 h is called the quotient
 r is called the remainder
 h and r may not be unique
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Boolean Division

Theorem:
A logic function g is a Boolean factor of a 
logic function f if and only if f  g (i.e. fg’
= 0, i.e. g’  f’)

fg
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Boolean Division
Proof:

() g is a Boolean factor of f. Then h such that f = gh; 
Hence, f  g (as well as h).

() f  g  f = gf = g(f + r) = gh.  (Here r is any function 
r  g’.)

 Note:
 h = f works fine for the proof
 Given f and g, h is not unique
 To get a small h is the same as to get a small f + r. Since rg = 

0, this is the same as minimizing (simplifying) f with DC = g’.
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Boolean Division

Theorem:
g is a Boolean divisor of f if and only if fg 
0

f g
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Boolean Division
Proof:

() f = gh + r, gh  0  fg = gh + gr. Since gh 
0, fg  0.

() Assume that fg  0. f = fg + fg’ = g(f + k) + 
fg’. (Here k  g’.) 
Then f = gh + r, with h = f + k, r = fg’. Since gh
= fg  0, then gh  0.

 Note:
 f has many divisors. We are looking for some g such 

that f = gh+r, where g, h, r are simple functions. 
(simplify f with DC = g’) 
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Boolean Division
Incomplete Specified Function
 F = (f,d,r)

 Definition:  
A completely specified logic function g is a 
Boolean divisor of F if there exist h, e 
(completely specified) such that

f   gh + e   f + d
and gh  d.

 Definition:
g is a Boolean factor of F if there exists h such 
that

f   gh  f + d
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Boolean Division
Incomplete Specified Function
 Lemma: 

f  g if and only if g is a Boolean factor of F.

Proof:
() Assume that f  g. Let h = f + k where kg  d. 

Then hg = (f + k) g  (f + d). 
Since f  g, fg = f and thus f   (f + k) g = gh.

Thus
f   (f + k) g   f + d

() Assume that f = gh. 
Suppose  minterm m such that f(m) = 1 but g(m) = 0. 
Then f(m) = 1 but g(m)h(m) = 0 implying that  f  gh. 
Thus f(m) = 1 implies g(m) = 1, i.e. f  g 

 Note: 
 Since kg  d, k  (d + g’). Hence obtain 

h = f + k  by simplifying f with DC = (d + g’).
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Boolean Division
Incomplete Specified Function
 Lemma:

fg  0 if and only if g is a Boolean divisor of F.

Proof:
() Assume fg  0. 

Let fg  h  (f + d + g’) and fg’  e  (f + d). 
Then f = fg + fg’  gh + e  g(f + d + g’) + f + d = f + d
Also, 0  fg  gh  ghf  0. 
Now gh  d, since otherwise ghf = 0 (since fd = 0), 
verifying the conditions of Boolean division.

() Assume that g is a Boolean divisor. 
Then h such that gh  d and
f  gh + e  f + d
Since gh = (ghf + ghd)  d, then fgh  0 implying that fg  0.
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Boolean Division
Incomplete Specified Function
 Recipe for Boolean division:

( f   gh + e   f + d )
 Choose g such that fg  0
 Simplify fg with DC = (d + g’ ) to get  h
 Simplify fg’ with DC = (d + fg) to get  e (could use DC = 

d + gh )

 fg  h   f + d + g’
fg’  e   fg’ + d + fg = f + d 
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Boolean Division
 Given F = (f,d,r), write a cover for F in the form gh + e

where h and e are minimal in some sense

Algorithm:
1. Create a new variable x to “represent” g
2. Form the don’t care set (    = xg’ + x’g)

(Since x = g we don’t care if x  g)
3. Minimize (f    , d +   , r    ) to get    
4. Return (h =    /x, e) where e is the remainder of    

(These are simply the terms not containing x)
5. f/x denote weak algebraic division

d~

'~d '~dd~

f~f~
f~
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Boolean Division
 Note that (f    , d +    , r     ) is a partition. We can use ESPRESSO to 

minimize it, but the objective there is to minimize the number of cubes -
not completely appropriate.

 Example:
f = a + bc
g = a + b

= xa’b’ + x’(a+b) where x = g = (a+b)

 Minimize (a + bc) = (a + bc) (x’a’b’ + x(a+b)) = xa + xbc
with  DC = xa’b’ + x ’(a+b)

 A minimum cover is a + bc but it does not use x or x’ !
 Force x in the cover. This yields f = a + xc = a + (a+b) c.

Heuristic: 
Find answer with x in it and which also uses the least variables (or literals)

'~d d~

d~

'~d

'~d
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Boolean Division
Assume F is a cover for  = (f,d,r) and D is a cover for d.

First Algorithm:
Algorithm Boolean_Divide1(F,D,G) {
D1 = D + xG’ + x’G // (don’t care)
F1 = FD1’ // (care on-set)
R1 = (F1 + D1)’ = F1’D1’ = F’D1’ // (care off-set)
F2 = remove x’ from F1 // positive substitution only
F3 = MIN_LITERAL(F2, R1, x) // Filter for Espresso

// (minimum literal support including x)
F4 = ESPRESSO(F3,D1,R1)
H = F4/x                       // (quotient)
E = F4 - {xH}                  // (remainder)
return (HG+E)    

}
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Boolean Division
Assume F is a cover for  = (f,d,r) and D is a cover for d.

Second Algorithm:
Algorithm Boolean_Divide2(F,D,G) {
D1 = D + xG’ + x’G // (don’t care)
F1 = FD1’ // (on-set)
R1 = (F1 + D1)’ = F1’D1’ = F’D1’ // (off-set)
// F2 = remove x’ from F1   (difference to first alg.)
F3 = MIN_LITERAL(F2, R1, x, x’) // Filter for Espresso

// (minimum literal support including x)
F4 = ESPRESSO(F3,D1,R1)
H1 = F4/x                      // (first quotient)
H0 = F4/x’ // (first quotient)
E = F4 - ({xH1}+{x’H0})        // (remainder)return (GH1+G’H0+E)    

}
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Boolean Division
Minimal Literal Support
 Support minimization (MINVAR)

Given:
 = (f,d,r)
F = {c1, c2, ...., ck}       (a cover of )
R = {r1, r2, ..., rm}        (a cover of r)
1. Construct blocking matrix Bi for each ci

2. Form “super” blocking matrix B
3. Find a minimum cover S of B, 

S = { j1, j2, ..., jv }.
4. Modify                                  where























Bk

B2
B1

B


 kcccF ~,...,~,~~
21

 
 

 










otherwise21,0

Sjif
~

~ i
i c

c j
j
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Boolean Division
Minimal Literal Support
 Given:

 = (f,d,r)
F = {c1, c2, ...., ck}      (a cover of )
R = {r1, r2, ..., rm}       (a cover of r)
n: number of variables
Literal Blocking Matrix:

 Example: 
ci = ad’e’, rq = a’ce

 

  





 









 



 otherwise0
rvandcv'if1

otherwise0
rv'andcvif1

q
j

i
j

,

q
j

i
j

ˆ

ˆ

i

i

B

B

njq

q,j

1
'

0
'

0
'

0
'

0
'

00001
ˆ edcbaedcba
Bi

q 
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Boolean Division
Minimal Literal Support
 Example (literal blocking matrix)

on-set cube:   ci = ab’d
off-set:   r = a’b’d’ + abd’ + acd’ + bcd + c’d’

 Minimum column cover {d,b’}
 Thus b’d is the maximum prime covering ab’d

 Note: 
For one cube, minimum literal support is the same as 
minimum variable support

a b c d a’ b’ c’ d’
a’b’d’ 1 0 0 1 0 0 0 0
abd’ 0 0 0 1 0 1 0 0
acd’ 0 0 0 1 0 0 0 0
bcd 0 0 0 0 0 1 0 0
c’d’ 0 0 0 1 0 0 0 0
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Boolean Division
 Example

F = a + bc
Algebraic division: F/(a + b) = 0
Boolean division:  F  (a + b) = a + c
1. Let x = a + b
2. Generate don’t care set: D1 = x’(a + b) + xa’b’.
3. Generate care on-set: 

 F1 = F  D1’ = (a + bc)(xa + xb +x’a’b’) =ax + bcx.
 Let C = {c1 = ax, c2 = bcx}

4. Generate care off-set: 
 R1 = F’D1’ = (a’b’ + a’c’)(xa + xb + x’a’b’) =a’bc’x + a’b’x’. 
 Let R = {r1 = a’bc’x, r2 = a’b’x’}.

5. Form super-variable blocking matrix using column order (a, b, c, x), 
with a’,b’,c’,x’ omitted.





























1
0
1
0

0
1
0
0

1
0
0
0

0
0
1
1

2

1

B
BB
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Boolean Division
 Example (cont’d)

6. Find minimum column cover = {a, c, x}
7. Eliminate in F1 all variables associated with b 

So F1 = ax + bcx = ax + cx = x(a + c)
8. Simplifying (applying expand, irredundant on F1 ), we get F1 = a + xc
9. Thus quotient = F1/x = c, remainder = a
10.F = a + bc = a + cx = a + c(a + b)

It is important that x is forced in the cover!





























1
0
1
0

0
1
0
0

1
0
0
0

0
0
1
1

2

1

B
BB

a b c x


