
Technology Mapping
with Choices, Priority Cuts,

and Placement-Aware Heuristics

Alan Mishchenko

UC Berkeley

2

Overview

(1) Introduction
(2) Technology mapping
(3) Priority cuts
(4) Structural choices
(5) Tuning mapping for placement
(6) Other applications

3

(1) Introduction

• Terminology
• And-Inverter Graphs
• Technology mapping in a nutshell

4

Terminology
• Logic network

– Primary inputs/outputs (PIs/POs)
– Logic nodes
– Fanins/fanouts
– Transitive fanin/fanout cone

(TFI/TFO)

• Structural cut of a node
– Cut is a boundary in the network

separating the node from the PIs
– Boundary nodes are the leaves
– The node is the root
– K-feasible cut has K or less leaves
– Function of the cut is function of

the root in terms of the leaves

Primary inputsPrimary inputs

Primary outputsPrimary outputs

FaninsFanins

FanoutsFanouts
TFOTFO

TFITFI

Primary inputsPrimary inputs

LeavesLeaves

RootRoot

CutCut

5

AIG Definition and Examples

010010

011011

110001

010000

10110100cd
ab

F(a,b,c,d) = ab + d(ac’+bc)

F(a,b,c,d) = ac’(b’d’)’ + c(a’d’)’ =
ac’(b+d) + bc(a+d)

010010

011011

110001

010000

10110100cd
ab

6 nodes

4 levels

7 nodes

3 levels

b ca c

a b d

a c b d b c a d

AIG is a Boolean network composed of twoAIG is a Boolean network composed of two--input ANDs and inverters.input ANDs and inverters.

6

Mapping in a Nutshell
• AIGs reprsent logic functions

– A good subject graph for mapping
• Technology mapping expresses logic

functions to be implemented
– Uses a description of a technology

• Technology
– Primitives with delay, area, etc

• Structural mapping
– Computes a cover of AIG using

primitives of the technology
• Cut-based structural mapping

– Computes cuts for each AIG node
– Associates each cut with a primitive
– Selects a cover with a minimum cost

• Structural bias
– Good mapping cannot be found

because of the poor AIG structure
• Overcoming structural bias

– Need to map over a number of AIG
structures (leads to choice nodes)

a b c d

f

e

Primary inputs

Primary outputs

Choice node

AIG Mapped network

a b c d e

f

LUT

LUT

LUT

7

(2) Technology Mapping
• Traditional LUT mapping

– Delay-optimal mapping
– Area recovery

• Drawbacks of the traditional mapping
– Excessive memory and runtime
– Structural bias

• Ways to mitigate the drawbacks
– Priority cuts
– Structural choices

8

Traditional LUT Mapping Algorithm

Input: And-Inverter Graph
1. Compute K-feasible cuts for each node
2. Compute best arrival time at each node

• In topological order (from PI to PO)
• Compute the depth of all cuts and choose the best one

3. Perform area recovery
• Using area flow
• Using exact local area

4. Chose the best cover
• In reverse topological order (from PO to PI)

Output: Mapped Netlist

9

Delay-Optimal Mapping
• Input:

– AIG and K-cuts computed for all
nodes

• Algorithm:
– For all nodes in a topological order

• Compute arrival time of each cut
using fanin arrival times

• Select one cut with min arrival time
• Set the arrival time of the node to be

the arrival time of this cut

• Output:
– Delay-optimal mapping for all

nodes

c d e fa b

11

1

2

c d e fa b

1

3

1 1 2

f

f

q rp

t

s

s Cut {pqr} of node f
has arrival time 3

Cut {stu} of node f
has arrival time 2

u

Cut size K = 3

10

Area Recovery During Mapping
• Delay-optimal mapping is performed first

– Best match is assigned at each node
– Some nodes are used in the mapping; others are not used

• Arrival and required times are computed for all AIG nodes
– Required time for all used nodes is determined
– If a node is not used, its required time is set to +infinity

• Slack is a difference between required time and arrival time
• If a node has positive slack, its current best match can be updated to

reduce the total area of mapping
– This process is called area recovery

• Exact area recovery is exponential in the circuit size
– A number of area recovery heuristics can be used

• Heuristic area recovery is iterative
– Typically involved 3-5 iterations

• Next, we discuss cost functions used during area recovery
– They are used to decide what is the best match at each node

11

How to Measure Area?

c d e fa b

q r

x

p

y

c d e fa b

q r

x

p

y

Area of cut {pcd}
= 1 + [1 + 0 + 0]
= 2

Area of cut {abq}
= 1 + [0 + 0 + 1]
= 2

Suppose we use the naïve definition:
Area (cut) = 1 + [Σ area (fanin)]

(assuming that each LUT has one unit of area)

Naïve definition says both cuts are equally good in area

Naïve definition ignores sharing due to multiple fanouts
12

Area-flow

c d e fa b

q r

x

p

y

c d e fa b

q r

x

p

y

Area-flow of cut {pcd}
= 1 + [1 + 0 + 0]
= 2

Area-flow of cut {abq}
= 1 + [0/1 + 0/1 + ½]
= 1.5

area-flow (cut) = 1 + [Σ (area-flow (fanin) / fanout_num(fanin))]

Area-flow “correctly” accounts for sharing

Area-flow recognizes that cut {abq} is better

(Cong ’99, Manohara-rajah ’04)

13

Exact Local Area

db c e fa

s t

p

q

f

db c e fa

s t

p

q

f

Cut {stq}

Area flow = 1+ [.25+.25 +1] = 2.5

Exact area = 1 + 1 = 2 (due to q)

Area flow will choose this cut.

Cut {pef}

Area flow = 1+ [(.25+.25+3)/2] = 2.75

Exact area = 1 + 0 (p is used elsewhere)

Exact area will choose this cut.

6 66 6

Exact-local-area (cut) = 1 + [Σ exact-local-area (fanin with no other fanout)]

14

Area Recovery Summary
• Area recovery heuristics

– Area-flow (global view)
• Chooses cuts with better logic sharing

– Exact local area (local view)
• Minimizes the number of LUTs by looking one node at a time

• The results of area recovery depends on
– The order of processing nodes
– The order of applying two passes
– The number of iterations
– Implementation details

• This scheme works for the constant-delay model
– Any change off the critical path does not affect critical path

15

Drawbacks of Traditional Mapping

• Excessive memory and runtime requirements
– Exhaustive cut enumeration leads to many cuts

(especially when K 6)

• Structural bias
– The structure of the object graph does not allow

good mapping to be found

16

Excessive Memory and Runtime

• For large designs, there may be too
many K-feasible cuts
– 1M node AIG has ~50M 6-cuts
– Requires ~2GB of storage memory

and takes ~30 sec to compute

• Past ways of tackling the problem
– Detect and remove dominated cuts

• Does not help much
– Perform cut pruning (store N

cuts/node)
• Throws away useful cuts even if N = 1000

– Store only cuts on the frontier
• Reduces memory but increases runtime

1207

2508

506

255

64

Average
number
of cuts

per node

k

17

Structural Bias

x

y

a b c d

0 1

1 10 0

F 4-LUT

4-LUT 4-LUT

x

c dx

y

a b

y

4-LUT

4-LUT

1

1

1

1 0

0

0

0 z

F

• Consider mapping 4:1 MUX into 4-LUTs
– The naïve approach results in 3 LUTs
– After logic structuring, mapping with 2 LUTs can be found

18

Ways to Mitigate the Drawbacks

• Excessive memory and runtime requirements
– Compute only a small number of “useful” cuts

• Leads to mapping with priority cuts

• Structural bias
– Perform mapping over multiple circuit structures

• Leads to mapping with structural choices

19

(3) Priority Cuts

• Structural cuts
• Exhaustive cut enumeration
• Prioritizing cuts
• Implementation tricks

20

Structural Cuts in AIG

A cut of a node n is a set of
nodes in transitive fanin

such that
every path from the node to PIs
is blocked by nodes in the cut.

A k-feasible cut has no more
than k leaves.

a b c

p q

n

The set {pbc} is a 3-feasible cut of
node n. (It is also a 4-feasible cut.)

k-feasible cuts are important in LUT mapping because the logic between
root n and the cut leaves {pbc} can be replaced by a k-LUT.

21

Exhaustive Cut Enumeration

{ p, ab } { q, bc }

{ a } { c }{ b }

a b c

p q

n

{ n, pq, pbc, abq, abc }

The set of cuts of a node is a ‘cross product’ of the sets of cuts of its children.
Any cut that is of size greater than k is discarded.

Computation is
done bottom-up

(P. Pan et al, FPGA ’98; J. Cong et al, FPGA ’99) 22

Cut Filtering

x

a cb

d e

f { .. {dbc} .. {abc} .. }

{ .. {adbc} .. {abc} .. }

Bottom-up cut computation in the presence of re-convergence
might produce dominated cuts

Cut {a, b, c} dominates cut {a, d, b, c}

• The “good” cut {abc} is present (so not a quality issue)

• But the “bad” cut {adbc} may be propagated further (so a run-time issue)

• It is important to discard dominated cuts quickly

23

Signature-Based Cut Filtering
Problem: Given two cuts, how to quickly determine whether
one can be a subset of another.

sig (c) = Σ 2ID(n) mod 32

nc

Solution: Signature of a cut is a 32-bit integer defined as:

where ID(n) is the integer id of node n

Observation: If cut c1 dominates cut c2, then
sig(c1) OR sig(c2) = sig(c2)

Signature checking is a quick test for the most common case
when a cut does not dominate another. Only if this check fails,
an actual comparison is performed.

(Σ means bit-wise OR)

24

Example
• Let the node IDs be a = 1, b = 2, c = 3, d= 4
• Let c1 = {a, b, c} and c2 = {a, d, b, c}
• sig (c1) = 21 OR 22 OR 23

= 0001 OR 0010 OR 0100
= 0111

• sig (c2) = 21 OR 24 OR 22 OR 23

= 0001 OR 1000 OR 0010 OR 0100
= 1111

• As sig (c1) OR sig (c2) sig (c1), c2 does not dominate c1

• But sig (c1) OR sig (c2) = sig (c2), so c1 may dominate c2

25

 K = 4 K = 5 K = 6 K = 7 K = 8
Name AIG C/N T, s C/N T, s C/N T, s C/N T, s C/N T, s L/N, %

alu4 2642 6.7 0.00 12.3 0.01 23.1 0.04 45.5 0.18 94.7 1.02 0.00
apex2 2940 7.2 0.01 14.2 0.02 29.2 0.07 62.6 0.32 139.7 1.90 0.00
apex4 2017 8.5 0.00 19.5 0.03 47.0 0.10 116.3 0.62 293.5 4.49 0.10
bigkey 3080 6.6 0.01 12.1 0.02 24.2 0.05 50.1 0.20 99.7 0.84 0.00
clma 11869 8.1 0.04 18.2 0.11 44.4 0.51 114.9 3.01 306.3 20.99 1.64
des 3020 8.0 0.01 17.0 0.03 38.7 0.12 92.0 0.69 218.0 4.80 4.37
diffeq 2566 6.5 0.01 12.3 0.01 26.6 0.07 65.0 0.50 155.9 2.80 3.66
dsip 2521 6.2 0.01 10.7 0.01 20.7 0.03 42.0 0.10 86.7 0.44 0.00
elliptic 5502 6.4 0.01 10.6 0.03 18.5 0.07 36.9 0.33 83.4 2.12 0.20
ex1010 7652 9.2 0.02 23.3 0.11 61.8 0.61 165.8 4.01 438.2 30.43 1.99
ex5p 1719 9.4 0.01 24.1 0.02 66.2 0.17 188.2 1.30 514.8 10.50 14.14
frisc 5905 7.1 0.01 14.4 0.04 32.3 0.16 79.8 0.88 209.0 6.30 1.24
misex3 2441 7.7 0.01 15.7 0.02 33.3 0.08 73.7 0.38 170.7 2.48 0.00
pdc 7527 9.4 0.03 24.8 0.12 67.4 0.68 183.7 4.41 489.4 31.71 4.40
s298 2514 7.9 0.00 17.5 0.02 44.0 0.13 121.9 0.94 346.5 7.10 7.56
s38417 12867 6.6 0.03 13.5 0.10 32.0 0.46 83.1 3.24 225.9 23.72 3.38
s38584 11074 6.1 0.03 11.4 0.06 22.4 0.20 46.7 0.98 101.5 5.81 0.86
seq 2761 7.5 0.00 15.2 0.02 31.7 0.08 68.6 0.37 153.3 2.25 0.04
spla 6556 9.6 0.03 25.8 0.11 73.9 0.69 215.5 4.98 561.4 31.14 13.83
tseng 1920 6.5 0.01 11.8 0.01 23.5 0.04 50.6 0.21 112.7 1.32 1.35
Average 4954 7.56 0.01 16.22 0.05 38.05 0.22 95.15 1.38 240.0 9.61 2.94

Experiment with K-Cut Computation

C/N is the number of cuts per node; T is time in seconds; L/N is the
ratio of nodes with the number of cuts exceeding the limit (N=1000);
for K < 8, the number of cuts did not exceed 1000

26

Computing Priority Cuts
• Consider nodes in a topological order

– At each node, merge two sets of fanin cuts (each containing C cuts) resulting in
(C+1) * (C+1) + 1 cuts

– Sort these cuts using a given cost function, select C best cuts, and use them for
computing priority cuts of the fanouts

– Select one best cut, and use it to map the node

• Sorting criteria

Mapping pass Primary metric Tie-breaker 1 Tie-breaker 2

depth depth cut size area flow

area flow area flow fanin refs depth

exact area exact area fanin refs depth

The tie-breaking criterion denoted “fanin refs” means “prefer cuts
with larger average fanin reference counters”.

27

Priority Cuts: A Bag of Tricks
 Compute and use priority cuts (a subset of all

cuts)
 Dynamically update the cuts in each mapping

pass
 Use different sorting criteria in each mapping pass
 Include the best cut from the previous pass into

the set of candidate cuts of the current pass
 Consider several depth-oriented mappings to get a

good starting point for area recovery
 Use complementary heuristics for area recovery
 Perform cut expansion as part of area recovery
 Use efficient memory management

28

Priority-Cut-Based Mapping

Input: And-Inverter Graph
1. Compute K-feasible cuts for each node
2. Compute arrival time at each node

• In topological order (from PI to PO)
• Compute the depth of all cuts and choose the best one
• Compute at most C good cuts and choose the best one

3. Perform area recovery
• Using area flow
• Using exact local area
• In each iteration, re-compute at most C good cuts and

choose the best one
4. Chose the best cover

• In reverse topological order (from PO to PI)
Output: Mapped Netlist

29

Complexity Analysis
• The worst-case complexity of traditional mapping

– FlowMap O(Kmn) (J. Cong et al, TCAD ’94)
– CutMap O(2KmnK) (J. Cong et al, FPGA ’95)
– DAOmap O(KnK) (J. Cong et al, ICCAD’04)

• Mapping with priority cuts
– O(KC2n)

K is max cut size
C is max number of cuts
n is number of nodes
m is number of edges

30

(4) Structural Choices
• Structural bias
• Ways to overcome structural bias

– Need some form of (re)synthesis to get multiple circuit
structures

• Computing and using several synthesis snapshots
• Running several scripts and combining the resulting networks
• Performing Boolean decomposition during mapping

• Multiple circuit structures = structural choices
• Questions:

– How to efficiently detect and store structural choices?
– How to perform technology mapping with structural

choices?

31

Structural Bias

a b c d

f

Technology
Mapping

e a b c d e

f

The mapped netlist very closely resembles the subject graph

Every input of every LUT in the mapped netlist must be present in the
subject graph - otherwise technology mapping will not find the match

m

p

p

m

LUT

LUT

LUT

32

Example of Structural Bias

a b c d

f

e a b c d e

f

a b c d e

f

A better match may not be found

This match is not found

Since the point q is not present in the subject graph,
the match on the right is not found

q

p

p

m m

LUT

LUT

LUT

LUT

LUT

33

Example of Structural Bias

a b c d e

f

The better match can be found with a different subject graph

q

a b c d

f

e

p

m

a b c d

f

q

e

LUT

LUTsynthesis

p

34

Synthesis for Structural Choices
• Traditional synthesis produces one “optimized” network
• Synthesis with choices produces several networks

– These can be different snapshot of the same synthesis flow
– These can be results of synthesizing the design with different options

• For example, area-oriented and delay-oriented scripts

SynthesisSynthesis

D2D2
D1D1

Synthesis with structural choicesSynthesis with structural choices

D3D3
HAIGHAIG

D2D2D1D1 D3D3 D4D4

D4D4

35

Mapping with Structural Choices
• Two questions have to be answered

– How to store multiple circuit structures?
– How to perform mapping with multiple circuit structures?

• Both questions can be solved due to the following:
– The subject graph is an AIG

• Structural hashing quickly merges isomorphic circuit structures
– There are powerful equivalence checking methods

• They can be used to prove equivalence
– Cut computation can be extended to work with structural choices

• The modification is straight-forward

36

Detecting Choices
Given two Boolean networks, create a network with choices

Network 1
x = (a + b)c
y = bcd

Network 2
x = ac + bc
y = bcd

a b c d

x y

a b c d

x y

Step 1: Make And-Inverter decomposition of networks

37

Detecting Choices

Network 1
x = (a + b)c
y = bcd

Network 2
x = ac + bc
y = bcd

a b c d

x y

a b c d

x y

Step 2: Use combinational equivalence to detect functionally
equivalent nodes up to complementation (A. Kuehlmann, TCAD’02)

– Random simulation to detect possibly equivalent nodes
– SAT-based decision procedure to prove equivalence

38

Detecting Choices

a b c d

x y

a b c d

x y

Step 3: Merge equivalent nodes with choice edges

a b c d

x y
x now represents a
class of nodes that are
functionally equivalent
up to complementation

39

Cut Computation with Choices
Cuts are now computed for equivalence classes of nodes

Cuts (x) = Cuts (x1) Cuts(x2)
= { x1, pr, pbc, acr, abc, x2, qc }

a b c d

x y
x1 x2

p q r

{ x1, pr, pbc, acr, abc } { x2, qc, abc }

40

Mapping Algorithm with Choices

Input: And-Inverter Graph with choices
1. Compute K-feasible cuts with choices
2. Compute best arrival time at each node

• In topological order (from PI to PO)
• Compute the depth of all cuts and choose the best one

3. Perform area recovery
• Using area flow
• Using exact local area

4. Chose the best cover
• In reverse topological order (from PO to PI)

Output: Mapped Netlist

Only Step 1 has to be changed

41

(5) Tuning Mapping for Placement

• Placement-aware cost function for priority-cut computation
– The total number of edges in a mapped network

• Advantages
– Correlates with the total wire-length after placement
– Easy to take into account during area recovery

• Treat “edges” as “area” resulting in
– Edge flow (similar to area flow)
– Exact local edges (similar to exact local area)

• WireMap
– New placement-aware mapping algorithm

42

Modified Cut Prioritization
Heuristics in WireMap

• Consider nodes in a topological order
– At each node, merge two sets of fanin cuts (each containing C cuts)

getting (C+1) * (C+1) + 1 cuts
– Sort these cuts using a given cost function, select C best cuts, and use

them for computing priority cuts of the fanouts
– Select one best cut, and use it to map the node

• Sorting criteria

Mapping pass Primary metric Tie-breaker 1 Tie-breaker 2

Depth depth cut size area flow

area/edge flow area flow edge flow depth

exact area/edge exact area exact edge depth

43

WireMap Algorithm

Input: And-Inverter Graph
1. Compute K-feasible cuts for each node
2. Compute best arrival time at each node

• In topological order (from PI to PO)
• Compute the depth of all cuts and choose the best one

3. Perform area recovery
• Using area flow and edge flow
• Using exact local area and exact local edge

4. Chose the best cover
• In reverse topological order (from PO to PI)

Output: Mapped Netlist

44

Experimental Results
• Experimental comparison

– WireMap vs. the same mapper w/o edge heuristics
• WireMap leads to the average edge reduction

– 9.3% (while maintaining depth and LUT count)
• Place-and-route after WireMap leads to

– 8.5% reduction in the total wire length
– 6.0% reduction in minimum channel width
– 2.3% reduction in critical path delay

• Changes in the LUT size distribution
– The ratio of 5- and 6-LUTs in a typical design is reduced
– The ratio of 2-, 3-, and 4-LUTs is increased

• Changes after LUT merging
– 9.4% reduction in dual-output LUTs

45

(6) Other Applications of
Priority-Cut-Based Mapping

• Sequential mapping (mapping + retiming)
• Speeding up SAT solving
• Cut sweeping
• Delay-oriented resynthesis for sequential circuits

46

Sequential Mapping
 That is, combinational mapping and retiming combined

 Minimizes clock period in the combined solution space
 Previous work:

 Pan et al, FPGA’98
 Cong et al, TCAD’98

 Our contribution: dividing sequential mapping into steps
 Finding the best clock period via sequential arrival time

computation (Pan et al, FPGA’98)
 Running combinational mapping with the resulting

arrival/required times of the register outputs/inputs
 Performing final retiming to bring the circuit to the best clock

period computed in Step 1

47

Sequential Mapping (continued)
• Advantages

– Uses priority cuts (L=1) for computing sequential arrival times
• very fast

– Reuses efficient area recovery available in combinational mapping
• almost no degradation in LUT count and register count

– Greatly simplifies implementation
• due to not computing sequential cuts (cuts crossing register boundary)

• Quality of results
– Leads to ~15% better quality compared to comb. mapping + retiming

• due to searching the combined search space
– Achieves almost the same (-1%) clock period as the general sequential

mapping with sequential cuts
• due to using transparent register boundary without sequential cuts

48

Speeding Up SAT Solving
• Perform technology mapping into K-LUTs for area

– Define area as the number of CNF clauses needed to represent
the Boolean function of the cut

– Run several iterations of area recovery

• Reduces the number of CNF clauses by ~50%
– Compared to a good circuit-to-CNF translation (M. Velev)

• Improves SAT solver runtime by 3-10x
– Experimental results are in the SAT’07 paper

49

Cut Sweeping
• Reduce the circuit by detecting and merging shallow

equivalences (proposed by Niklas Een)
– By “shallow” equivalences, we mean equivalent points, A and B,

for which there exists a K-cut C (K < 16) such that FA(C) = FB(C)
– A subset of “good” K-cuts can be computed
– The cost function is the average fanout count of cut leaves

• The more fanouts, the more likely the cut is common for two nodes

• Cut sweeping quickly reduces the circuit
– Typically ~50% gain of SAT sweeping (fraiging)

• Cut sweeping is much faster than SAT sweeping
– Typically 10-100x, for large designs

• Can be used as a fast preprocessing to (or a low-cost
substitute for) SAT sweeping

50

Sequential Resynthesis for Delay

• Restructure logic along the tightest
sequential loops to reduce delay after
retiming (Soviani/Edwards, TCAD’07)
– Similar to sequential mapping
– Computes seq. arrival times for the circuit
– Uses the current logic structure, as well as

logic structure, transformed using Shannon
expansion w.r.t. the latest variables

– Accepts transforms leading to delay reduction
– In the end, retimes to the best clock period

• The improvement is 7-60% in delay with
1-12% area degradation (ISCAS circuits)

• This algorithm could benefit from the use
of priority cuts

51

Summary
• Reviewed traditional and novel LUT mapping
• Presented the current mapping solution

– Starts with an optimized AIG (with choices)
– Performs exhaustive (or priority) cut computation
– Performs heuristic area recovery
– Uses placement-aware heuristics

• Experimental results are promising
• Future work

– Area- and delay-oriented resynthesis for mapped
networks

– Using delay information from preliminary placement

52

Backup Slides on WireMap

• Virtex-5 dual-output LUT
• Comparison of LUT distribution
• Comparison of area flow and edge flow

mapping (K = 6)
• Wirelength, channel width, and critical path

delay comparison

53

Virtex-5 Dual-Output LUT

LUT5

A2

A3

A4

A5

A6

D

LUT5

A2

A3

A4

A5

A6

D

LUT6

A2

A3

A4

A5

A6

A1

D6

D5

54

Comparison of LUT Distribution
LUT Distribution: MSC vs. WireMap

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

MSC WireMap

MSC 2.02% 4.62% 7.84% 15.54% 23.01% 46.96%

WireMap 2.03% 9.92% 12.40% 17.53% 19.78% 38.35%

LT1 LT2 LT3 LT4 LT5 LT6

55

Comparison of Area Flow and
Edge Flow Mapping (K = 6)

 Baseline Mapping with Structural Choices WireMap
 luts lev edg t,s clb luts lev edg t,s clb luts lev edg t,s clb

alu4 807 6 3927 0.6 652 742 5 3520 6.79 585 742 5 3298 7.25 550
apex2 983 6 4664 0.75 778 807 6 3850 10.73 654 805 6 3574 11.11 603
b14 1214 13 5620 1.94 976 1162 13 5578 61.36 935 1163 13 5014 53.7 823
b15 2169 15 11073 2.25 1856 2103 15 10485 61.35 1804 2056 14 9499 51.21 1626
b17 6507 21 33151 6.73 5625 6480 18 32906 191.55 5602 6419 18 29552 169.62 5090
b20 2490 15 11953 3.95 2024 2380 14 11768 138.27 1980 2312 14 10582 118.02 1760
b21 2569 15 12418 4.15 2098 2391 14 11807 135.8 1995 2399 14 10781 116.26 1815
b22 3742 15 18027 5.89 3074 3613 14 17910 187.25 3053 3618 14 16426 180.92 2787
clma 3310 10 15576 2.72 2585 2392 9 11520 44.55 1952 2478 9 10846 42.61 1833
des 681 5 3541 0.94 624 502 4 2643 14.39 473 498 3 2192 15.48 370
ex5p 624 5 3019 0.6 497 562 4 2716 10.46 450 578 4 2666 10.49 437
elliptic 1800 10 8777 1 1662 1859 10 9173 17.95 1682 1807 9 8362 18.86 1569
frisc 1750 14 8610 1.35 1621 1798 12 8753 28.02 1668 1690 12 7662 24.37 1524
i10 629 9 2863 0.59 470 603 7 2765 9.81 465 574 8 2375 8.75 404
pdc 2305 7 11307 2.4 1923 2012 6 10061 77.7 1695 1891 6 8795 73.69 1476
s38584 2740 6 11574 1.63 1996 2667 6 11219 17.32 1948 2648 6 10580 17.54 1849
s5378 392 4 1553 0.3 253 357 4 1469 2.66 248 359 4 1346 2.69 226
seq 933 5 4521 0.67 750 737 5 3577 11.69 599 732 5 3276 11.21 551
spla 1862 6 9062 2.06 1538 1588 6 8065 52.58 1350 1515 6 7013 49.14 1198
tseng 657 7 2546 0.46 455 645 7 2488 5.18 452 645 6 2343 5.41 423
Geomean 1480 8.65 6988 2.05 1194 1346 7.97 6420 54.27 1102 1329 7.78 5824 49.42 998
Ratio 1 1 1 1 1 0.909 0.921 0.919 26.473 0.923 0.898 0.899 0.833 24.107 0.836
Ratio 1 1 1 1 1 0.987 0.976 0.907 0.911 0.906

56

Wirelength, Channel Width,
and Critical Path Delay Comparison

Baseline MSC WireMap

twl mcw cpd twl mcw cpd
()

twl mcw cpd
()alu4 15896 15 83.87 13594 13 78.94 14014 15 78.26

apex2 20995 16 88.45 17004 14 90.27 16197 14 90.97
b14 18331 11 148.02 18768 13 129.97 16265 10 149.57
b15 38895 15 180.51 36037 14 203.55 33401 14 195.91
b17 117551 16 249.05 120451 15 222.67 113153 15 225.29
b20 38672 11 152.00 39000 12 155.19 33885 12 139.94
b21 38684 11 143.18 39093 12 170.93 33791 11 135.72
b22 61069 13 157.05 63852 14 157.88 56914 13 150.88

clma 70021 18 167.45 48469 15 131.35 47018 15 136.31
des 19571 8 91.91 16944 10 101.23 13222 7 129.25

elliptic 28546 13 150.32 29670 14 181.29 24611 12 133.04
ex5p 12314 14 87.90 10346 13 73.26 11039 13 75.15
frisc 33763 15 159.11 35412 14 154.96 30398 14 134.79
i10 16383 9 211.59 17186 8 155.60 15103 8 162.49
pdc 64130 21 162.38 52978 21 148.93 47431 19 154.44

s38584 28083 11 72.55 26760 10 68.97 24723 9 71.15
s5378 4685 8 40.31 4358 10 49.26 4261 9 40.91

seq 20151 16 85.97 15640 16 86.58 15005 15 87.30
spla 44885 18 151.14 37925 19 130.99 34542 18 137.23

tseng 5718 7 49.91 5610 7 48.91 5365 7 47.47
Geomean 26524 12.76 119.55 24440 12.79 116.45 22364 12.03 113.81

Ratio 1.00 1.00 1.00 0.921 1.002 0.974 0.834 0.943 0.952
Ratio 1.00 1.00 1.00 0.915 0.94 0.977

twl = total wire length, mcw = minimum channel width required to route in VPR,
cpd = critical path delay with min channel width across the three implementations

