Division

Definition:

G is an algebraic factor of F if there exists an algebraic expression H such that F = GH (using algebraic multiplication)

Definition:

G is an Boolean factor of F if there exists an expression H such that F = GH (using Boolean multiplication)

Example

- $\blacksquare f = ac + ad + bc + bd$
- (a+b) is an algebraic factor of f since f = (a+b)(c+d)■ f = $\neg ab$ + ac + bc
 - \Box (a+b) is a Boolean factor of f since f = (a+b)(\neg a+c)

Why Algebraic Methods?

- Algebraic methods provide fast algorithms for various operations
 - Treat logic functions as polynomials
 - Fast algorithms for polynomials exist
 - Lost of optimality but results are still good
 - Can iterate and interleave with Boolean operations
 - In specific instances, slight extensions are available to include Boolean methods

Weak Division

- Weak division is a specific example of algebraic division
- Definition: Given two algebraic expressions F and G, a division is called a weak division if
 - 1. it is algebraic and
 - 2. R has as few cubes as possible
 - The quotient H resulting from weak division is denoted by F/G
- Theorem: Given expressions F and G, H and R generated by weak division are unique

Weak Division

```
ALGORITHM WEAK_DIV(F,G)
```

```
// G = {g<sub>1</sub>,g<sub>2</sub>,...}, F = {f<sub>1</sub>,f<sub>2</sub>,...} are sets of cubes

foreach g<sub>i</sub> {

V^{gi} = \emptyset

foreach f<sub>j</sub> {

if(f<sub>j</sub> contains all literals of g<sub>i</sub>) {

v_{ij} = f_j - literals of g_i

V^{gi} = V^{gi} \cup v_{ij}

}

H = C_i V^{gi}

R = F - GH

return (H,R);
```

41

Weak Division

Example

F = ace + ade + bc + bd + be + a'b + abG = ae + b

 $V^{ae} = c + d$ $V^{b} = c + d + e + a' + a$

 $\begin{array}{ll} H = c + d &= F/G & H = \cap V^{g_i} \\ R = be + a'b + ab & R = F \setminus GH \end{array}$

F = (ae + b)(c + d) + be + a'b + ab

Weak Division

Weak_Div provides a method to divide an expression for a given divisor

□ How do we find a "good" divisor?

- Restrict to algebraic divisors
- Generalize to Boolean divisors

Problem:

Given a set of functions { F_i }, find common weak (algebraic) divisors.

■F is in the transitive fanin of G

• We use filters to prevent trying a division

■For any literal, its count in G exceeds that in F, or

G is not an algebraic divisor of F if

■G contains a literal not in F, ■G has more terms than F,

Divisor Identification Primary Divisor

Weak Division

Definition:

An expression is cube-free if no cube divides the expression evenly (i.e. there is no literal that is common to all the cubes)

"ab+c" is cube-free

"ab+ac" and "abc" are not cube-free

Note: A cube-free expression must have more than one cube

Definition:

The primary divisors of an expression F are the set of expressions

 $D(F) = \{F/c \mid c \text{ is a cube}\}$ Note that F/c is the quotient of a weak division

47

45

Divisor Identification Kernel and Co-Kernel

Definition:

The kernels of an expression F are the set of expressions

- $K(F) = \{G | G \in D(F) \text{ and } G \text{ is cube-free} \}$
- In other words, the kernels of an expression F are the cube-free primary divisors of F

Definition:

A cube c used to obtain the kernel K = F/c is called a co-kernel of K

C(F) is used to denote the set of co-kernels of F

Divisor Identification Kernel and Kernel Intersection

Fundamental Theorem

If two expressions F and G have the property that

 $\forall k_F \in K(F), \forall k_G \in K(G) \rightarrow |k_G \cap k_F| \le 1$ (k_G and k_F have at most one term in common),

then F and G have no common algebraic divisors with more than one cube

Important:

If we "kernel" all functions and there are no nontrivial intersections, then the only common algebraic divisors left are single cube divisors

Divisor Identification Kernel and Co-Kernel

Example

x = adf + aef + bdf + bef + cdf + cef + g= (a + b + c)(d + e)f + g

kernels	co-kernels
a+b+c	df, ef
d+e	af, bf, cf
(a+b+c)(d+e)f+g	1

50

Divisor Identification Kernel Level

Definition:

A kernel is of level 0 (K⁰) if it contains no kernels except itself

A kernel is of level n or less (K^n) if it contains at least one kernel of level (n-1) or less, but no kernels (except itself) of level n or greater

Kⁿ(F) is the set of kernels of level n or less

- $K^0(F) \subset K^1(F) \subset K^2(F) \subset ... \subset K^n(F) \subset K(F)$
- level-n kernels = $K^n(F) \setminus K^{n-1}(F)$

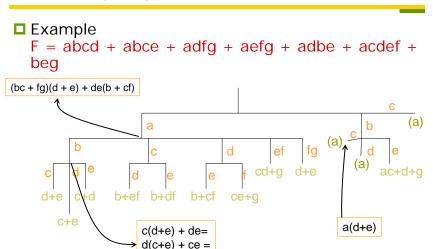
Example:

 $\begin{array}{rcl} \mathsf{F} &=& (a \,+\, b(c \,+\, d))(e \,+\, g) \\ \mathsf{k}_1 &=& a \,+\, b(c \,+\, d) &\in \mathsf{K}^1 \\ & & \not\in \mathsf{K}^0 \\ \mathsf{k}_2 &=& c \,+\, d &\in \mathsf{K}^0 \\ \mathsf{k}_3 &=& e \,+\, g &\in \mathsf{K}^0 \end{array}$

Divisor Identification Kerneling Algorithm

```
Algorithm KERNEL(j, G) {
                                                                                    KERNEL(0, F) returns all the kernels of F
  R = \emptyset
  if(CUBE\_FREE(G)) R = \{G\}
                                                                                     □ Note:
  for(i=j+1,...,n) {
                                                                                        The test "(\exists k \le i, l_k \in all cubes of G/l_i)" in the kerneling
    if(1, appears only in one term)
                                                 continue
                                                                                          algorithm is a major efficiency factor. It also guarantees
    if(\exists k \leq i, l_k \in all cubes of G/l_i)
                                                 continue
                                                                                          that no co-kernel is tried more than once
    R = R \cup KERNEL(i, MAKE_CUBE_FREE(G/l_i))
                                                                                        Can be used to generate all co-kernels
  return R
MAKE_CUBE_FREE(F) removes algebraic cube factor from F
                                                             53
```

Divisor Identification Kerneling Algorithm



Divisor Identification Kerneling Algorithm

Divisor Identification

Kerneling Algorithm

Example

co-kernels	kernels
1 a ab abc abd abe ac acd	a((bc + fg)(d + e) + de(b + cf))) + beg(bc + fg)(d + e) + de(b + cf)c(d+e) + ded + ec + ec + db(d + e) + defb + ef

Note: F/bc = ad + ae = a(d + e)

Factor

□ different heuristics can be applied for CHOOSE_DIVISOR

□ different DIVIDE routines may be applied (algebraic division, Boolean division)

Factor

Example:

F = abc + abd + ae + af + g D = c + d Q = ab P = ab(c + d) + ae + af + gO = ab(c + d) + a(e + f) + g

Notation:

F = original function

- D = divisor
- Q = quotient
- P = partial factored form
- O = final factored form by
- FACTOR restricting to algebraic operations only

Problem 1:

O is not optimal since not maximally factored and can be further factored to "a(b(c + d) + e + f) + g"

It occurs when quotient Q is a single cube, and some of the literals of Q also appear in the remainder R

58

Factor

□ To solve Problem 1

- Check if the quotient Q is not a single cube, then done
- Else, pick a literal I_1 in Q which occurs most frequently in cubes of F. Divide F by I_1 to obtain a new divisor D_1 .
 - Now, F has a new partial factored form $(I_{c})(D_{c}) + (R_{c})$

$$(I_1)(D_1) + (R_1)$$

- and literal I_1 does not appear in R_1 .
- **D**Note: The new divisor D_1 contains the original D as a divisor because I_1 is a literal of Q. When recursively factoring D_1 , D can be discovered again.

Factor

Example:

F = ace + ade + bce + bde + cf + df D = a + b Q = ce + de P = (ce + de)(a + b) + (c + d) fQ = e(c + d)(a + b) + (c + d) f

Notation:

- F = original function
- D = divisor
- Q = quotient
- P = partial factored form
- O = final factored form by

FACTOR restricting to algebraic operations only

Problem 2:

O is not maximally factored because "(c + d)" is common to both products "e(c + d)(a + b)" and "(c + d)f" The final factored form should have been "(c+d)(e(a + b) + f)"

Factor

□ To solve Problem 2

Essentially, we reverse D and Q!!

\Box Make Q cube-free to get Q₁

Obtain a new divisor D_1 by dividing F by Q_1

- \Box If D₁ is cube-free, the partial factored form is
- $F = (Q_1)(D_1) + R_1$, and can recursively factor Q_1 , D_1 , and R_1
- If D_1 is not cube-free, let $D_1 = cD_2$ and $D_3 = Q_1D_2$. We have the partial factoring $F = cD_3 + R_1$. Now recursively factor D_3 and R_1 .

Factor

```
Algorithm GFACTOR(F, DIVISOR, DIVIDE) { // good factor
D = DIVISOR(F)
if(D = 0) return F
Q = DIVIDE(F,D)
if (|Q| = 1) return LF(F, Q, DIVISOR, DIVIDE)
Q = MAKE_CUBE_FREE(Q)
(D, R) = DIVIDE(F,Q)
if (CUBE_FREE(D)) {
Q = GFACTOR(Q, DIVISOR, DIVIDE)
D = GFACTOR(D, DIVISOR, DIVIDE)
R = GFACTOR(R, DIVISOR, DIVIDE)
R = GFACTOR(R, DIVISOR, DIVIDE)
return Q × D + R
}
else {
C = COMMON_CUBE(D) // common cube factor
return LF(F, C, DIVISOR, DIVIDE)
}
```

Factor

```
Algorithm LF(F, C, DIVISOR, DIVIDE) { // literal
factor
L = BEST_LITERAL(F, C) //L ∈ C most frequent in F
(Q, R) = DIVIDE(F, L)
C = COMMON_CUBE(Q) // largest one
Q = CUBE_FREE(Q)
Q = GFACTOR(Q, DIVISOR, DIVIDE)
R = GFACTOR(R, DIVISOR, DIVIDE)
return L × C × Q + R
```

Factor

Various kinds of factoring can be obtained by choosing different forms of DIVISOR and DIVIDE

CHOOSE_DIVISOR:

LITERAL - chooses most frequent literal QUICK_DIVISOR - chooses the first level-0 kernel BEST_DIVISOR - chooses the best kernel

DIVIDE:

Algebraic Division Boolean Division

Factor

Example

x = ac + ad + ae + ag + bc + bd + be + bf + ce + cf + df + dg

LITERAL_FACTOR:

x = a(c + d + e + g) + b(c + d + e + f) + c(e + f) + d(f + g)

QUICK_FACTOR:

x = g(a + d) + (a + b)(c + d + e) + c(e + f) + f(b + d)

GOOD_FACTOR:

(c + d + e)(a + b) + f(b + c + d) + g(a + d) + ce

Factor

```
QUICK_FACTOR uses GFACTOR, first level-0 kernel
DIVISOR, and WEAK_DIV
Example
x = ae + afg + afh + bce + bcfg + bcfh + bde + bdfg + bcfh
D = c + d ---- level-0 kernel (first found)
Q = x/D = b(e + f(g + h)) ---- weak division
Q = e + f(g + h) ---- make cube-free
(D, R) = WEAK_DIV(x, Q) ---- second division
D = a + b(c + d)
x = QD + R
R = 0
x = (e + f(g + h)) (a + b(c + d))
```

65

Decomposition

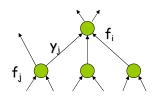
Decomposition is the same as factoring except:

- divisors are added as new nodes in the network.
- the new nodes may fan out elsewhere in the network in both positive and negative phases

Similar to factoring, we can define QUICK_DECOMP: pick a level 0 kernel and improve it GOOD_DECOMP: pick the best kernel

Substitution

- Idea: An existing node in a network may be a useful divisor in another node. If so, no loss in using it (unless delay is a factor).
- Algebraic substitution consists of the process of algebraically dividing the function f_i at node i in the network by the function f_j (or by f'_i) at node j. During substitution, if f_j is an algebraic divisor of f_i, then f_i is transformed into f_i = qy_i + r (or f_i = q₁y_i + q₀y'_i + r)
- $\hfill\square$ In practice, this is tried for each node pair of the network. n nodes in the network \Rightarrow O(n²) divisions.



Extraction

```
Recall: Extraction operation identifies common sub-
expressions and restructures a Boolean network
```

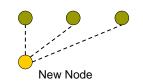
Combine decomposition and substitution to provide an effective extraction algorithm

```
Algorithm EXTRACT
foreach node n {
   DECOMP(n) // decompose all network nodes
}
foreach node n {
   RESUB(n) // resubstitute using existing nodes
}
ELIMINATE NODES_WITH_SMALL_VALUE
```

Extraction

□ Kernel Extraction:

- 1. Find all kernels of all functions
- 2. Choose kernel intersection with best "value"
- 3. Create new node with this as function
- 4. Algebraically substitute new node everywhere
- 5. Repeat 1,2,3,4 until best value \leq threshold



Extraction

```
\label{eq:constraint} \begin{array}{|c|c|c|} \hline & \text{Example} \\ f_1 = ab(c(d + e) + f + g) + h \\ f_2 = ai(c(d + e) + f + j) + k \\ & (only level-0 kerrels used in this example) \\ \hline & 1. Extraction: \\ & & K^0(f_1) = K^0(f_2) = \{d + e\} \\ & & K^0(f_1) \cap K^0(f_2) = \{d + e\} \\ & & I = d + e \\ & & f_1 = ab(cl + f + g) + h \\ f_2 = ai(cl + f + g); \ K^0(f_2) = \{cl + f + j\} \\ & & K^0(f_1) = \{cl + f + g\}; \ K^0(f_2) = \{cl + f + j\} \\ & & K^0(f_1) \cap K^0(f_2) = cl + f \\ & & m = cl + f \\ & & f_1 = ab(m + g) + h \\ & & f_2 = ai(m + j) + k \\ \hline \end{array}
```

Extraction Rectangle Covering

Alternative method for extraction

- Build co-kernel cube matrix M = R^T C
 - rows correspond to co-kernels of individual functions
 - columns correspond to individual cubes of kernel
 - m_{ii} = cubes of functions
 - \blacksquare m_{ii} = 0 if cube not there

Rectangle covering:

- identify sub-matrix $M^* = R^{*T} C^*$, where $R^* \subseteq R$, $C^* \subseteq C$, and $m^*_{ii} \neq 0$
- construct divisor d corresponding to M* as new node
- extract d from all functions

69

Extraction Rectangle Covering

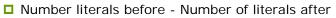
Example

F = af + bf + ag + cg	ade + bo	de +	cde						
G = af + bf + ace + bc	e		а	b	с	се	de	f	g
H = ade + cde	\overline{F}	а					ade	af	ag
Kernels/Co-kernels:	F	b					bde	bf	
F: (de+f+g)/a (de + f)/b	F	de	ade	bde	cde				
(a+b+c)/de	F	f	af	bf					
(a + b)/f (de+g)/c	M = F	с					cde		cg
(a+c)/g G: (ce+f)/{a,b}	F	g	ag		cg				
(a+b)/{f,ce} H: (a+c)/de	G	а				ace		af	
	G	b				bce		bf	
	G	се	ace	bce					
	G	f	af	bf					
	Н	de	ade		cde				70
									73

Extraction Rectangle Covering

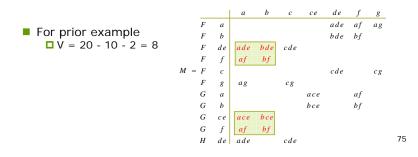
Example (cont'd) F = af + bf + ag + cg + ade + bde G = af + bf + ace + bce		e	а	b	С	се	de	f	g
H = ade + cde	F	а					ade	af	ag
 Pick sub-matrix M' Extract new expression X 	F	b					bde	bf	
F = fx + ag + cg + dex + cde	F	de	ade	bde	cde				
G = fx + cex H = ade + cde	F	f	af	bf					
X = a + b M Update M	= F	С					cde		cg
	F	g	ag		cg				
	G	а				ace		af	
	G	G b	bce		bf				
	G	се	ace	bce					
	G	f	af	bf					
	H	de	ade		cde				
								74	

Extraction Rectangle Covering



$$V(R', C') = \sum_{i \in R, j \in C} v_{ij} - \sum_{i \in R'} w_i^r - \sum_{j \in C} w_j^c$$

- v_{ii} : Number of literals of cube m_{ii}
- w_i^r : (Number of literals of the cube associated with row i)+1
- w_i^c : Number of literals of the cube associated with column j

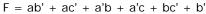


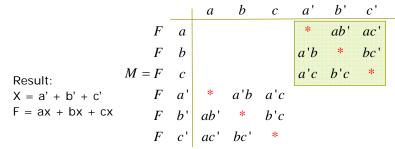
Extraction Rectangle Covering

Pseudo Boolean Division

- Idea: consider entries in covering matrix that are don't cares
 overlap of rectangles (a+a = a)
 - \Box product that cancel each other out (a·a' = 0)

Example:





Fast Kernel Computation

- Non-robustness of kernel extraction
 - Recomputation of kernels after every substitution: expensive
 - Some functions may have many kernels (e.g. symmetric functions)
- Cannot measure if kernel can be used as complemented node

Solution: compute only subset of kernels:

- Two-cube "kernel" extraction [Rajski et al '90]
- Objects: 2-cube divisors
 - □ 2-literal cube divisors
- Example: f = abd + a'b'd + a'cd
 ab + a'b', b' + c and ab + a'c are 2-cube divisors.
 a'd is a 2-literal cube divisor.

77

Fast Kernel Computation

Properties of fast divisor (kernel) extraction:

- O(n²) number of 2-cube divisors in an n-cube Boolean expression
- Concurrent extraction of 2-cube divisors and 2-literal cube divisors
- Handle divisor and complemented divisor simultaneously

Example:

- f = abd + a'b'd + a'cd
 - k = ab + a'b', k' = ab' + a'b (both 2-cube divisors) j = ab + a'c, j' = ab' + a'c' (both 2-cube divisors) c = ab (2-literal cube), c' = a' + b' (2-cube divisor)

78

Fast Kernel Computation

Generating all two cube divisors

 $F = \{C_i\}$

- $D(F) = \{d \mid d = make_cube_free(c_i + c_i)\}$
- c_i, c_j are any pair of cubes of cubes in F
 I.e., take all pairs of cubes in F and makes them cube-free
 Divisor concretion is Q(n²) where no number of cubes in
- Divisor generation is O(n²), where n = number of cubes in F

Example:

- F = axe + ag + bcxe + bcg
- make_cube_free($c_i + c_j$) = {xe + g, a + bc, axe + bcg, ag + bcxe}
- Note: Function F is made into an algebraic expression before generating double-cube divisors
- Not all 2-cube divisors are kernels (why?)

Fast Kernel Computation

Key results of 2-cube divisors

Theorem: Expressions F and G have a common multiplecube divisors if and only if $D(F) \cap D(G) \neq 0$

Proof:

lf:

If $D(F) \cap D(G) \neq 0$ then $\exists d \in D(F) \cap D(G)$ which is a double-cube divisor of F and G. d is a multiple-cube divisor of F and of G.

Only if:

Suppose C = {c₁, c₂, ..., c_m} is a multiple-cube divisor of F and of G. Take any e = (c_i + c_j). If e is cube-free, then e \in D(F) \cap D(G). If e is not cube-free, then let d = make_cube_free(c_i + c_i). d has 2 cubes since F and G are algebraic expressions. Hence d \in D(F) \cap D(G).

Fast Kernel Computation

Example:

Suppose that C = ab + ac + f is a multiple divisor of F and G

If e = ac + f, e is cube-free and $e \in D(F) \cap D(G)$

If e = ab + ac, $d = \{b + c\} \in D(F) \cap D(G)$

As a result of the Theorem, all multiple-cube divisors can be "discovered" by using just double-cube divisors

Fast Kernel Computation

Algorithm:

- Generate and store all 2-cube kernels (2-literal cubes) and recognize complement divisors
- Find the best 2-cube kernel or 2-literal cube divisor at each stage and extract it
- Update 2-cube divisor (2-literal cubes) set after extraction
- Iterate extraction of divisors until no more improvement

Results:

- Much faster
- Quality as good as that of kernel extraction

82

Boolean Division

What's wrong with algebraic division?

- Divisor and quotient are orthogonal!
- Better factored form might be:

 $(g_1 + g_2 + ... + g_n) (d_1 + d_2 + ... + d_m)$ $\Box g_i$ and d_j may share same literals \Box redundant product literals

 Example abe+ace+abd+cd / (ae+d) = Ø But: aabe+ace+abd+cd / (ae+d) = (ab+c)
 g_i and d_j may share opposite literals
 product terms are non-existing

Example a'b+ac+bc / (a'+c) = Ø But: a'a+a'b+ac+bc / (a'+c) = (a+b)

Boolean Division

Definition:

g is a Boolean divisor of f if h and r exist such that f = gh + r, $gh \neq 0$

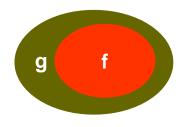
g is said to be a factor of f if, in addition, r = 0, i.e., f = gh

- h is called the quotient
- r is called the remainder
- h and r may not be unique

Boolean Division

Theorem:

A logic function g is a Boolean factor of a logic function f if and only if $f \subseteq g$ (i.e. fg' = 0, i.e. g' \subseteq f')



Boolean Division

Proof:

(⇒) g is a Boolean factor of f. Then $\exists h$ such that f = gh; Hence, f ⊆ g (as well as h).

(\Leftarrow) f \subseteq g \Rightarrow f = gf = g(f + r) = gh. (Here r is any function r \subseteq g'.)

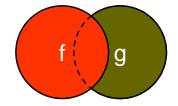
□ Note:

- h = f works fine for the proof
- Given f and g, h is not unique
- To get a small h is the same as to get a small f + r. Since rg = 0, this is the same as minimizing (simplifying) f with DC = g'.

Boolean Division

Theorem:

g is a Boolean divisor of f if and only if fg \neq 0



Boolean Division

Proof:

 $(\Rightarrow) f = gh + r, gh \neq 0 \Rightarrow fg = gh + gr. Since gh \neq 0, fg \neq 0.$

(\Leftarrow) Assume that fg \neq 0. f = fg + fg' = g(f + k) + fg'. (Here k \subseteq g'.) Then f = gh + r, with h = f + k, r = fg'. Since gh = fg \neq 0, then gh \neq 0.

□ Note:

f has many divisors. We are looking for some g such that f = gh+r, where g, h, r are simple functions. (simplify f with DC = g')

87

85

Boolean Division Incomplete Specified Function

$\square F = (f,d,r)$

Definition:

A completely specified logic function g is a Boolean divisor of F if there exist h, e (completely specified) such that $f \subseteq gh + e \subseteq f + d$ and $gh \not\subset d$.

Definition:

g is a Boolean factor of *F* if there exists h such that

 $f \subseteq gh \subseteq f + d$

89

Boolean Division Incomplete Specified Function

Lemma:

```
f \subseteq g if and only if g is a Boolean factor of F.
```

Proof:

(⇒) Assume that f ⊆ g. Let h = f + k where kg ⊆ d. Then hg = (f + k) g ⊆ (f + d). Since f ⊆ g, fg = f and thus f ⊆ (f + k) g = gh. Thus f ⊆ (f + k) g ⊆ f + d

(⇐) Assume that f = gh. Suppose ∃ minterm m such that f(m) = 1 but g(m) = 0. Then f(m) = 1 but g(m)h(m) = 0 implying that f ⊂ gh. Thus f(m) = 1 implies g(m) = 1, i.e. f ⊆ g

Note:

Since $kg \subseteq d$, $k \subseteq (d + g')$. Hence obtain h = f + k by simplifying f with DC = (d + g').

90

Boolean Division Incomplete Specified Function

Lemma:

fg \neq 0 if and only if g is a Boolean divisor of *F*.

Proof:

(⇒) Assume fg ≠ 0. Let fg ⊆ h ⊆ (f + d + g') and fg' ⊆ e ⊆ (f + d). Then f = fg + fg' ⊆ gh + e ⊆ g(f + d + g') + f + d = f + d Also, 0 ≠ fg ⊆ gh → ghf ≠ 0. Now gh ⊄ d, since otherwise ghf = 0 (since fd = 0), verifying the conditions of Boolean division.

(⇐) Assume that g is a Boolean divisor. Then ∃h such that gh ⊂ d and f ⊆ gh + e ⊆ f + dSince gh = (ghf + ghd) ⊂ d, then fgh ≠ 0 implying that fg ≠ 0.

Boolean Division Incomplete Specified Function

■ Recipe for Boolean division:

- $(f \subseteq gh + e \subseteq f + d)$
- Choose g such that $fg \neq 0$
- Simplify fg with DC = (d + g') to get h
- Simplify fg' with DC = (d + fg) to get e (could use DC = d + gh)

$$\label{eq:fg} \begin{array}{c} \Box \ fg \ \subseteq \ h \ \subseteq \ f + d \ + \ g' \\ fg' \ \subseteq \ e \ \subseteq \ fg' \ + \ d \ + \ fg \ = \ f \ + \ d \end{array}$$

Boolean Division

Given F = (f,d,r), write a cover for F in the form gh + ewhere h and e are minimal in some sense

Algorithm:

- 1. Create a new variable x to "represent" g
- 2. Form the don't care set ($\tilde{d} = xg' + x'g$) (Since x = g we don't care if x \neq g)
- 3. Minimize (f \tilde{d} ', d + \tilde{d} , r \tilde{d} ') to get \tilde{f}
- 4. Return (h = \tilde{f}/x , e) where e is the remainder of \tilde{f} (These are simply the terms not containing x)
- 5. f/x denote weak algebraic division

93

Boolean Division

□ Note that (f \tilde{d} ', d + \tilde{d} , r \tilde{d} ') is a partition. We can use ESPRESSO to minimize it, but the objective there is to minimize the number of cubes - not completely appropriate.

Example: f = a + bc

g = a + bc

d = xa'b' + x'(a+b) where x = g = (a+b)

- Minimize $(a + bc) \tilde{d}' = (a + bc) (x'a'b' + x(a+b)) = xa + xbc$ with DC = xa'b' + x '(a+b)
- A minimum cover is a + bc but it does not use x or x' !
- Force x in the cover. This yields f = a + xc = a + (a+b) c.

Heuristic:

Find answer with x in it and which also uses the least variables (or literals)

94

Boolean Division

Assume F is a cover for $\Im = (f,d,r)$ and D is a cover for d.

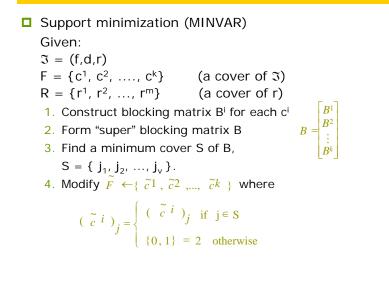
```
First Algorithm:
```

Boolean Division

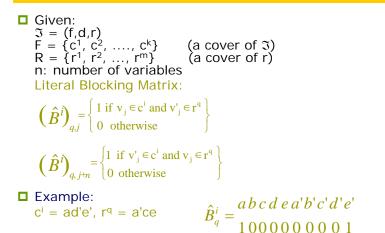
Assume F is a cover for $\Im = (f,d,r)$ and D is a cover for d.

```
Algorithm Boolean Divide2(F,D,G) {
  D_1 = D + xG' + x'G
                                       // (don't care)
  F_1 = FD_1'
                                       // (on-set)
  R_1 = (F_1 + D_1)' = F_1'D_1' = F'D_1' // (off-set)
  // F_2 = remove x' from F_1 (difference to first alg.)
  F<sub>3</sub> = MIN_LITERAL(F<sub>2</sub>, R<sub>1</sub>, x, x') // Filter for Espresso
                  // (minimum literal support including x)
  F_4 = ESPRESSO(F_3, D_1, R_1)
  H_1 = F_4/x
                                      // (first quotient)
  H_0 = F_4/x'
                                     // (first quotient)
  E = F_4 - ({xH_1} + {x'H_0})
                                     // (remainder)
  return (GH_1+G'H_0+E)
```

Boolean Division Minimal Literal Support



Boolean Division Minimal Literal Support



Boolean Division Minimal Literal Support

Examp	ole (litera	l bloc	king r	matrix))		
on-set	cub	e: c	c ⁱ = a	b'd				
off-set	t: r	' = a'l	o'd' +	abd'	+ acd'	+ b	cd +	c'd'
	a	b	с	d	a'	b'	c'	ď
a'b'd'	1	0	0	1	0	0	0	0

a'b'd'	1	0	0	1	0	0	0	0
a'b'd' abd'	0	0	0	1	0	1	0	0
acd'	0	0	0	1	0	0	0	0
bcd	0	0	0	0	0	1	0	0
acd' bcd c'd'	0	0	0	1	0	0	0	0

- Minimum column cover {d,b'}
- Thus b'd is the maximum prime covering ab'd

Note:

For one cube, minimum literal support is the same as minimum variable support

Boolean Division

Example

```
F = a + bc

Algebraic division: F/(a + b) = 0

Boolean division: F \div (a + b) = a + c

1. Let x = a + b

2. Generate don't care set: D_1 = x'(a + b) + xa'b'.

3. Generate care on-set:

F_1 = F \cap D_1' = (a + bc)(xa + xb + x'a'b') = ax + bcx.

E Let C = \{c^1 = ax, c^2 = bcx\}

4. Generate care off-set:

R_1 = F'D_1' = (a'b' + a'c')(xa + xb + x'a'b') = a'bc'x + a'b'x'.

E Let R = \{r^1 = a'bc'x, r^2 = a'b'x'\}.

5. Form super-variable blocking matrix using column order (a, b, c, x), with a',b',c',x' omitted.
```


97

Boolean Division

Example (cont'd)

- 6. Find minimum column cover = $\{a, c, x\}$
- 7. Eliminate in F_1 all variables associated with b So $F_1 = ax + bcx = ax + cx = x(a + c)$
- 8. Simplifying (applying expand, irredundant on F_1), we get $F_1 = a + xc$
- 9. Thus quotient = $F_1/x = c$, remainder = a
- 10.F = a + bc = a + cx = a + c(a + b)

It is important that x is forced in the cover!

