
Logic Synthesis & Verification, Fall 2011
National Taiwan University

Problem Set 2

Due on 2011/10/26 before lecture

1 [Cofactor and QBF]

(a) (6%) Given two arbitrary Boolean functions f and g and a Boolean variable
v, prove that (¬f)v = ¬(fv) and (f 〈op〉 g)v = (fv) 〈op〉 (gv) for 〈op〉 =
{∨,⊕}.

(b) (12%) Prove or disprove the following implications:

∀x.(f(x, y) ∨ g(x, y)) ⇒ (∀x.f(x, y)) ∨ (∀x.g(x, y)) (1)
∀x.(f(x, y) ∨ g(x, y)) ⇐ (∀x.f(x, y)) ∨ (∀x.g(x, y)) (2)
∃x.(f(x, y) ∨ g(x, y)) ⇒ (∃x.f(x, y)) ∨ (∃x.g(x, y)) (3)
∃x.(f(x, y) ∨ g(x, y)) ⇐ (∃x.f(x, y)) ∨ (∃x.g(x, y)) (4)

(c) (12%) Prove or disprove the following statement:
For any quantified formula ∃x.φ(x, y1, . . . , yn), there always exists some func-
tion f(y1, . . . , yn) such that ∃x.φ(x, y1, . . . , yn) = φ(f(y1, . . . , yn), y1, . . . , yn).

2 [BDD Operation]

Let f = ab(¬c + d) + (a¬b + ¬ab)(c¬d + ¬cd).

(a) (6%) Draw the ROBDD with complemented edges of f under variable or-
dering a < b < c < d (with a on top).

(b) (6%) Draw the ROBDDs with complemented edges of fc and f¬c as shared
ROBDDs along with that of f .

(c) (6%) Apply the ITE operation on the above ROBDDs to compute ∀c.f .

3 [AIG and CNF]

(a) (5%) Represent x⊕ y ⊕ z in CNF.
(b) (5%) Draw the AIG of the parity function x ⊕ y ⊕ z, and convert the AIG

to a CNF formula (with intermediate variables allowed).
(c) (5%) The CNF formulas of (a) and (b) are certainly not functionally equiv-

alent. Explain in what sense they are equivalent.
(d) (5%) How can we make the formulas of (a) and (b) functionally equivalent

by quantification?
(e) (5%) We know representing a parity function in CNF is exponential in the

number of variables and converting circuit to CNF is linear in circuit size.
Is there any contradiction? Why or why not?



4 [SAT Solving]

(a) (6%) Write a CNF formula stating the pigeon-hole problem: There are n
holes and n + 1 pigeons. Every hole accommodates at most one pigeon and
every pigeon must be in some hole.

(b) (6%) Use MiniSat (http://minisat.se/) to solve the pigeon-hole problem
for n = 2, 4, 6. (Note that the formulas should be in the DIMACS format
http://www.satcompetition.org/2009/format-benchmarks2009.html.)
What are the runtimes you get? Do you expect the solver is scalable on this
problem? Why or why not?

5 [SAT Solving]

Consider SAT solving the CNF formula consisting of the following 8 clauses

C1 = (a + b + c), C2 = (a + b′ + c), C3 = (a′ + c + d), C4 = (a′ + c + d′),
C5 = (a + c′ + d′), C6 = (a′ + b + c′), C7 = (a + c′ + d), C8 = (b′ + c′ + d).

(a) (10%) Apply implication and conflict-based learning in solving the above
CNF formula. Assume the decision order follows a, b, c, and then d; assume
each variable is assigned 0 first and then 1. Whenever a conflict occurs,
draw the implication graph and enumerate all possible learned clauses under
the Unique Implication Point (UIP) principle. (In your implication graphs,
annotate each vertex with “variable = value@decision level”, e.g., “b =
0@2”, and annotate each edge with the clause that implication happens.) If
there are multiple UIP learned clauses for a conflict, use the one with the
UIP closest to the conflict in the implication graph.

(b) (5%) The resolution between two clauses Ci = (C∗i +x) and Cj = (C∗j +x′)
(where C∗i and C∗j are sub-clauses of Ci and Cj , respectively) is the process
of generating their resolvent (C∗1 + C∗j ). The resolution is often denoted as

(C∗i + x) (C∗j + x′)
(C∗1 + C∗j )

A fact is that a learned clause in SAT solving can be derived by a few
resolution steps. Show how that the learned clauses of (a) can be obtained
by resolution with respect to their implication graphs.


