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Overview

(1) Problems in logic synthesis
— Representations and computations

(2) And-Inverter Graphs (AIGS)

— The foundation of innovative synthesis
(3) AlG-based solutions

— Synthesis, mapping, verification

(4) Introduction to ABC

— Differences, fundamentals, programming
(5) Programming assignment

(1) Problems In Synthesis

What are the objects to be “synthesized™?

— Logic structures

— Boolean functions (with or without don’t-cares)

— State machines, relations, sets, etc

How to represent them efficiently?

— Depends on the task to be solved

— Depends on the size of an object

How to create, transform, minimize the representations?
— Multi-level logic synthesis

— Technology mapping

How to verify the correctness of the design?
— Gate-level equivalence checking

— Property checking

— etc

Terminology

* Logic function (e.g. F = ab+cd)
— Variables (e.g. b)
— Minterms (e.g. abcd)

— Cube (e.g. ab) Primary outputs
* Logic network | 1\ IT,lo' /' -
— Primary inputs/outputs \@ @/ Fanouts
— Logic nodes }5@ _
— Fanins/fanouts G gonfanns
— Transitive fanin/fanout cone ISR/ | M NS
— Cut and window (defined later) Primary inputs
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Find each of these representations? : il « TT are the natural representation of logic functions
* Truth table (TT) ; 0009 | © — Not practical for large functions
*  Sum-of-products (SOP) é o001 19 — Still good for functions up to 16 variables
*  Product-of-sums (POS) F 2212 (1) e SOP is widely used in synthesis tools since 1980's
: Blnar_y decision dlsgram (BDD) Q o0 1o — More compact than TT, but not canonical
*  And-inverter graph (AIG) — Can be efficiently minimized (SOP minimization by Espresso, ISOP
* Logic network (LN) o0t | 0 computation) and translated into multi-level forms (algebraic factoring)
E el « BDD is a useful representation discovered around 1986
S — Canonical (for a given function, there is only one BDD)
1000 |0 — Very good, but only if (a) it can be constructed, (b) it is not too large
F = ab+cd 1823) g — Unreliable (non-robust) for many industrial circuits
% T e AIG is an up-and-coming representation!
100 12 — Compact, easy to construct, can be made “canonical” using a SAT solver
@ RE — Unifies the synthesis/mapping/verification flow
— The main reason to give this talk ©
F = (a+c)(a+d)(b+c)(b+d uo |1
(atc)(atd)(b+c)(b+d) BB @ Py
.




Historical Perspective

Problem Size
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What Representation to Use?

For small functions (up to 16 inputs)

— TT works the best (local transforms, decomposition, factoring, etc)
For medium-sized functions (16-100 inputs)

— In some cases, BDDs are still used (reachability analysis)

— Typically, it is better to represent as AlGs

¢ Translate AIG into CNF and use SAT solver for logic manipulation
— Interpolate or enumerate SAT assignments

For large industrial circuits (>100 inputs, >10,000 gates)
— Traditional LN representation is not efficient
— AIGs work remarkably well
« Lead to efficient synthesis
< Are a natural representation for technology mapping
« Easy to translate into CNF for SAT solving
e etc
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What are Typical Transformations?

» Typical transformations of representations
— For SOP, minimize cubesl/literals
— For BDD, minimize nodes/width
— For AIG, restructure, minimize nodes/levels
— For LN, restructure, minimize area/delay
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Algorithmic Paradigms

Divide-and-conquer

— Traversal, windowing, cut computation
Guess-and-check

— Bit-wise simulation
Reason-and-prove

— Boolean satisfiability
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Traversal

e Traversal is visiting nodes in

. Primary outputs
the network in some order Ty outp

®)
» Topological order visits
nodes from Pls to POs 3 (0
— Each node is visited after its
fanins are visited @ O
O [ ®
* Reverse topological order visits @
nodes from POs to Pls
— Each node is visited after its chrrrbr
fanouts are visited Primary inputs

Traversal in a topological order
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Windowing

» Definition
— A window for a node is the
node’s context, in which an
operation is performed
* A window includes
— k levels of the TFI
— m levels of the TFO

— all re-convergent paths
between window PlIs and
window POs
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Structural Cuts in AlIG

A cut of a node n is a set of
nodes in transitive fan-in

such that ) D . q
every path from the node to Pls ;
is blocked by nodes in the cut. z
a b G

A k-feasible cut means the size
of the cut must be k or less.

Ly
s
/l ‘\

The set {p, b, c} is a 3-feasible cut of
node n. (It is also a 4-feasible cut.)

k-feasible cuts are important in FPGA mapping because the logic between
root n and the cut nodes {p, b, c} can be replaced by a k-LUT
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Cut Computation

{{n}, }
’ n

ﬂ {ph (a0} {{ah b, o)} k | cuts per
/ D q \ node
Computation is A “\ 4 6
done bottom-up / 5 20
{{a}} {{l?}} {{c}} 6 80
‘ 7 150

a b c

The set of cuts of a node is a ‘cross product’ of the sets of cuts of its children.
Any cut that is of size greater than k is discarded.

(P. Pan et al, FPGA '98; J. Cong et al, FPGA '99) 16




Bitwise Simulation

Assign particular (or random)
values at the primary inputs
— Multiple simulation patterns are

packed into 32- or 64-bit strings
Perform bitwise simulation at
each node

— Nodes are ordered in a
topological order

Works well for AIG due to
— The uniformity of AND-nodes
— Speed of bitwise simulation

— Topological ordering of memory
used for simulation information

Vi
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Boolean Satisfiability

* Given a CNF formula ¢(x), satisfiability problem is
to prove that ¢(x) = 0, or to find a counter-example
X" such that o(x') =1

e Why this problem arises?

— If CNF were a canonical representation (like BDD), it would be
trivial to answer this question.

— But CNF is not canonical. Moreover, CNF can be very
redundant, so that a large formula is, in fact, equivalent to 0.

— Looking for a satisfying assignment can be similar to searching
for a needle in the hay-stack.

— The problem may be even harder, if there is no needle there!
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SAT Solver

SAT solver types e Alot of magic is used to build an

— CNF-based, circuit-based efficient SAT solver

— Complete, incomplete — Two literal clause watching

— DPLL, saturation, etc. — Conflict analysis with clause
recording

— Non-chronological backtracking
— Variable ordering heuristics
— Random restarts, etc

Applications in EDA
— Verification
« Equivalence checking
* Model checking
— Synthesis
« Circuit restructuring
« Decomposition
» False path analysis
— Routing

e The best SAT solver is MiniSAT
(http://minisat.se/)
— Efficient (won many competitions)
— Simple (600 lines of code)
— Easy to modify and extend
— Integrated into ABC 20




Example (SAT Solving)

(2) And-Inverter Graphs (AIG)

Definition and examples

1 a+b+c . .
- E : )) / \ « Several simple tricks that make AIGs work
a+b+-C .
3 Ba+b+ -0 » Sequential AlGs
| =
. - .
4 N +c+ad) / \ / Unifying representation
5 N(-a +c + d) c » A typical synthesis application: AIG rewriting
6 f(-a+c+-d) / \ ‘ \ / \
7 Q(-b +-c+-d) @ d d d
o oo rcea L L N L
21 22
AIG Definition and Examples Three Simple Tricks
AIG is a Boolean network composed of two-input ANDs and inverters. _
b e Structural hashing
¢ 00 01 11 10 — Makes sure AIG is stored in a compact form
— Is applied during AIG construction
oo}l o 0 0 é\ » Propagates constants
o1l o 0 [ ] * Makes each node structurally unique
\b 6 nodes » Complemented edges
1] 0 | J|| o d 4 levels — Represents inverters as attributes on the edges
10l o 0 0 ¢ Leads to fast, uniform manipulation ) )
— y /O\ « Does not use memory for inverters Without hashing
a c b ¢ * Increases logic sharing using DeMorgan'’s rule
a e Memory allocation
B 00 01 11 10 — Uses fixed amount of memory for each node
¢ Can be done by a simple custom memory manager
o0l o 0 | @ Jf » Even dynamic fanout manipulation is supported!
— Allocates memory for nodes in a topological order
1o 0 ; J O/O\D\O 7 nodes » Optimized for traversal in the same topological order
1] 0 0 » Small static memory footprint for many applications
3 levels
10l o @ | 0 /)\ v — Computes fanout information on demand
a ¢ b db ca d

With hashing™




Sequential AlGs

» Sequential networks have memory elements in
addition to logic nodes
— Memory elements are modeled as D-flip-flops
— Initial state {0,1,x} is assumed to be given
» Several ways of representing sequential AIGs
— Additional PIs and POs in the combinational AIG
— Additional register nodes with sequential structural hashing
» Sequential synthesis (in particular, retiming)
annotates registers with additional information
— Takes into account register type and its clock domain
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AIG: A Unifying Representation

An underlying data structure for various computations

— Rewriting, resubstitution, simulation, SAT sweeping, induction,
etc are based on the same AIG manager

A unifying representation for the whole flow
— Synthesis, mapping, verification use the same data-structure
— Allows multiple structures to be stored and used for mapping
The main functional representation in ABC
— A foundation of new logic synthesis
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(3) AlG-Based Solutions

e Synthesis
« Mapping
 Verification
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What Is Berkeley ABC?

A system for logic and

— Fast

— Scalable

— High quality results (industrial strength)

— Exploits between synthesis and verification

A programming environment

— Open-source
— Evolving and improving over time

28




Design Flow

System Specification

’ Logic synthesis ‘

l

‘ Technology mapping ‘

UOIIULIAA

(:/ ‘ Physical synthesis

—— $ ____________ __d

‘ Manufacturing ‘
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Screenshot

wl left 9619 black
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ABC vs. Other Tools

Industrial

black-box, push-button, no source code, often expensive

SIS

data structures / algorithms outdated, weak sequential synthesis
VIS

not meant for logic synthesis, does not feature the latest SAT-based
implementations

MVSIS

not meant for binary synthesis, lacking recent implementations
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How Is ABC Different From SIS?

f
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a
AlG is a Boolean network of 2-input
AND nodes and invertors (dotted Iineéf
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One AIG Node — Many Cuts

Combinational AIG « Manipulating AlIGs in ABC
f — Each node in an AIG has many cuts
— Eachcutis a SIS node
° — No a priori fixed boundaries
* Implies that AIG manipulation with
cuts is equivalent to working on
Boolean networks at the
same time
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Comparison of Two Syntheses

« Boolean network * AIG network 3
« Network manipulation » DAG-aware AIG rewrlt_lng (Boolean)
(algebraic) - St.avgral (slated algorithms
— Elimination . Rz\fgl:tg]r?ng
— Factoring/Decomposition « Balancing
— Speedup » Speedup
« Node minimization * Node minimization
— Espresso - Boollean decomposition _
— Don't cares computed using B g%nutlai:t%ﬁséﬁgrg%%ed using
BDDs o — Resubstitution with don't cares
— Resubstitution
* Technology mapping « Technology mapping
— Tree based — Cut based with choice nodes
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Existing Capabilities (2005-2008)

Cut-based, heuristic, good

Fast, scalable, good quality arealdelay, flexible

Integrated, interacts with Innovative, scalable,
synthesis verifiable
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Combinational Synthesis

minimizes the number of AIG nodes without
increasing the number of AIG levels

Rewriting AlIG subgraphs

» Pre-computing AIG subgraphs Rewriting node A
— Consider function f = abc C/%
dw =
ab aQC b ¢
Subgraph 1 Subgraph 2 Subgraph 3

do\ /Qb Pb Rewriting node B
a b \ ®
a b ag)\ c b \c a c = }i{.\é
{2 \
a a ¢ b ¢ a b ac

In both cases 1 node is saved
36




AlG-Based Solutions (Synthesis)

AlG-Based Solutions (Mapping)

« Restructures AIG or logic network by the following transforms Input: A Boolean network Output: A netlist of K-LUTs implementing
— Algebraic balancing (And-Inverter Graph) AIG and optimizing some cost function
— Rewriting/refactoring/redecomposition f
- Resubstitution f
— Minimization with don't-cares, etc
A
Technology
D1 D2 D3 D4 NG Mapping
o1 I ,\
D2 HAIG D4 a b ¢ d e ab cde
b3 37 The subject graph The mapped netlist 38
EqUIvaIence CheCklng ¥ Hardware Model Checking Competition 2010 - Mozilla Firefox =101 x|
_ Tak.es tWO designs and makes File Edt Wew History Bookmarks Yshool Took Help :
a miter (A'G) Q @ - c (ar | o e .t hwmce1ofresuts.beml 77 = | [2W]sooge Pl
arTr J 11y Hardware Model Checking Competiti... ’_‘ F
0
— Takes design and property and D1 D2 \-’-N Reslts
makes a miter (AlG) wcc The results have been presented at HVWWA 10 with the following slides
The winners are
The goals are the same: to : HWMCC'10
. - PrO ert ChECkln ALL abcsuperprove  Universily of California, Berkelay
transform AIG Untll the p y g Benchmarks SAT abchmc? Universily of California, Berkelay
Output IS proved Constant O N\ gs% UNSAT potray Politecnico di Taring
p 0 Bules For more information on the set-up please consult the slides of the HWW\A 10
Bl’eakl n N eWS ABC WOﬂ a. Iore details can be found in the following files: table xis, table csv, details b, and checked bt
: .o D1 —
model checking competition
at CAV in August 2010
Done 4
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Further Reading: ABC Tutorial

» For more information, please refer to

* R. Brayton and A. Mishchenko, "ABC: An
academic industrial-strength verification tool",
Proc. CAV'10, Springer, LNCS 6174, pp. 24-40.

 http://www.eecs.berkeley.edu/~alanmi/publicatio
ns/2010/cav10_abc.pdf
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Summary

Introduced problems in logic synthesis
— Representations and computations

Described And-Inverter Graphs (AIGS)
— The foundation of innovative synthesis

Overviewed AlG-based solutions

— Synthesis, mapping, verification
Introduced ABC

— Differences, fundamentals, programming
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Assignment: Using ABC

e Using BLIF manual
http://www.eecs.berkeley.edu/~alanmi/publicatio

ns/other/blif.pdf
create a BLIF file representing a 2-bit multiplier

» Perform the following sequence:
— read the file into ABC (command "read")
— check statistics (command "print_stats")
— visualize the network structure (command "show")
— convert to AIG (command "strash")
— visualize the AIG (command "show")
— convert to BDD (command "collapse")

— visualize the BDD (command "show_bdd")
44




Assignment: Programming ABC

Write a procedure in ABC environment to iterate over the objects of
the network and list the ID number, type, and fanin object IDs for
each object on a separate line. Integrate this procedure into ABC,
so that running command "test" would invoke your code, and print
the result. Compare the print-out of the new command "test" with the
result of command "show" for the multiplier example above

Comment 1: For commands "show" and "show_bdd" to work, please
download the binary of software "dot" from GraphViz webpage and
put it in the same directory as the ABC binary or anywhere else in
the path: http://www.graphviz.org

Comment 2: Make sure GSview and Ghostscript are installed on
your computer. hitp://pages.cs.wisc.edu/~ghost/gsview/
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Programming Help

» Example of code to iterate over the objects

» Example of code to create new command “test”

Call the new procedure (say, Abc_NtkPrintObjs) from
Abc_CommandTest() in file “abc\src\base\abci\abc.c”
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