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Boolean Algebra

0 A Boolean algebra is an algebraic structure
(B, + -0, 1)
B B is a set, called the carrier
M + and - are binary operations defined on B
B 0 and 1 are distinct members of B

that satisfies the following postulates (axioms):
1. Commutative laws
2. Distributive laws
3. ldentities

4. Complements

Postulates of Boolean Algebra

(Bs +1 Ty gs l)

1. Bis under + and -
Va,b eB, a+ beB and a- beB

2. : Va,b eB
a+b=b+a
a-b=b-a

3. > Va,beB
a+(b-c)=(@+hb)-(a+c)
a-(b+c)=a-b+a-c

4 Ya eB
O+a=a
l-a=a

5. - VaeB, 3aeB s.t.
a+a =1
a-a =0

Verify that &’ is unique in (B, +, -, 0, 1).




Instances of Boolean Algebra

C1Switching algebra (two-element Boolean
algebra)

C0The algebra of classes (subsets of a set)
ClArithmetic Boolean algebra

C0The algebra of propositional functions

Instance 1: Switching Algebra

0 A switching algebra is a two-element Boolean
Algebra ({0,1}, +, -, 0, 1) consisting of:
® the set B = {0, 1}
B two binary operations AND(-) and OR(+)
B one unary operation NOT(")

where

OR | O 1 AND | O | 1 NOT | -




Switching Algebra

] Just one of many other Boolean algebras
B (Ex: verify that the algebra satisfies all the postulates.)

0 An exclusive property (not hold for all Boolean
algebras) for two-element Boolean algebra:
X +y=21Iiff x=1 ory=1
X -y =0 iff x=0 or y=0

OR | O 1 AND | O | 1 NOT | -
1 0] 0| O 0]
1 1 0|1 1

Instance 2: Algebra of Classes

[0 Subsets of a set
B < 25
+ o U
C N
Oe ¢
1S

[0S is a universal set (S # ¢). Each subset of S is
called a class of S.

O If S={a,b}, then B = {¢, {a}, {b}, {a, b}}
OB (=2%is under U and N
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Algebra ot Classes

O : VS,,5,€28
S;US,=S5,U S;

SiNS,=5,nS;

O : VS,,5,,5; €28
S1U (52N S3) = (51U S;) N(S1VSy)
S;NGUS) = (51N S) V(S N Sy)

O 1 VS,e28

SIAR

S;NS

O 1 VS, €25,3S,'€25,S,/=8\S, s.t.

S, S

S1 ¢

DNE

Sy
S1

DNE

Sl’
Sl’
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Algebra of Classes

O :
Every finite Boolean algebra is isomorphic to the
Boolean algebra of subsets of some finite set S

Therefore, for all finite Boolean algebra, |B| can only be 2k for
some k > 1.

0 The theorem proves that finite class algebras are
not specialized (i.e. no exclusive properties, e.g.
X +y =1 iff x=1 or y=1 in two-element Boolean
algebra)

B Can reason in terms of specific and easily “visualizable”
concepts (union, intersection, empty set, universal set)
rather than abstract operations (+, -,0,1)
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Instance 3: Arithmetic Boolean Algebra
O (D,, Ilcm, gcd, 1, n)
n: product of distinct prime numbers
D, : set of all divisors of n
Icm: least common multiple
gcd: greatest common divisor
1: integer 1 (not the Boolean 1-element)
On=30=2x3x5
ob,={1, 2, 3, 5, 6, 10, 15, 30}
O If we look at D, as {4, {2}, {3}, {5}, {2, 3}, {2,
5}, {3, 5}, {2, 3, 5}}, it is easy to see that

arithmetic Boolean algebra is isomorphic to the
algebra of classes.

B See Stone Representation Theorem
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Instance 4: Algebra of Propositional
Functions

O, v, A, [0, D)

P: the set of propositional functions of n given
variables

v: disjunction symbol (OR)

A: conjunction symbol (AND)

1: formula that is always false (contradiction)
m: formula that is always true (tautology)
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IL.essons from Abstraction

ClAbstract mathematical objects in terms of
simple rules

CJA systematic way of characterizing various
seemingly unrelated mathematical objects

CdAbstraction trims off immaterial details
and simplifies problem formulation
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Properties of Boolean Algebras

0 For arbitrary elements a, b, and c in Boolean algebra

1. 5.
a+ (b+c)=((@a+b) +c (@) =a
a-(b-cy=(@-b)-c 6.

2. (a@a+b)y=a-b
at+a=a (a-b)y =a+0b
a-a=a 7.

3. a+a -b=a+b
a+1=1 a-(@+b)=a-b
a-0=0 8.

4. a-b+a-.-c+b-c=
a+(a-b)y=a a-b+a-c
a-(a+b)=a (a + b) (@’ +c) (b +¢) =

(@a+b)-(@ +c)
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Principle of Duality

ClEvery identity on Boolean algebra is
transformed into another identity if the
following is interchanged

® the operations + and -,
H the elements O and 1

CDExample:
ma+1=1
ma-0=0
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Postulates for Boolean Algebra
(Revisited)

Duality in (B, +, -, 0, 1)

1. Bis under + and -
Va,b eB, a+ beB and a- beB

2. : Va,b eB
a+b=b+a
a-b=b-a

3. - Va,beB

a+((b-c)=(@+hb)-(a+c)
a-(b+c)=a-b+a-c

4. - VaeB

+a=a

5. - VaeB, da'eB s.t.
a+a =1

a-a =0

=0
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Two Propositions

1. Letaandb be members of a Boolean algebra. Then
a=0andb=0 iff a+b=0

a=landb=1 iff ab=1

c.f. The following two propositions are only true for two-element
Boolean algebra (not other Boolean algebra)

Xx+y =1 iff x=1 or y=1
xy=0 iff x=0 or y=0

Why?

2. Let aand b be members of a Boolean algebra. Then
a=b iff ab+ab =0

19

Boolean Formulas and

Boolean Functions
e
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Boolean Formulas and Boolean
Functions

COutline:
B Definition of Boolean formulas
m Definition of Boolean functions
M Boole's expansion theorem

B The minterm canonical form
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n-variable Boolean Formulas

O Given a Boolean algebra B and n symbols x, ,..., X, the set
of all Boolean formulas on the n symbols is defined by:

1. The elements of B are Boolean formulas.

2. The variable symbols x, ,..., X, are Boolean formulas.
3. If g and h are Boolean formulas, then so are

b(g) + (h)

d(9) - (h)

H()

4. A string is a Boolean formula if and only if it is obtained by
finitely many applications of rules 1, 2 and 3.

O There are infinitely many n-variable Boolean formulas.
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n-variable Boolean Functions

0 A Boolean function is a mapping that can be described by a
Boolean formula.

O Given an n-variable Boolean formula F, the corresponding
n-variable function f : B"> B is defined as follows:

1.1f F = Db e B, then the formula represents the function
defined by
f(Xy,....%,) = b V([X],..., [x,])  B"

2. 1f F = x;, then the formula represents the function
defined by

f(Xy,..X,) = X V([X.], ..., [x,])  B"

where [x,] denotes a valuation of variable x,
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n-variable Boolean Functions

3. If the formula is of type either , or ', then
the corresponding n-variable function is defined as
follows

(g + h)(X4,..-,X,) = g(Xq,--.,X%,) + h(Xy,.... X))
(9 - h)(Xq,--.X,) = 9(Xq,---,X,) - h(Xq,...,X})
() Xps-0Xn) = 9(Xqs-0 X))

for V ([X.1,....[x, 1) € B"

0 The number of n-variable Boolean functions
over a finite Boolean algebra B is finite.
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Example

OB ={0, 1, a, a'}
] Variable symbols:

{x, v}

] 2-variable Boolean
formula:

e.g.,a x+ay’
] 2-variable Boolean
function: f: B2> B

0 Domain B2={(0,0),
0.1), ..., @a)}

QIO (O] |||V |F(O]|D (O] |=h

RN NSNS EEEE E

oo |orloj||rR|o|w|w|k(ol<
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Boole's Expansion Theorem

If f : B"-> B is a Boolean
function, then
f(Xq,....%,) = X'1 1(0,...,x,) + X f(1,...,X,)
for V ([x.1..--,[x, 1) € B"

Case analysis of Boolean functions under
the construction rules. Apply postulates of
Boolean algebra.

C0The theorem holds not only for two-
element Boolean algebra (c.f. Shannon
expansion)
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Minterm Canonical Form

A function f : B" - B is Boolean if and
only if it can be expressed in the minterm
canonical form

f(X)= > f(A)-X"
A<{0,1}"

where X= (X{,...,X,) € B", A= (a,...,a,) € {0,1}",
and XA = x,3t. x,32 ... x 2" (with X8 = X’ and xi = x)

(=) Follows from Boole's expansion theorem.

(<) Examine the construction rules of Boolean functions.

27

Example

fis Boolean!

If f is Boolean, f can be
expressed by f(x) = x f(1) + x’ f(0)
= X + a X’ from the minterm
canonical form. However,
substituting X = a in the previous
expression yields: f(a) = a +a a’
=—a=zl

f(x)

O |k |O|X
P e
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Why Study General Boolean Algebrar

0 General algebras can't be avoided
f=xy+x2z + X'z
B Two-element view: X, Yy, z € {0,1} and f €{0,1}

M General algebra view: f as a member of the
Boolean algebra of 3-variable Boolean
functions
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Why Study General Boolean Algebrar

0 General algebras are useful
B Two-element view: Truth tables include only O and 1.
B General algebra view: Truth tables contain any elements

of B.
J |K +
QQJKQ+

O |0 |0 |0

O |0 |Q
O |0 |1 |1

o |1 |O
O |1 |0 |O

i1 |0 |1
O |1 |1 |0

1 (1 |Q
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