Introduction
to
Logic Synthesis with ABC

Alan Mishchenko

UC Berkeley

Overview

(1) Problems in logic synthesis
— Representations and computations

(2) And-Inverter Graphs (AIGS)

— The foundation of innovative synthesis
(3) AlG-based solutions

— Synthesis, mapping, verification

(4) Introduction to ABC

— Differences, fundamentals, programming
(5) Programming assignment

(1) Problems In Synthesis

What are the objects to be “synthesized™?

— Logic structures

— Boolean functions (with or without don’t-cares)

— State machines, relations, sets, etc

How to represent them efficiently?

— Depends on the task to be solved

— Depends on the size of an object

How to create, transform, minimize the representations?
— Multi-level logic synthesis

— Technology mapping

How to verify the correctness of the design?
— Gate-level equivalence checking

— Property checking

— etc

Terminology

* Logic function (e.g. F = ab+cd)
— Variables (e.g. b)
— Minterms (e.g. abcd)

— Cube (e.g. ab) Primary outputs
* Logic network | 1\ IT,lo' /' -
— Primary inputs/outputs \@ @/ Fanouts
— Logic nodes }5@ _
— Fanins/fanouts G gonfanns
— Transitive fanin/fanout cone ISR/ | M NS
— Cut and window (defined later) Primary inputs

Logic (Boolean) Function

Relations

ab 00 01 11 10
» Completely specified ¢d o[oTo 1o * Relation (al,a2) — (b1,b2) Characteristic function
« . 01 0 0 1 0
logic function N EEEaERE - (0,0)~(0,0) ala2
jojoj1]o - (O,l)*)(l,O)(O,l) bi b2 00 01 11 10
ab - (1,00 > (1,1) wop1jo0jojo
00 01 11 10 otfof1])0]0
s d - (111) g (1!0)
« Incompletely specified @ of[oTo o ufofolols
. . - - - 10
logic function T L
10 0 0 1 0 ¢ FSM
Current
state
00 01 11 10
00 01 11 10 00 01 11 10 00 01 11 10 @ @ ’S\ltl;(é opr1i1|-10
olojo|1]o0 ool1f1]0]1 ojojojo fo ' orf1f1f-1|1
orfofofofo orlf1fofofo o111 EETN U I R
mp1f1f|1fo mjoflojofo mwjojojof1 wli1|o|-]o
wjo|of1]o wli1]|1fo]1 wpojojojo @
5 6
On-set Off-set DC-set
Find each of these representations? : il « TT are the natural representation of logic functions
* Truth table (TT) ; 0009 | © — Not practical for large functions
* Sum-of-products (SOP) é o001 19 — Still good for functions up to 16 variables
* Product-of-sums (POS) F 2212 (1) e SOP is widely used in synthesis tools since 1980's
: Blnar_y decision dlsgram (BDD) Q o0 1o — More compact than TT, but not canonical
* And-inverter graph (AIG) — Can be efficiently minimized (SOP minimization by Espresso, ISOP
* Logic network (LN) o0t | 0 computation) and translated into multi-level forms (algebraic factoring)
E el « BDD is a useful representation discovered around 1986
S — Canonical (for a given function, there is only one BDD)
1000 |0 — Very good, but only if (a) it can be constructed, (b) it is not too large
F = ab+cd 1823) g — Unreliable (non-robust) for many industrial circuits
% T e AIG is an up-and-coming representation!
100 12 — Compact, easy to construct, can be made “canonical” using a SAT solver
@ RE — Unifies the synthesis/mapping/verification flow
— The main reason to give this talk ©
F = (a+c)(a+d)(b+c)(b+d uo |1
(atc)(atd)(b+c)(b+d) BB @ Py
.

Historical Perspective

Problem Size

ABC
100000
SIS, VIS,
MVSIS
100
Espresso,
50 MIS, SIS
AIG
16 sop BDD CNF
T
1950-1970 1980 1990 2000 Time

What Representation to Use?

For small functions (up to 16 inputs)

— TT works the best (local transforms, decomposition, factoring, etc)
For medium-sized functions (16-100 inputs)

— In some cases, BDDs are still used (reachability analysis)

— Typically, it is better to represent as AlGs

¢ Translate AIG into CNF and use SAT solver for logic manipulation
— Interpolate or enumerate SAT assignments

For large industrial circuits (>100 inputs, >10,000 gates)
— Traditional LN representation is not efficient
— AIGs work remarkably well
« Lead to efficient synthesis
< Are a natural representation for technology mapping
« Easy to translate into CNF for SAT solving
e etc

10

What are Typical Transformations?

» Typical transformations of representations
— For SOP, minimize cubesl/literals
— For BDD, minimize nodes/width
— For AIG, restructure, minimize nodes/levels
— For LN, restructure, minimize area/delay

11

Algorithmic Paradigms

Divide-and-conquer

— Traversal, windowing, cut computation
Guess-and-check

— Bit-wise simulation
Reason-and-prove

— Boolean satisfiability

12

Traversal

e Traversal is visiting nodes in

. Primary outputs
the network in some order Ty outp

®)
» Topological order visits
nodes from Pls to POs 3 (0
— Each node is visited after its
fanins are visited @ O
O [®
* Reverse topological order visits @
nodes from POs to Pls
— Each node is visited after its chrrrbr
fanouts are visited Primary inputs

Traversal in a topological order
13

Windowing

» Definition
— A window for a node is the
node’s context, in which an
operation is performed
* A window includes
— k levels of the TFI
— m levels of the TFO

— all re-convergent paths
between window PlIs and
window POs

14

Structural Cuts in AlIG

A cut of a node n is a set of
nodes in transitive fan-in

such that) D . q
every path from the node to Pls ;
is blocked by nodes in the cut. z
a b G

A k-feasible cut means the size
of the cut must be k or less.

Ly
s
/l ‘\

The set {p, b, c} is a 3-feasible cut of
node n. (It is also a 4-feasible cut.)

k-feasible cuts are important in FPGA mapping because the logic between
root n and the cut nodes {p, b, c} can be replaced by a k-LUT

15

Cut Computation

{{n}, }
’ n

ﬂ {ph (a0} {{ah b, o)} k | cuts per
/ D q \ node
Computation is A “\ 4 6
done bottom-up / 5 20
{{a}} {{l?}} {{c}} 6 80
‘ 7 150

a b c

The set of cuts of a node is a ‘cross product’ of the sets of cuts of its children.
Any cut that is of size greater than k is discarded.

(P. Pan et al, FPGA '98; J. Cong et al, FPGA '99) 16

Bitwise Simulation

Assign particular (or random)
values at the primary inputs
— Multiple simulation patterns are

packed into 32- or 64-bit strings
Perform bitwise simulation at
each node

— Nodes are ordered in a
topological order

Works well for AIG due to
— The uniformity of AND-nodes
— Speed of bitwise simulation

— Topological ordering of memory
used for simulation information

Vi

0 N e

[o]-To]c]

m;/

17

Boolean Satisfiability

* Given a CNF formula ¢(x), satisfiability problem is
to prove that ¢(x) = 0, or to find a counter-example
X" such that o(x') =1

e Why this problem arises?

— If CNF were a canonical representation (like BDD), it would be
trivial to answer this question.

— But CNF is not canonical. Moreover, CNF can be very
redundant, so that a large formula is, in fact, equivalent to 0.

— Looking for a satisfying assignment can be similar to searching
for a needle in the hay-stack.

— The problem may be even harder, if there is no needle there!

18

CNF

o

DAL

clo

19

SAT Solver

SAT solver types e Alot of magic is used to build an

— CNF-based, circuit-based efficient SAT solver

— Complete, incomplete — Two literal clause watching

— DPLL, saturation, etc. — Conflict analysis with clause
recording

— Non-chronological backtracking
— Variable ordering heuristics
— Random restarts, etc

Applications in EDA
— Verification
« Equivalence checking
* Model checking
— Synthesis
« Circuit restructuring
« Decomposition
» False path analysis
— Routing

e The best SAT solver is MiniSAT
(http://minisat.se/)
— Efficient (won many competitions)
— Simple (600 lines of code)
— Easy to modify and extend
— Integrated into ABC 20

Example (SAT Solving)

(2) And-Inverter Graphs (AIG)

Definition and examples

1 a+b+c . .
- E :)) / \ « Several simple tricks that make AIGs work
a+b+-C .
3 Ba+b+ -0 » Sequential AlGs
| =
. - .
4 N +c+ad) / \ / Unifying representation
5 N(-a +c + d) c » A typical synthesis application: AIG rewriting
6 f(-a+c+-d) / \ ‘ \ / \
7 Q(-b +-c+-d) @ d d d
o oo rcea L L N L
21 22
AIG Definition and Examples Three Simple Tricks
AIG is a Boolean network composed of two-input ANDs and inverters. _
b e Structural hashing
¢ 00 01 11 10 — Makes sure AIG is stored in a compact form
— Is applied during AIG construction
oo}l o 0 0 é\ » Propagates constants
o1l o 0 [] * Makes each node structurally unique
\b 6 nodes » Complemented edges
1] 0 | J|| o d 4 levels — Represents inverters as attributes on the edges
10l o 0 0 ¢ Leads to fast, uniform manipulation))
— y /O\ « Does not use memory for inverters Without hashing
a c b ¢ * Increases logic sharing using DeMorgan'’s rule
a e Memory allocation
B 00 01 11 10 — Uses fixed amount of memory for each node
¢ Can be done by a simple custom memory manager
o0l o 0 | @ Jf » Even dynamic fanout manipulation is supported!
— Allocates memory for nodes in a topological order
1o 0 ; J O/O\D\O 7 nodes » Optimized for traversal in the same topological order
1] 0 0 » Small static memory footprint for many applications
3 levels
10l o @ | 0 /)\ v — Computes fanout information on demand
a ¢ b db ca d

With hashing™

Sequential AlGs

» Sequential networks have memory elements in
addition to logic nodes
— Memory elements are modeled as D-flip-flops
— Initial state {0,1,x} is assumed to be given
» Several ways of representing sequential AIGs
— Additional PIs and POs in the combinational AIG
— Additional register nodes with sequential structural hashing
» Sequential synthesis (in particular, retiming)
annotates registers with additional information
— Takes into account register type and its clock domain

25

AIG: A Unifying Representation

An underlying data structure for various computations

— Rewriting, resubstitution, simulation, SAT sweeping, induction,
etc are based on the same AIG manager

A unifying representation for the whole flow
— Synthesis, mapping, verification use the same data-structure
— Allows multiple structures to be stored and used for mapping
The main functional representation in ABC
— A foundation of new logic synthesis

26

(3) AlG-Based Solutions

e Synthesis
« Mapping
 Verification

27

What Is Berkeley ABC?

A system for logic and

— Fast

— Scalable

— High quality results (industrial strength)

— Exploits between synthesis and verification

A programming environment

— Open-source
— Evolving and improving over time

28

Design Flow

System Specification

’ Logic synthesis ‘

l

‘ Technology mapping ‘

UOIIULIAA

(:/ ‘ Physical synthesis

—— $ ____________ __d

‘ Manufacturing ‘

29

Screenshot

wl left 9619 black

30

ABC vs. Other Tools

Industrial

black-box, push-button, no source code, often expensive

SIS

data structures / algorithms outdated, weak sequential synthesis
VIS

not meant for logic synthesis, does not feature the latest SAT-based
implementations

MVSIS

not meant for binary synthesis, lacking recent implementations

31

How Is ABC Different From SIS?

f

(% @,

S (3
() €)@
¢ a b ¢ d e

/
a
AlG is a Boolean network of 2-input
AND nodes and invertors (dotted Iineéf

b d

One AIG Node — Many Cuts

Combinational AIG « Manipulating AlIGs in ABC
f — Each node in an AIG has many cuts
— Eachcutis a SIS node
° — No a priori fixed boundaries
* Implies that AIG manipulation with
cuts is equivalent to working on
Boolean networks at the
same time

33

Comparison of Two Syntheses

« Boolean network * AIG network 3
« Network manipulation » DAG-aware AIG rewrlt_lng (Boolean)
(algebraic) - St.avgral (slated algorithms
— Elimination . Rz\fgl:tg]r?ng
— Factoring/Decomposition « Balancing
— Speedup » Speedup
« Node minimization * Node minimization
— Espresso - Boollean decomposition _
— Don't cares computed using B g%nutlai:t%ﬁséﬁgrg%%ed using
BDDs o — Resubstitution with don't cares
— Resubstitution
* Technology mapping « Technology mapping
— Tree based — Cut based with choice nodes

34

Existing Capabilities (2005-2008)

Cut-based, heuristic, good

Fast, scalable, good quality arealdelay, flexible

Integrated, interacts with Innovative, scalable,
synthesis verifiable

35

Combinational Synthesis

minimizes the number of AIG nodes without
increasing the number of AIG levels

Rewriting AlIG subgraphs

» Pre-computing AIG subgraphs Rewriting node A
— Consider function f = abc C/%
dw =
ab aQC b ¢
Subgraph 1 Subgraph 2 Subgraph 3

do\ /Qb Pb Rewriting node B
a b \ ®
a b ag)\ c b \c a c = }i{.\é
{2 \
a a ¢ b ¢ a b ac

In both cases 1 node is saved
36

AlG-Based Solutions (Synthesis)

AlG-Based Solutions (Mapping)

« Restructures AIG or logic network by the following transforms Input: A Boolean network Output: A netlist of K-LUTs implementing
— Algebraic balancing (And-Inverter Graph) AIG and optimizing some cost function
— Rewriting/refactoring/redecomposition f
- Resubstitution f
— Minimization with don't-cares, etc
A
Technology
D1 D2 D3 D4 NG Mapping
o1 I ,\
D2 HAIG D4 a b ¢ d e ab cde
b3 37 The subject graph The mapped netlist 38
EqUIvaIence CheCklng ¥ Hardware Model Checking Competition 2010 - Mozilla Firefox =101 x|
_ Tak.es tWO designs and makes File Edt Wew History Bookmarks Yshool Took Help :
a miter (A'G) Q @ - c (ar | o e .t hwmce1ofresuts.beml 77 = | [2W]sooge Pl
arTr J 11y Hardware Model Checking Competiti... ’_‘ F
0
— Takes design and property and D1 D2 \-’-N Reslts
makes a miter (AlG) wcc The results have been presented at HVWWA 10 with the following slides
The winners are
The goals are the same: to : HWMCC'10
. - PrO ert ChECkln ALL abcsuperprove Universily of California, Berkelay
transform AIG Untll the p y g Benchmarks SAT abchmc? Universily of California, Berkelay
Output IS proved Constant O N\ gs% UNSAT potray Politecnico di Taring
p 0 Bules For more information on the set-up please consult the slides of the HWW\A 10
Bl’eakl n N eWS ABC WOﬂ a. Iore details can be found in the following files: table xis, table csv, details b, and checked bt
: .o D1 —
model checking competition
at CAV in August 2010
Done 4
39 40

Cactus all Instances 2226

900 T T
abcsuperprove + o 2oL
pdtrav A .
ic3 ¥ ™ A
800 |- abcdprove O o & *+
tipind . Ak
cip
700 - abc08 @ a O 7
bipzzigjc =
I - Ta
riplng 7 @ ,O - S
600 |- mcsti & . 5*
mcaigerind < .
tipbme @ - .
tipbmc08 & g8]
500 - mbme ¥ i
abcbme2 © Rl KON
meaigerbme © @ p +
400 + nusmvbme © & o
abcbme3 & o N Di&
aigtrav o oy g**
nusmvbdd @ . o CeH*
300 e 58 g £ 88 %,
@ - #* oy
@) ¢ 2 Vaa .g*_%
o 00 Nl o
200 | « & s 5 H
@ of 4 3, b
2 P o
100 2 § »

0 w, ——
0 100 200 300 400 500 600 700 800

Further Reading: ABC Tutorial

» For more information, please refer to

* R. Brayton and A. Mishchenko, "ABC: An
academic industrial-strength verification tool",
Proc. CAV'10, Springer, LNCS 6174, pp. 24-40.

 http://www.eecs.berkeley.edu/~alanmi/publicatio
ns/2010/cav10_abc.pdf

42

Summary

Introduced problems in logic synthesis
— Representations and computations

Described And-Inverter Graphs (AIGS)
— The foundation of innovative synthesis

Overviewed AlG-based solutions

— Synthesis, mapping, verification
Introduced ABC

— Differences, fundamentals, programming

43

Assignment: Using ABC

e Using BLIF manual
http://www.eecs.berkeley.edu/~alanmi/publicatio

ns/other/blif.pdf
create a BLIF file representing a 2-bit multiplier

» Perform the following sequence:
— read the file into ABC (command "read")
— check statistics (command "print_stats")
— visualize the network structure (command "show")
— convert to AIG (command "strash")
— visualize the AIG (command "show")
— convert to BDD (command "collapse")

— visualize the BDD (command "show_bdd")
44

Assignment: Programming ABC

Write a procedure in ABC environment to iterate over the objects of
the network and list the ID number, type, and fanin object IDs for
each object on a separate line. Integrate this procedure into ABC,
so that running command "test" would invoke your code, and print
the result. Compare the print-out of the new command "test" with the
result of command "show" for the multiplier example above

Comment 1: For commands "show" and "show_bdd" to work, please
download the binary of software "dot" from GraphViz webpage and
put it in the same directory as the ABC binary or anywhere else in
the path: http://www.graphviz.org

Comment 2: Make sure GSview and Ghostscript are installed on
your computer. hitp://pages.cs.wisc.edu/~ghost/gsview/

45

Programming Help

» Example of code to iterate over the objects

» Example of code to create new command “test”

Call the new procedure (say, Abc_NtkPrintObjs) from
Abc_CommandTest() in file “abc\src\base\abci\abc.c”

46

