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Introduction I
I
Reading:

Logic Synthesis in a Nutshell
Section 1

Evolving Information Technology

O The Industrial Revolution

m Application of power-driven machinery to manufacturing
(1750 - 1830)

O IT Revolution

B Application of electronic devices to information
processing

(1950 - present)

[ Electronic systems evolve in a fascinating speed

B Design challenges emerge and design paradigms shift in
this evolution

B EDA tools change along the evolution

Electronic Design Automation

O EDA tools aim at automating electronic system design and
optimizing most design instances (not just some specific
design)

O EDA is a field with rich applications from electrical
engineering, computer science, and mathematics
B Electronics, circuit theory, communication, DSP, device
physics, ...
m  Algorithms, complexity theory, automata theory, logics,
games, ...
® Probability, statistics, algebra, numerical analysis, matrix
computation, ... l

O EDA is one of the most advanced areas in practical
computer science
B Many problems require sophisticated mathematical modeling

®  Many algorithms are computationally hard, and require
advanced heuristics to work on realistic problem sizes

O EDA is a very good workplace for software engineers

B E.g., modern SAT solvers (GRASP, Chaff, BerkMin, MiniSAT) are
developed in the field of EDA




VLSI Design Flow & Abstraction Levels
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System Level

O Abstract algorithmic description of high-level behavior
B E.g., C-programming language
Port>
compute_optimal_route_for_packet(Packet_t *packet,
Channel_t *channel)
{

static Queue_t *packet_queue;
packet_queue = add_packet(packet_queue, packet);

,

B abstract because it does not contain any implementation
details for timing or data

m efficient to get a compact execution model as first design draft

m difficult to maintain throughout project because no link to
implementation
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Register Transfer Level

O Cycle accurate model “close” to the hardware
implementation
B bit-vector data types and operations as abstraction from bit-
level implementation
B sequential constructs (e.g. if - then - else, while loops) to
support modeling of complex control flow
module markl;
reg [31:0] m[0:8192];
reg [12:0] pc;
reg [31:0] acc;
reg[15:0] ir;
always
begin
ir = m[pc];
if(ir[15:13] == 3b~000)
pc = m[ir[12:0]];
else if (ir[15:13] == 37b010)
acc = -m[ir[12:0]];

end
endmodule by courtesy of A. Kuehimann 11

Gate Level

O Model on finite-state machine level
B models function in Boolean logic using registers and gates
B various delay models for gates and wires
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Transistor Level

0 Model on CMOS transistor level
B Binary switches used for function modeling
OE.qg., in functional equivalence checking
m Differential equations used for circuit simulation
OE.g., in timing/waveform analysis

it
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Layout Level

O Transistors and wires are laid out as polygons in different
technology layers such as diffusion, poly-silicon, metal, etc.
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Integrated System Design

Logic
RTL Transistor

Relative Effort

System

Project Time
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General Design Approaches

O Divide and conquer !

B partition design problem into many sub-problems which
are manageable

B define mathematical model for sub-problem and find an
algorithmic solution
O

B implement algorithm in individual design tools, define
and implement general interfaces between the tools
B implement checking tools for boundary conditions

B concatenate design tools to general design flows which
can be managed

B see what doesn’'t work and start over
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Full Custom Design Flow

O Application: ultra-high performance designs

B general-purpose processors, DSPs, graphic chips, internet
routers, game processors, etc.

O Target: very large markets with high profit margins
B e.g. PC business

O Complexity: very complex and labor intense
B involving large teams
B high up-front investments and relatively high risks

O Role of logic synthesis:

B limited to components that are not performance critical or that
might change late in design cycle (due to design bugs found
late)

O control logic
O non-critical data-path logic

B bulk of data-path components and fast control logic are
manually crafted for optimal performance
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Full Custom Design Flow

(incomplete picture)
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ASIC Design Flow

O Application: general IC market
B peripheral chips in PCs, toys, handheld devices, etc.

O Target: small to medium markets, tight design

schedules

B e.g. consumer electronics
OO0 Complexity of design: standard design style,

quite predictable

B standard flows, standard off-the-shelf tools
0 Role of logic synthesis:

B used on large fraction of design except for special blocks
such as RAM’s, ROM’s, analog components
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ASIC Design Flow

(incomplete picture)

Logic Synthesis
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What Is Logic Synthesis About?

Given: Finite-State Machine F(Q,X,Y,3,\) where:

Q: Set of states

X: Input alphabet

Y: Output alphabet

& XxQ —>Q (next-state function)
A XxQ—Y (output function)

: 3

Target: Circuit C(G, W) where:

—  G: set of circuit components g € {Boolean gates,
flip-flops, etc.}

] W: set of wires connecting G

by courtesy of A. Kuehlmann 21

Why Is Logic Synthesis Usetul?

O Core logic optimization technique in today's EDA
flows for IC and system design

0 Broad applications in hardware model checking,
software verification, program synthesis, and
other areas besides circuit optimization

B Synthesis and verification are two sides of the same coin

0 Good subject to get acquainted to Boolean
reasoning
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Briet History

1847: Boole'’s “algebra of logic”
1937: Shannon’s M.S. thesis, A Symbolic Analysis of Relay and Switching
Circuits
1950s: Quine’s minimization theory of Boolean formulas
1958: Kilby's invention of IC
1960s: ATPG D-Algorithm for Boolean reasoning
1970s: two-level logic minimization for PLA,
® |IBM introduced formal equivalence checking in computer design in 1978 and
logic synthesis for gate array based design in 1979
O 1980s: multi-level logic minimization, FSM optimization, technology
mapping, BDD, symbolic equivalence checking
B Synopsys founded in 1986
O first product “remapper” between standard cell libraries
O 1990s: sequential circuit optimization, don't care computation, FPGA
synthesis, SAT, low-power synthesis, physical-aware logic synthesis,
hardware property checking
B More companies founded including Ambit, Compass, Synplicity. Magma,
Monterey, ...
O 2000s: large-scale logic synthesis, synthesis for reliability, synthesis for
emerging technologies, statistical analysis and optimization

Ooooo oo
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Course Outline

[0 Representation of Boolean functions and basic algorithms
B Boolean functions, formulas, circuits, SOP and POS representations, BDDs
m Efficient data structures and algorithms for Boolean reasoning

O Combinational circuit optimization
B Technology-independent two-level/multi-level logic optimization
B Technology mapping

O Timing analysis and optimization

O Sequential circuit optimization
m Clock skewing, retiming and resynthesis

O Formal verification
B Reachability analysis
B Formal equivalence checking
m  Safety property checking

O Logic synthesis and verification tool
m ABC
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