Logic Synthesis and Verification

Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University

Fall 2010

Sequential Synthesis

part of the following slides are by courtesy of Andreas Kuehlmann

2

Motivation

□ Pure combinational optimization can be suboptimal since relations across register boundaries are disregarded

Overview of Circuit Optimization

System-Level Optimization

Architectural Restructuring

Retiming

Clock Skew Scheduling

Combinational Optimization

Verification Challenge Necessity of Integrated Solution

Sequential Optimization Techniques

- Clock skew scheduling
 - balance path delays by adjusting the relative clocking schedule of individual registers
- Retiming
 - balance path delays by moving registers within circuit topology
 - can be interleaved with combinational optimization techniques
- Architectural restructuring
 - add sequential redundancy
 - ☐ fixed: does not change input/output behavior
 - ☐ flexible: change input output behavior
- System-level optimization

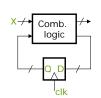
Integration in Design Flow

- Optimization space
 - significantly more optimization freedom at a higher level for improving performance, power, area, etc.
- □ Distant from physical implementation
 - difficult to accurately model impacts on final implementation
 - difficult to mathematically characterize optimization space
- Verification challenge
 - departure from combinational comparison model would impede formal equivalence checking
 - different simulation behaviors cause acceptance problems
- Necessity of tight tool integration!

Sequential Timing Constraints

- The minimum clock period
 - t_{clk}(min) = t_x + t_c + t_{su}, where t_x is the time after the active clock edge at which the X inputs are stable

stable

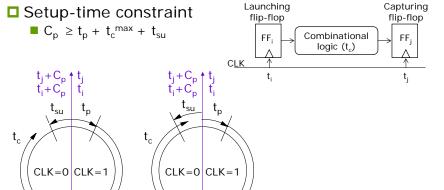


5

stable

Minimum clock period (t_{clk})

Sequential Timing Constraints

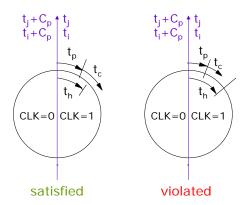


C_p: clock period

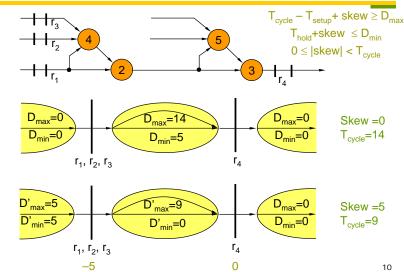
satisfied violated

Sequential Timing Constraints

- Hold-time constraint
 - \blacksquare $t_p + t_c^{min} \ge t_h$



Clock Skew Scheduling



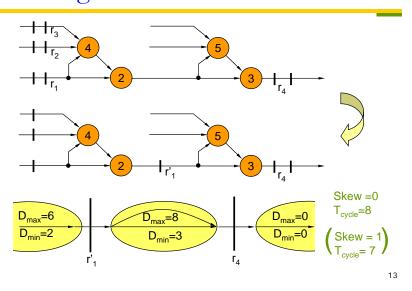
Clock Skew Scheduling

- By controlling clock delays on registers, clock frequency may be increased
 - Do not change transition and output functions (not the case in retiming)
 - □ Good for functional verification
 - May require sophisticated timing verification
- □ Clock skew: clock signal arrives at different registers at different times
 - Positive skew: the sending register gets the clock earlier than the receiving register
 - Negative skew: the receiving register gets the clock earlier than the sending register

Clock Skew Scheduling

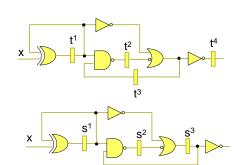
- Pros
 - Inexpensive "post synthesis" technique to further reduce clock period
 - Combinational design model is preserved
- Cons
 - Setup **and** hold time constraints must be obeyed □including hold time constraints from scan chain
 - Interleaving with combinational optimizations impossible
 - Replication of clocking tree required

Retiming



Retiming

- Optimize sequential circuits by repositioning registers
 - Move registers so that clock cycle decreases or register count decreases
 - Input-output behavior is preserved; however, transition and output functions are changed due to the register movement



14

Retiming

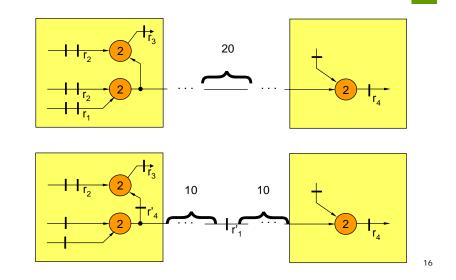
Pros

- Only setup time constraint (0 clock skew)
- Simple integration with other logical (e.g. combinational) or physical optimizations
 - □ E.g., iterative retiming and resynthesis
- Easy combination with clock skew scheduling to obtain global optimum

Cons

- Changes combinational model of designSevere impact on verification methodology
- Inaccurate delay model if applied globally
- Computation of equivalent reset state required

Architectural Retiming



Architectural Retiming

- Pros
 - Smooth extension of regular retiming
 - Potential to alleviate global performance bottlenecks by adding sequential redundancy and pipelining
- Cons
 - Significant change of design structure

 □ substantial impact on verification methodology
 - Flexible architectural restructuring changes I/O behavior □ existing RTL specification methods not always applicable

17

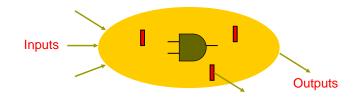
Verification Issues

- □ Timing verification unchanged
- □ Functional verification affected
 - Except for clock skew scheduling, sequential optimization does change register (transition) functions
 - Traditional combinational equivalence checking not applicable
 - Simulation runs not recognizable by designers acceptance problems
 - Solution:
 - □ preserve retime function (mapping function) from synthesis for:
 - reducing sequential EC problem back to combinational case
 no false positives possible!
 - modifying simulation model to reproduce original simulation output

18

Retiming Circuits

- □ Objectives:
 - Reduce clock cycle time
 - Reduce register count (area)
 - Reduce power, etc.
- □ Input: A netlist of gates and registers



Retiming Circuits

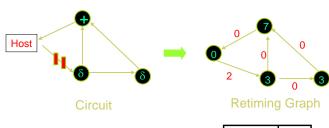
□ Circuit represented as retiming graph G(V, E)

[Leiserson and Saxe 1983, 1991]

- V: vertex set representing logic gates
- E: edge set representing connections
- $d(v) = delay of gate/vertex v, (d(v) \ge 0)$
- w(e) = number of registers on edge e, $(w(e) \ge 0)$

Retiming Circuits

- Example
 - Synchronous circuit assumption: every cycle of a circuit has at least one register, i.e., no combinational loop



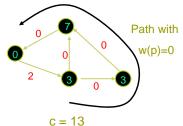
The host node represents the environment that interacts with the circuit via the primary inputs and outputs

Operation	delay
δ	3
+	7

Retiming Circuits

- \square For a path $p: v_0 \rightarrow v_1 \rightarrow \cdots v_{k-1} \rightarrow v_k$
 - Path delay $d(p) = \sum_{i=1}^{n} d(v_i)$ (includes endpoints)
 - Path weight $w(p) = \sum w(e_i)$
- □ Minimum clock cycle

$$c = \max_{p: w(p)=0} \{d(p)\}$$



22

Retiming Circuits

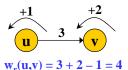
- ■Atomic operation
 - Move registers across a gate in a forward or backward direction

Retime by -1 (delayed by -1 cycle) Retime by 1 (delayed by 1 cycle)

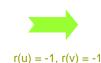
Does not affect gate functionality, but timing

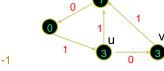
Retiming Circuits

- Retiming can be formalized with a retime function r: $V \rightarrow Z$, where Z is the set of integers
 - I.e., a retime function performs integer labeling on
- Weight update after retiming with r
 - $\mathbf{w}_{r}(e) = w(e) + r(v) r(u)$, for edge e = (u, v)
 - $\mathbf{w}_r(p) = \mathbf{w}(p) + \mathbf{r}(t) \mathbf{r}(s)$, for path p from s to t
- A retiming with some r is legal if $w_r(e) \ge 0$, $\forall e \in E$









Min-Cycle Retiming

□ Problem Statement: (minimum cycle retiming) Given G(V, E) with delay function d and weight function w, find a legal retiming r so that

$$c = \max_{p: w_r(p)=0} \{d(p)\}$$

is minimized

■ Retiming: two important matrices

Register weight matrix

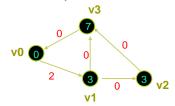
$$W(u,v) = \min_{p} \{ w(p) : u \xrightarrow{p} v \}$$

Delay matrix

$$D(u,v) = \max_{p} \{d(p) : u \xrightarrow{p} v, w(p) = W(u,v)\}$$

Min-Cycle Retiming

■ Example



W D V0 V1 V2 V3 V0 V1 V2 V3

V0	10 \(\preceq \) 3 10	٧
----	-----------------------	---

For some constant α , minimum clock cycle $c \le \alpha \Leftrightarrow \forall p$, if $d(p) > \alpha$ then $w(p) \ge 1$

W = register path weight matrix (minimum # registers on all paths between u and v) D = path delay matrix (maximum delay on the paths between u and v with w(p)=W(u,v))

Don't count paths passing through the host!

26

Min-Cycle Retiming

- \blacksquare Assume that we are asked to check if a retiming exists for a clock cycle α
- Legal retiming: $w_r(e) \ge 0$ for all e. Hence $w_r(e) = w(e) + r(v) r(u) \ge 0$, or $r(u) r(v) \le w(e)$
- □ For all paths p: $u \rightarrow v$ such that $d(p) \ge \alpha$, we require $w_r(p) \ge 1$

$$1 \le w_r(p) = \sum_{i=0}^{k-1} w_r(e_i)$$

$$= \sum_{i=0}^{k-1} [w(e_i) + r(v_{i+1}) - r(v_i)]$$

$$= w(p) + r(v_k) - r(v_0)$$

$$= w(p) + r(v) - r(u)$$

Take the least w(p) (tightest constraint) r(u)-r(v) ≤ W(u,v)-1
 Note: This is independent of the path from u to v, so we just need to apply it to u, v such that D(u,v) > α

Min-Cycle Retiming

Example

Assume $\alpha = 7$

r(u)-r(v)≤w(e)

$$|r(v_0) - r(v_1) \le 2|$$

$$r(v_1) - r(v_2) \le 0|$$

$$r(v_1) - r(v_3) \le 0|$$

$$r(v_2) - r(v_3) \le 0$$

 $r(v_3) - r(v_0) \le 0$

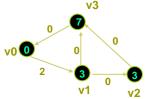
 $r(v_1) - r(v_0) \le -1$ $r(v_1) - r(v_3) \le -1$ $r(v_2) - r(v_0) \le -1$ $r(v_2) - r(v_3) \le -1$

 $r(u)-r(v) \leq W(u,v)-1$

 $|r(v_0) - r(v_3) \le 1$

D>7:

All constraints are in the difference-of-2-variable form and closely related to shortest path problem



Min-Cycle Retiming

Example

Legality: r(u)-r(v)≤w(e)

$$r(v_0) - r(v_1) \le 2$$

 $r(v_1) - r(v_2) \le 0$

$$r(v_1) - r(v_3) \le 0$$

$$r(v_2) - r(v_3) \le 0$$

 $r(v_3) - r(v_0) \le 0$

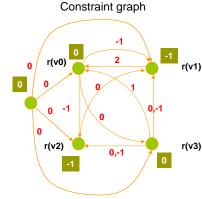
D>7: $r(u)-r(v) \le W(u,v)-1$ $r(v_0)-r(v_3) \le 1$ $r(v_1)-r(v_0) \le -1$ $r(v_1)-r(v_3) \le -1$

$$r(v_2) - r(v_0) \le -1$$

 $r(v_2) - r(v_3) \le -1$

Search shortest path on constraint graph: Bellman-Ford algorithm O(|V||E|) or $O(|V|^3)$

A solution exists if and only if there exists **no** negative weighted cycle

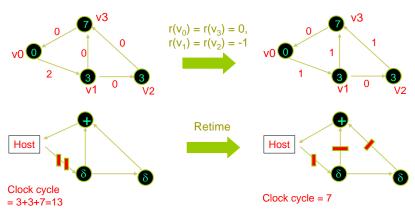


A solution is $r(v_0) = r(v_3) = 0$, $r(v_1) = r(v_2) = -1$

29

Min-Cycle Retiming

☐ To find the minimum cycle time, do a binary search among the entries of the D matrix O(|V||E||log|V|)



30

Min-Cycle Retiming

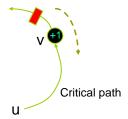
- □ Theorem: r is a legal retiming on G such that the clock cycle $c \le α$ for some constant α if and only if
 - 1. $r(v_h) = 0$
 - 2. $r(u)-r(v) \le w(e)$ for every edge e(u,v)
 - 3. $r(u)-r(v) \le W(u,v)-1$ (i.e. register count > 1) for every (u, v) with $D(u,v) > \alpha$
- □ Solve the integer linear programming problem
 - Bellman-Ford method O(|V|³)

Min-Cycle Retiming

- □ Algorithm of optimal retiming:
 - 1. Compute W and D
 - 2. Binary search the minimum achievable clock period by applying Bellman-Ford algorithm to check the satisfication of the prior Theorem
 - 3. Derive r(v) under the minimum achievable clock period found in Step 2
- □ Complexity $O(|V|^3 |g|V|)$

Min-Cycle Retiming

- Two more algorithms:
- 1. Relaxation based:
 - Repeatedly find critical path
 - Retime vertex at end of path by +1 (O(|V||E|log|V|))



2. Also, Mixed Integer Linear Program formulation

Min-Area Retiming

Goal: minimize number of registers used $\min N_r = \sum w_r(e)$

$$= \sum_{e: u \to v} (w(e) + r(v) - r(u))$$

$$=\sum_{e\in E}w(e)+\sum_{e:u\to v}(r(v)-r(u))$$

$$= N + \sum_{u \to v} (r(v) - r(u))$$

$$= N + \sum_{v \in V} \left[r(v)(\# fanin(v) - \# fanout(v)) \right]$$

$$= N + \sum_{v \in V} a_V r(v)$$

where a_{ν} is a constant

34

Min-Area Retiming

■ Minimize:

$$\sum_{v \in V} a_v r(v)$$

■Subject to:

$$w_r(e) = w(e) + r(v) - r(u) \ge 0$$

■ Note: It is reducible to a flow problem

Retiming Issues

- □ Computation of equivalent initial states
 - Equivalent initial states may not always exist

- General solution requires replication of logic for initialization
- □ Timing models
 - Too far away from actual implementation

Retiming + Clock Scheduling

- Mathematical formulation
 - s: $E \rightarrow R$, a real edge labeling
 - s(e) denotes the clock signal delay of all registers of e
- ☐ In addition to the register weight matrix and delay matrix for the maximum delay, we also need the minimum paths delays

$$W(u,v) = \min_{p} \{ w(p) : u \xrightarrow{p} v \}$$

$$D(u,v) = \max_{p} \{ d(p) : u \xrightarrow{p} v, w(p) = w(u,v) \}$$

$$D_{\min}(u,v) = \min_{p} \{ d(p) : u \xrightarrow{p} v, w(p) = w(u,v) \}$$

Retiming + Clock Scheduling

□ A valid retiming and clock skew schedule is an assignment to r and s such that:

- (1) $w_r \ge 0$
- (2) $\forall (u',u),(v,v')$:

$$w(u',u) > 0 \land w(v,v') > 0 \land W(u,v) = 0 \Rightarrow$$

$$D_{\min}(u,v) + s(u',u) - s(v,v') \ge T_{hold} \land$$

$$D(u,v) + s(u',u) - s(v,v') \le T_{clock} - T_{setup}$$

□ Solution Mixed Integer Linear Program (MILP)

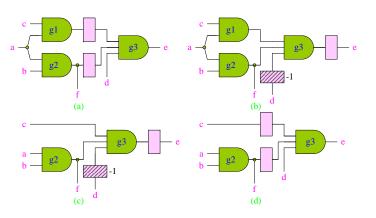
37

Retiming & Resynthesis

- Combine retiming and combinational optimization
 - Retime registers such that the circuit has a large combinational logic block for optimization
 - Resynthesize the combinational logic block with combinational logic minimization techniques
 - Retiming and resynthesis can be iteratedCan achieve any state re-encoding

Retiming & Resynthesis

Example



--