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OverviewOverview

• (1) Problems in logic synthesis
– Representations and computations

• (2) And-Inverter Graphs (AIGs)
– The foundation of innovative synthesisy

• (3) AIG-based solutions
– Synthesis mapping verificationSynthesis, mapping, verification

• (4) Introduction to ABC
Differences fundamentals programming– Differences, fundamentals, programming 

• (5) Programming assignment
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(1) Problems In Synthesis(1) Problems In Synthesis

What are the objects to be “synthesized”?• What are the objects to be “synthesized”?
– Logic structures
– Boolean functions (with or without don’t-cares)
– State machines, relations, sets, etc

• How to represent them efficiently?
– Depends on the task to be solvedDepends on the task to be solved
– Depends on the size of an object

• How to create, transform, minimize the representations?
M lti l l l i th i– Multi-level logic synthesis 

– Technology mapping
• How to verify the correctness of the design?y g

– Gate-level equivalence checking
– Property checking 
– etc
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etc

TerminologyTerminology

• Logic function (e.g. F = ab+cd)
– Variables (e.g. b)
– Minterms (e.g. abcd)
– Cube (e.g. ab)

L i t k
Primary outputsPrimary outputs

• Logic network
– Primary inputs/outputs

L i d
FanoutsFanouts

TFOTFO

– Logic nodes
– Fanins/fanouts

Transitive fanin/fanout cone

FaninsFanins

TFITFI– Transitive fanin/fanout cone
– Cut and window (defined later) Primary inputsPrimary inputs
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Logic (Boolean) FunctionLogic (Boolean) Function
00 01 11 10

abab

cdcd• Completely specified 
logic function

00 0 0 1 0
01 0 0 1 0
11 1 1 1 1

cdcd

I l t l ifi d

10 0 0 1 0

00 01 11 10
cdcd

abab

• Incompletely specified 
logic function

00 0 0 1 0
01 0   

11 1 1 1 

10 0 0 1 0

cdcd

10 0 0 1 0

00 01 11 10 00 01 11 10 00 01 11 1000 01 11 10

00 0 0 1 0
01 0 0 0 0
11 1 1 1 0

00 01 11 10

00 1 1 0 1
01 1 0 0 0
11 0 0 0 0

00 01 11 10

00 0 0 0 0
01 0 1 1 1
11 0 0 0 1
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11 1 1 1 0
10 0 0 1 0

11 0 0 0 0
10 1 1 0 1

0 0 0 1
10 0 0 0 0

On-set Off-set DC-set

RelationsRelations
Ch t i ti f ti• Relation (a1,a2)  (b1,b2)

– (0,0)  (0,0)
(0 1)  (1 0)(0 1)

a1 a2a1 a2

Characteristic function

– (0,1)  (1,0)(0,1)
– (1,0)  (1,1)
– (1,1)  (1,0)

00 01 11 10

00 1 0 0 0
01 0 1 0 0
11 0 0 0 1

b1 b2b1 b2

( , ) ( , )

• FSM

11 0 0 0 1
10 0 1 1 0

S

00 01 11 10

00 1 1 001010000

Current Current 
statestate

Next Next 00 1 1  0
01 1 1  1
11    

10 1 0  0

01010000
statestate

6

1 0 0
1010

Representation ZooRepresentation Zoo
Find each of these representations? abcd F

FFFind each of these representations?
• Truth table (TT)
• Sum-of-products (SOP)
• Product-of-sums (POS)

F

0000 0

0001 0

0010 0

FF

Product of sums (POS)
• Binary decision diagram (BDD)
• And-inverter graph (AIG)
• Logic network (LN)

0011 1

0100 0

0101 0FFg ( )
0110 0

0111 1

1000 0
aa

FF aa bb cc dd

FF
1001 0

1010 0

1011 1

F = ab+cdF = ab+cd bb

1100 1

1101 1

1110 1

1111 1
F = (a+c)(a+d)(b+c)(b+d)F = (a+c)(a+d)(b+c)(b+d)

cc

dd
aa bb cc dd

abab
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1111 1

1100

dd

Representation OverviewRepresentation Overview
• TT are the natural representation of logic functions• TT are the natural representation of logic functions

– Not practical for large functions
– Still good for functions up to 16 variables

• SOP is widely used in synthesis tools since 1980’s• SOP is widely used in synthesis tools since 1980 s
– More compact than TT, but not canonical
– Can be efficiently minimized (SOP minimization by Espresso, ISOP 

computation) and translated into multi-level forms (algebraic factoring)computation) and translated into multi level forms (algebraic factoring)
• BDD is a useful representation discovered around 1986

– Canonical (for a given function, there is only one BDD)
– Very good but only if (a) it can be constructed (b) it is not too largeVery good, but only if (a) it can be constructed, (b) it is not too large
– Unreliable (non-robust) for many industrial circuits

• AIG is an up-and-coming representation!
– Compact, easy to construct, can be made “canonical” using a SAT solverCompact, easy to construct, can be made canonical  using a SAT solver
– Unifies the synthesis/mapping/verification flow
– The main reason to give this talk 
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Historical Perspective
P bl Si

Historical Perspective
Problem Size

100000

ABC

100

SIS, VIS, 
MVSIS

50

100
Espresso, 
MIS, SIS

CNF
TT

SOP BDD
AIG

16

Time1950-1970 1980 1990 2000

TT
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What Representation to Use?What Representation to Use?
F ll f i ( 16 i )• For small functions (up to 16 inputs)
– TT works the best (local transforms, decomposition, factoring, etc)

• For medium-sized functions (16-100 inputs)For medium sized functions (16 100 inputs)
– In some cases, BDDs are still used (reachability analysis)
– Typically, it is better to represent as AIGs

T l t AIG i t CNF d SAT l f l i i l ti• Translate AIG into CNF and use SAT solver for logic manipulation
– Interpolate or enumerate SAT assignments

• For large industrial circuits (>100 inputs, >10,000 gates)
– Traditional LN representation is not efficient
– AIGs work remarkably well

• Lead to efficient synthesis y
• Are a natural representation for technology mapping
• Easy to translate into CNF for SAT solving
• etc
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What are Typical Transformations?What are Typical Transformations?

• Typical transformations of representations
– For SOP, minimize cubes/literalsFor SOP, minimize cubes/literals
– For BDD, minimize nodes/width
– For AIG restructure minimize nodes/levelsFor AIG, restructure, minimize nodes/levels
– For LN, restructure, minimize area/delay

11

Algorithmic ParadigmsAlgorithmic Paradigms

• Divide-and-conquer 
– Traversal, windowing, cut computation

• Guess-and-check 
– Bit-wise simulation

• Reason-and-prove 
– Boolean satisfiabilityBoolean satisfiability
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TraversalTraversal
T l i i i i d i• Traversal is visiting nodes in 
the network in some order

Primary outputsPrimary outputs

88
• Topological order visits      

nodes from PIs to POs
E h d i i it d ft it

33

88

77

– Each node is visited after its 
fanins are visited

11 55

6622

• Reverse topological order visits 
nodes from POs to PIs
– Each node is visited after its

44

Each node is visited after its 
fanouts are visited Primary inputsPrimary inputs

Traversal in a topological orderTraversal in a topological order
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Traversal in a topological orderTraversal in a topological order

WindowingWindowing

• Definition
– A window for a node is the 

Window POs

node’s context, in which an 
operation is performed

• A window includes
m = 3

Pi t d• A window includes 
– k levels of the TFI 
– m levels of the TFO

k 3

Pivot node

– all re-convergent paths 
between window PIs and 
window POs

k = 3

window POs
Window PIs
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Structural Cuts in AIGStructural Cuts in AIG
n

A cut of a node n is a set of 
nodes in transitive fan-in 

n

such that
every path from the node to PIs 
is blocked by nodes in the cut.

p q

y

A k-feasible cut means the size a b cA k feasible cut means the size 
of the cut must be k or less. The set {p, b, c} is a 3-feasible cut of 

node n. (It is also a 4-feasible cut.)

k-feasible cuts are important in FPGA mapping because the logic between 
t d th t d { b } b l d b k LUT
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root n and the cut nodes {p, b, c} can be replaced by a k-LUT

Cut ComputationCut Computation

n

{ {n}, {p, q}, {p, b, c}, {a, b, q}, {a, b, c} }

p q
{ {p}, {a, b} } { {q}, {b, c} } k Cuts per 

node
4 6

p q

{ {a} } { {b} } { {c} }

Computation is 
done bottom-up

4 6
5 20
6 80

a b c

7 150

The set of cuts of a node is a ‘cross product’ of the sets of cuts of its children.
Any cut that is of size greater than k is discarded.

16(P. Pan et al, FPGA ’98; J. Cong et al, FPGA ’99)



Bitwise SimulationBitwise Simulation
Assign particular (or random)• Assign particular (or random) 
values at the primary inputs
– Multiple simulation patterns are 

k d i t 32 64 bit t i

0

0

1

1

2

3

packed into 32- or 64-bit strings
• Perform bitwise simulation at 

each node 
FF

0

0

0

0

1

1

2
1

2

4

– Nodes are ordered in a 
topological order

0

1

0

0

1

3

4

2

3

4

• Works well for AIG due to 
– The uniformity of AND-nodes
– Speed of bitwise simulation

aa bb cc dd
0 1 0 11– Speed of bitwise simulation

– Topological ordering of memory 
used for simulation information

1

1

1

0

0

1

0

1

0

0

1

1

2

3

4

17

Boolean SatisfiabilityBoolean Satisfiability

• Given a CNF formula (x), satisfiability problem is 
to prove that (x)  0, or to find a counter-example 
’ h th t ( ’) 1x’ such that (x’)  1

Wh thi bl i ?• Why this problem arises?
– If CNF were a canonical representation (like BDD), it would be 

trivial to answer this question.
– But CNF is not canonical. Moreover, CNF can be very 

redundant, so that a large formula is, in fact, equivalent to 0.
– Looking for a satisfying assignment can be similar to searching g y g g g

for a needle in the hay-stack.
– The problem may be even harder, if there is no needle there!
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Example (Deriving CNF)Example (Deriving CNF)
b

CNF

(a + b + c) 

(a + b + c’)
00 01 11 10

ab

cd
(a + b + c’)

(a’ + b + c’)
00 0 0 0 0
01 0 1 0 0

(a + c + d)

(a’ + c + d)

11 0 0 0 0
10 0 0 0 0(a  + c + d)

(a’ + c + d’)

0 0 0 0

Cube: bcd’
(b’ + c’ + d’)

(b’ + c’ + d)

Cube: bcd
Clause: b’ + c’ + d
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(b   c  d)

SAT SolverSAT Solver
• SAT solver types • A lot of magic is used to build an• SAT solver types

– CNF-based, circuit-based
– Complete, incomplete

• A lot of magic is used to build an 
efficient SAT solver
– Two literal clause watching

– DPLL, saturation, etc. – Conflict analysis with clause 
recording 

– Non-chronological backtracking• Applications in EDA g g
– Variable ordering heuristics 
– Random restarts, etc

• Applications in EDA
– Verification

• Equivalence checking

• The best SAT solver is MiniSAT 
(http://minisat.se/) 

• Model checking
– Synthesis

• Circuit restructuring ( p )
– Efficient (won many competitions)
– Simple (600 lines of code)

Easy to modify and extend

• Circuit restructuring
• Decomposition
• False path analysis
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– Easy to modify and extend
– Integrated into ABC

– Routing



Example (SAT Solving)Example (SAT Solving)

(a + b + c)
( b )

1
2

a(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )
(a + b + c)
( b )(a + b + ¬c)
(¬a + b + ¬c)

2
3

(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c) bb
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
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(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d) cc c
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
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(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)

d dd d d(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬a + c + ¬d)

(¬b + ¬c + d)8 (¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)(¬b + ¬c + d)
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(2) And Inverter Graphs (AIG)(2) And-Inverter Graphs (AIG)

• Definition and examples
• Several simple tricks that make AIGs workp
• Sequential AIGs
• Unifying representation• Unifying representation
• A typical synthesis application: AIG rewriting

22

AIG Definition and ExamplesAIG Definition and Examples
AIG is a Boolean network composed of twoAIG is a Boolean network composed of two--input ANDs and inverters.input ANDs and inverters.

cd
ab 00 01 11 10

00 0 0 1 0

F(a,b,c,d) = ab + d(ac’+bc)
00 0 0 1 0

01 0 0 1 1

11 0 1 1 0
6 nodes

4 l l
a b d

10 0 0 1 0
4 levels

b ca c

F(a,b,c,d) = ac’(b’d’)’ + c(a’d’)’ = 
ac’(b+d) + bc(a+d)

cd
a

b 00 01 11 10

00 0 0 1 000 0 0 1 0

01 0 0 1 1

11 0 1 1 0
7 nodes
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11 0 1 1 0

10 0 0 1 0
3 levels

a c b d b c a d

Three Simple TricksThree Simple Tricks
• Structural hashing• Structural hashing

– Makes sure AIG is stored in a compact form
– Is applied during AIG construction

• Propagates constants
c d• Propagates constants

• Makes each node structurally unique
• Complemented edges

– Represents inverters as attributes on the edges bRepresents inverters as attributes on the edges
• Leads to fast, uniform manipulation
• Does not use memory for inverters
• Increases logic sharing using DeMorgan’s rule  

a b
Without hashingWithout hashing

• Memory allocation
– Uses fixed amount of memory for each node

• Can be done by a simple custom memory manager
E d i f t i l ti i t d! d• Even dynamic fanout manipulation is supported!

– Allocates memory for nodes in a topological order
• Optimized for traversal in the same topological order
• Small static memory footprint for many applications

c d
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Small static memory footprint for many applications
– Computes fanout information on demand a b

With hashingWith hashing



Sequential AIGsSequential AIGs
• Sequential networks have memory elements in 

addition to logic nodes
Memory elements are modeled as D flip flops– Memory elements are modeled as D-flip-flops

– Initial state {0,1,x} is assumed to be given 

• Several ways of representing sequential AIGsSeveral ways of representing sequential AIGs
– Additional PIs and POs in the combinational AIG
– Additional register nodes with sequential structural hashing

• Sequential synthesis (in particular, retiming) 
annotates registers with additional information
– Takes into account register type and its clock domain 

25

AIG: A Unifying RepresentationAIG: A Unifying Representation

• An underlying data structure for various computations
– Rewriting, resubstitution, simulation, SAT sweeping, induction, 

etc are based on the same AIG manageretc are based on the same AIG manager

• A unifying representation for the whole flow
– Synthesis, mapping, verification use the same data-structureSynthesis, mapping, verification use the same data structure
– Allows multiple structures to be stored and used for mapping

• The main functional representation in ABC
– A foundation of new logic synthesis 
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(3) AIG Based Solutions(3) AIG-Based Solutions

• Synthesis
• Mapping• Mapping
• Verification
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What Is Berkeley ABC?What Is Berkeley ABC?
• A system for logic synthesis and verification• A system for logic synthesis and verification

– Fast
S l bl– Scalable

– High quality results (industrial strength)
E l it b t th i d ifi ti– Exploits synergy between synthesis and verification

• A programming environment
– Open-source
– Evolving and improving over time

28



Design Flowg

System Specification

RTLRTLRTLRTL

Logic synthesisLogic synthesis
ABC VeVe

Logic synthesisLogic synthesis

Technology mappingTechnology mapping

erification
erification

Physical synthesisPhysical synthesis

nn

Manufacturing
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Screenshot
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ABC vs Other ToolsABC vs. Other Tools
 Industrial Industrial 

+ well documented, fewer bugs
- black-box, push-button, no source code, often expensive

 SIS 
+ traditionally very popular

d t t t / l ith td t d k ti l th i- data structures / algorithms outdated, weak sequential synthesis
 VIS 

+ very good implementation of BDD-based verification algorithms+ very good implementation of BDD based verification algorithms
- not meant for logic synthesis, does not feature the latest SAT-based 

implementations
MVSIS MVSIS 
+ allows for multi-valued and finite-automata manipulation
- not meant for binary synthesis, lacking recent implementations

31

not meant for binary synthesis, lacking recent implementations

How Is ABC Different From SIS?How Is ABC Different From SIS?

E i l t AIG i ABCE i l t AIG i ABCBoolean network in SISBoolean network in SIS Equivalent AIG in ABCEquivalent AIG in ABC

ff

Boolean network in SISBoolean network in SIS

ff

zz

zz

ze

d d 

xx yy

xd yd xy 

xx yy
xx yy

ab cd cd

aa bb cc dd eeaa bb cc dd

ee
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AIG is a Boolean network of 2-input 

AND nodes and invertors (dotted lines)



One AIG Node – Many CutsOne AIG Node Many Cuts

C bi ti l AIGC bi ti l AIGCombinational AIGCombinational AIG
ff

• Manipulating AIGs in ABC
– Each node in an AIG has many cuts

Each cut is a different SIS node– Each cut is a different SIS node
– No a priori fixed boundaries

• Implies that AIG manipulation withImplies that AIG manipulation with 
cuts is equivalent to working on 
many Boolean networks at the 
same time

aa bb cc dd ee
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Different cuts for the same nodeDifferent cuts for the same node

Comparison of Two SynthesesComparison of Two Syntheses

“Cl i l” th i ABC “ t ” th i“Classical” synthesis

• Boolean network

ABC “contemporary” synthesis

• AIG network• Boolean network
• Network manipulation 

(algebraic)
Eli i ti

AIG network
• DAG-aware AIG rewriting (Boolean)

– Several related algorithms
• Rewriting

– Elimination
– Factoring/Decomposition
– Speedup 

g
• Refactoring
• Balancing
• Speedup 

N d i i i ti• Node minimization
– Espresso
– Don’t cares computed using 

• Node minimization
– Boolean decomposition
– Don’t cares computed using 

simulation and SATp g
BDDs

– Resubstitution 
• Technology mapping

simulation and SAT
– Resubstitution with don’t cares

• Technology mapping
34

gy pp g
– Tree based

• Technology mapping
– Cut based with choice nodes

Existing Capabilities (2005-2008)Existing Capabilities (2005 2008)

Combinational logic 
synthesis

Technology mapping 
with structural choices
CC

y
Fast, scalable, good quality CutCut--based, heuristic, good based, heuristic, good 

area/delay, flexiblearea/delay, flexible

ABC

Sequential synthesis
Innovative scalableInnovative scalable

Sequential verification
Integrated interacts with Innovative, scalable, Innovative, scalable, 

verifiableverifiable
Integrated, interacts with 
synthesis

35

Combinational SynthesisCo b at o a Sy t es s
• AIG rewriting minimizes the number of AIG nodes without 

increasing the number of AIG levels

Rewriting AIG subgraphs

increasing the number of AIG levels

• Pre-computing AIG subgraphs
– Consider function f = abc

Rewriting node A


A A

Subgraph 1 Subgraph 2 Subgraph 3


a b a c

Subgraph 1
b c

a

Subgraph 2

a b a c b c
a

a c
b

Rewriting node B


B B

b c a c

a b a c



b c
a

Subgraph 2

a b a c
Subgraph 1
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In both cases 1 node is saved



AIG-Based Solutions (Synthesis)AIG Based Solutions (Synthesis)
• Restructures AIG or logic network by the following transformsg y g

– Algebraic balancing
– Rewriting/refactoring/redecomposition

Resubstitution– Resubstitution
– Minimization with don't-cares, etc

SynthesisSynthesisSynthesisSynthesis

D2D2D1D1 D3D3 D4D4

Synthesis with choicesSynthesis with choices

D2D2
D1D1

Synthesis with choicesSynthesis with choices

HAIGHAIG D4D4
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D2D2
D3D3

HAIGHAIG D4D4

AIG-Based Solutions (Mapping)AIG Based Solutions (Mapping)
Input: A Boolean network Output: A netlist of K-LUTs implementing p
(And-Inverter Graph)

p p g
AIG and optimizing some cost function

f
ff

Technology
Mapping

a b c d e a b c d e

38The subject graph The mapped netlist

Formal VerificationFormal Verification
• Equivalence checking Equivalence checkingEquivalence checking

– Takes two designs and makes 
a miter (AIG)

• Model checking safetyg y
properties
– Takes design and property and 

makes a miter (AIG)
D2D2D1D1

0

( )

The goals are the same: to 
transform AIG until the Property checkingProperty checkingtransform AIG until the 
output is proved constant 0

C 0
pp

Breaking News: ABC won a 
model checking competition 
at CAV in August 2010

D1D1
0

39

g

Model Checking CompetitionModel Checking Competition

40
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Further Reading: ABC TutorialFurther Reading: ABC Tutorial 

• For more information, please refer to 

• R. Brayton and A. Mishchenko, "ABC: An 
academic industrial-strength verification tool",academic industrial strength verification tool , 
Proc. CAV'10, Springer, LNCS 6174, pp. 24-40.

• http://www.eecs.berkeley.edu/~alanmi/publicatio
ns/2010/cav10 abc pdfns/2010/cav10_abc.pdf
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SummarySummary

• Introduced problems in logic synthesis
– Representations and computationsp p

• Described And-Inverter Graphs (AIGs)
Th f d ti f i ti th i– The foundation of innovative synthesis

• Overviewed AIG-based solutions
– Synthesis, mapping, verification

• Introduced ABC• Introduced ABC
– Differences, fundamentals, programming
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Assignment: Using ABCAssignment: Using ABC
• Using BLIF manual g

http://www.eecs.berkeley.edu/~alanmi/publicatio
ns/other/blif.pdf

t BLIF fil ti 2 bit lti licreate a BLIF file representing a 2-bit multiplier

P f th f ll i• Perform the following sequence:
– read the file into ABC (command "read")

check statistics (command "print stats")– check statistics (command print_stats )
– visualize the network structure (command "show“)
– convert to AIG (command "strash")( )
– visualize the AIG (command "show")
– convert to BDD (command "collapse")

i li th BDD ( d " h bdd")
44

– visualize the BDD (command "show_bdd")



Assignment: Programming ABCAssignment: Programming ABC
• Write a procedure in ABC environment to iterate over the objects of 

the net ork and list the ID n mber t pe and fanin object IDs forthe network and list the ID number, type, and fanin object IDs for 
each object on a separate line.  Integrate this procedure into ABC, 
so that running command "test" would invoke your code, and print 
the result. Compare the print-out of the new command "test" with thethe result. Compare the print out of the new command test  with the 
result of command "show" for the multiplier example above

• Comment 1: For commands "show" and "show bdd" to work, pleaseComment 1: For commands show  and show_bdd  to work, please 
download the binary of software "dot" from GraphViz webpage and 
put it in the same directory as the ABC binary or anywhere else in 
the path: http://www.graphviz.org

• Comment 2: Make sure GSview and Ghostscript are installed on 
your computer. http://pages.cs.wisc.edu/~ghost/gsview/
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Programming HelpProgramming Help
E l f d t it t th bj t• Example of code to iterate over the objects
void Abc_NtkCleanCopy( Abc_Ntk_t * pNtk )
{{    

Abc_Obj_t * pObj;    
int i;    
Ab NtkF E hObj( Ntk Obj i )Abc_NtkForEachObj( pNtk, pObj, i )        

pObj->pCopy = NULL;
}}

• Example of code to create new command “test”
Call the new procedure (say, Abc_NtkPrintObjs) from 
Abc_CommandTest() in file “abc\src\base\abci\abc.c”
Abc NtkPrintObjs( pNtk );
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Abc_NtkPrintObjs( pNtk );


