
1

Logic Synthesis and
Verification

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Fall 2011

2

Boolean Function
Representation

Reading:
Logic Synthesis in a Nutshell

Section 2

most of the following slides are by
courtesy of Andreas Kuehlmann

3

Assumption

Unless otherwise said, from now on we
are concerned with two-element Boolean
algebra (i.e. B = {0,1})

4

Boolean Space
 B = {0,1}
 B2 = {0,1}{0,1} = {00, 01, 10, 11}

Karnaugh Maps: Boolean Lattices:

BB00

BB11

BB22

BB33

BB44

5

Boolean Function
 For B = {0,1}, a Boolean function f: Bn  B over variables

x1,…,xn maps each Boolean valuation (truth assignment) in
Bn to 0 or 1

Example
f(x1,x2) with f(0,0) = 0, f(0,1) = 1, f(1,0) = 1, f(1,1) = 0

0
0
1

1
x2

x1

x1

x2

6

Boolean Function
 Onset of f, denoted as f1, is f1= {v  Bn | f(v)=1}

 If f1 = Bn, f is a tautology
 Offset of f, denoted as f0, is f0= {v  Bn | f(v)=0}

 If f0 = Bn, f is unsatisfiable. Otherwise, f is satisfiable.
 f1 and f0 are sets, not functions!
 Boolean functions f and g are equivalent if v Bn. f(v) =

g(v) where v is a truth assignment or Boolean valuation
 A literal is a Boolean variable x or its negation x (or x, x)

in a Boolean formula

x3

x1

x2

x1

x2

x3

f(x1, x2, x3) = x1 f(x1, x2, x3) = x1

7

Boolean Function
 There are 2n vertices in Bn

 There are 22n
distinct Boolean functions

 Each subset f1  Bn of vertices in Bn forms a
distinct Boolean function f with onset f1

x1x2x3 f
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0  1
1 0 1 0
1 1 0 1
1 1 1 0

x1

x2

x3

8

Boolean Operations
Given two Boolean functions:

f : Bn  B
g : Bn  B

 h = f  g from AND operation is defined as
h1 = f1  g1; h0 = Bn \ h1

 h = f  g from OR operation is defined as
h1 = f1  g1; h0 = Bn \ h1

 h = f from COMPLEMENT operation is defined as
h1 = f0; h0 = f1

9

Cofactor and Quantification
Given a Boolean function:

f : Bn  B, with the input variable (x1,x2,…,xi,…,xn)

 Positive cofactor on variable xi
h = fxi is defined as h = f(x1,x2,…,1,…,xn)

 Negative cofactor on variable xi
h = fxi is defined as h = f(x1,x2,…,0,…,xn)

 Existential quantification over variable xi
h = xi. f is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)

 Universal quantification over variable xi
h = xi. f is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)

 Boolean difference over variable xi
h = f/xi is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)

10

Representation of Boolean Function
 Represent Boolean functions for two reasons

 to represent and manipulate the actual circuit we are
implementing

 to facilitate Boolean reasoning

 Data structures for representation
 Truth table
 Boolean formula

Sum of products (Disjunctive “normal” form, DNF)
Product of sums (Conjunctive “normal” form, CNF)

 Boolean network
Circuit (network of Boolean primitives)
And-inverter graph (AIG)

 Binary Decision Diagram (BDD)

11

Boolean Function Representation
Truth Table
 Truth table (function table for multi-valued

functions):
The truth table of a function f : Bn  B is a
tabulation of its value at each of the 2n

vertices of Bn.

In other words the truth table lists all mintems
Example: f = abcd + abcd + abcd +

abcd + abcd + abcd +
abcd + abcd

The truth table representation is
- impractical for large n
- canonical
If two functions are the equal, then their
canonical representations are isomorphic.

abcd f
0 0000 0
1 0001 1
2 0010 0
3 0011 1
4 0100 0
5 0101 1
6 0110 0
7 0111 0

abcd f
8 1000 0
9 1001 1
10 1010 0
11 1011 1
12 1100 0
13 1101 1
14 1110 1
15 1111 1

12

Boolean Function Representation
Boolean Formula
 A Boolean formula is defined inductively as an expression

with the following formation rules (syntax):

formula ::= ‘(‘ formula ‘)’
| Boolean constant (true or false)
| <Boolean variable>
| formula “+” formula (OR operator)
| formula “” formula (AND operator)
|  formula (complement)

Example
f = (x1  x2) + (x3) + ((x4  (x1)))
typically “” is omitted and ‘(‘, ‘)’ and ‘’ are simply reduced by priority,
e.g. f = x1 x2 + x3 + x4 x1

13

Boolean Function Representation
Boolean Formula in SOP
 A cube is defined as a conjunction of literals, i.e. a product

term.

Example
C = x1x2’x3 represents the function with onset: f1 =
{(x1=1,x2=0,x3=1)} in the Boolean space spanned by
x1,x2,x3, or f1 = {(x1=1,x2=0,x3=1, x4=0),
(x1=1,x2=0,x3=1,x4=1)} in the Boolean space spanned
by x1,x2,x3,x4, or …

x1

x2

x3

f = x1

x1

x2

x3

f = x1x2

x1

x2

x3

f = x1x2x3

14

Boolean Function Representation
Boolean Formula in SOP
 If C  f1, C the onset of a cube c, then c is an

implicant of f

 If C  Bn, and c has k literals, then |C|= 2n-k, i.e.,
C has 2n-k elements

Example
c = xy (c:B3  B), C = {100, 101}  B3

k = 2 , n = 3 |C| = 2 = 23-2

 An implicant with n literals is a minterm

15

Boolean Function Representation
Boolean Formula in SOP
 A function can be represented by a sum-of-cubes (products):

f = ab + ac + bc
Since each cube is a product of literals, this is a sum-of-products
(SOP) representation or disjunctive normal form (DNF)

 An SOP can be thought of as a set of cubes F
F = {ab, ac, bc}

 A set of cubes that represents f is called a cover of f.
F1={ab, ac, bc} and F2={abc, abc, abc, abc}

are covers of
f = ab + ac + bc.

 Mainly used in circuit synthesis; seldom used in Boolean reasoning

16

Boolean Function Representation
Boolean Formula in POS
 Product-of-sums (POS), or conjunctive normal form (CNF),

representation of Boolean functions
 Dual of the SOP representation

Example
 = (a+b+c) (a+b+c) (a+b+c) (a+b+c)

 A Boolean function in a POS representation can be derived
from an SOP representation with De Morgan’s law and the
distributive law

 Mainly used in Boolean reasoning; rarely used in circuit
synthesis (due to the asymmetric characteristics of NMOS
and PMOS)

17

Boolean Function Representation
Boolean Network
 Used for two main purposes

 as target structure for logic implementation which gets
restructured in a series of logic synthesis steps until
result is acceptable

 as representation for Boolean reasoning engine

 Efficient representation for most Boolean problems
 memory complexity is similar to the size of circuits that

we are actually building

 Close to the input and output representations of logic
synthesis

18

Boolean Function Representation
Boolean Network
A Boolean network is a directed graph C(G,N)

where G are the gates and N  GG) are the
directed edges (nets) connecting the gates.

Some of the vertices are designated:
Inputs: I  G
Outputs: O  G
I  O = 

Each gate g is assigned a Boolean function fg
which computes the output of the gate in terms
of its inputs.

19

Boolean Function Representation
Boolean Network
 The fanin FI(g) of a gate g are the predecessor gates of g:

FI(g) = {g’ | (g’,g)  N} (N: the set of nets)

 The fanout FO(g) of a gate g are the successor gates of g:
FO(g) = {g’ | (g,g’)  N}

 The cone CONE(g) of a gate g is the transitive fanin (TFI) of
g and g itself

 The support SUPPORT(g) of a gate g are all inputs in its
cone:
SUPPORT(g) = CONE(g)  I

20

Boolean Function Representation
Boolean Network

Example

I

O

6

FI(6) = {2,4}
FO(6) = {7,9}
CONE(6) = {1,2,4,6}
SUPPORT(6) = {1,2}

1

5
3

4
7

8

9
2

21

Boolean Function Representation
Boolean Network
 Circuit functions are defined recursively:

If G is implemented using physical gates with positive (bounded)
delays for their evaluation, the computation of hg depends in
general on those delays.

Definition
A circuit C is called combinational if for each input assignment of
C for t the evaluation of hg for all outputs is independent of
the internal state of C.

Proposition
A circuit C is combinational if it is acyclic. (converse not true!)

hgi


xi if gi  I
fgi

(hg j
,...,hgk

), g j ,...,gk FI (gi) otherwise







22

General Boolean network:
 Vertex can have an arbitrary finite number of inputs and outputs

 Vertex can represent any Boolean function stored in different
ways, such as:
 SOPs (e.g. in SIS, a logic synthesis package)
 BDDs (to be introduced)
 AIGs (to be introduced)
 truth tables
 Boolean expressions read from a library description
 other sub-circuits (hierarchical representation)

 The data structure allows general manipulations for insertion and
deletion of vertices, pins (connection ports of vertices), and nets
 general but far too slow for Boolean reasoning

Boolean Function Representation
Boolean Network

23

Boolean Function Representation
Boolean Network
Specialized Boolean network:
 Non-canonical representation in general

 computational effort of Boolean reasoning is due to this
non-canonicity (c.f. BDDs)

 Vertices have fixed number of inputs (e.g. two)

 Vertex function is stored as label (e.g. OR, AND, XOR)

 Allow on-the-fly compaction of circuit structure
 Support incremental, subsequent reasoning on multiple

problems

24

Boolean Function Representation
And-Inverter Graph
 AND-INVERTER graphs (AIGs)

vertices: 2-input AND gates
edges: interconnects with (optional) dots representing INVs

 Hash table to identify and reuse structurally isomorphic
circuits

f

g g

f

25

Boolean Function Representation
And-Inverter Graph
 Data structure for implementation

 Vertex:
pointers (integer indices) to left- and right-child and fanout

vertices
collision chain pointer
other data

 Edge:
pointer or index into array
one bit to represent inversion

 Global hash table holds each vertex to identify isomorphic
structures

 Garbage collection to regularly free un-referenced vertices

26

Boolean Function Representation
And-Inverter Graph

 Data structure

0456
left

right
next

fanout
1345
….

8456
….

6423
….

7463
….

0
1

hash value

left pointer

right pointer

next in collision chain
array of fanout pointers

complement bits

Constant
One Vertex

zero

one

0456
0455

0457

...

...

Hash Table

0456
left

right
next

fanout

0
0

27

Boolean Function Representation
And-Inverter Graph
 AIG package for Boolean reasoning

Engine application:
- traverse problem data structure and build Boolean problem using the interface
- call SAT to make decision

Engine Interface:
void INIT()
void QUIT()
Edge VAR()
Edge AND(Edge p1,

Edge p2)
Edge NOT(Edge p1)
Edge OR(Edge p1

Edge p2)
...
int SAT(Edge p1)

Engine Implementation:

...

...

...

...

External reference pointers attached
to application data structures

28

Boolean Function Representation
And-Inverter Graph
 Hash table look-up

Algorithm HASH_LOOKUP(Edge p1, Edge p2) {
index = HASH_FUNCTION(p1,p2)
p = &hash_table[index]
while(p != NULL) {
if(p->left == p1 && p->right == p2) return p;
p = p->next;

}
return NULL;

}

 Tricks:
 keep collision chain sorted by the address (or index) of p
 use memory locations (or array indices) in topological order for

better cache performance

29

Boolean Function Representation
And-Inverter Graph
 AND operation

Algorithm AND(Edge p1,Edge p2){
if(p1 == const1) return p2
if(p2 == const1) return p1
if(p1 == p2) return p1
if(p1 == p2) return const0
if(p1 == const0 || p2 == const0) return const0

if(RANK(p1) > RANK(p2)) SWAP(p1,p2)
if((p = HASH_LOOKUP(p1,p2)) return p
return CREATE_AND_VERTEX(p1,p2)

}

30

Boolean Function Representation
And-Inverter Graph

 NOT operation

Algorithm NOT(Edge p) {
return TOOGLE_COMPLEMENT_BIT(p)

}

OR operation

Algorithm OR(Edge p1,Edge p2){
return (NOT(AND(NOT(p1),NOT(p2))))

}

31

Boolean Function Representation
And-Inverter Graph
 Cofactor operation

Algorithm POSITIVE_COFACTOR(Edge p,Edge v){
if(IS_VAR(p)) {

if(p == v) {
if(IS_INVERTED(v) == IS_INVERTED(p)) return const1
else return const0

}
else return p

}
if((c = GET_COFACTOR(p,v)) == NULL) {

left = POSITIVE_COFACTOR(p->left, v)
right = POSITIVE_COFACTOR(p->right, v)
c = AND(left,right)
SET_COFACTOR(p,v,c)

}
if(IS_INVERTED(p)) return NOT(c)
else return c

}

32

Boolean Function Representation
And-Inverter Graph
 Similar algorithm for NEGATIVE_COFACTOR

 Existential and universal quantifications can be
built from AND, OR and COFACTORS

Exercise: Prove (f  g)v = fv  gv and (f) v = (fv)

Question: What is the worst-case complexity of
performing quantifications over AIGs?

33

Boolean Function Representation
Binary Decision Diagram (BDD)

 A graphical representation of Boolean function
 BDD is a Shannon cofactor tree:

 f = v fv + v fv (Shannon expansion)
vertices represent decision nodes (i.e. multiplexers)

controlled by variables
 leaves are constants “0” and “1”
two children of a vertex of f represent two subfunctions fv

and fv
 Variable ordering restriction and reduction rules make

(ROBDD) representation canonical

v
0 1

f

fv fv
34

Boolean Function Representation
BDD – Canonicalization
 General idea:

 instead of exploring sub-cases by enumerating them in time, try to
store sub-cases in memory
 KEY: two hashing mechanisms:

 unique table: find identical sub-cases and avoid replication
 computed table: reduce redundant computation of sub-cases

 Represent logic functions as graphs (DAGs):
 many logic functions can be represented compactly - usually better

than SOPs
 Can be made canonical (ROBDD)

 Shift the effort in a Boolean reasoning engine from SAT algorithm to
data representation

 Many logic operations can be performed efficiently on BDD’s:
 usually linear in size of input BDDs
 tautology checking and complement operation are constant time

 BDD size critically depends on variable ordering

35

Boolean Function Representation
BDD – Canonicalization
 Directed acyclic graph (DAG)

 one root node, two terminal-nodes, 0 and 1
 each node has two children and is controlled by a variable

 Shannon cofactor tree, except reduced and ordered (ROBDD)
 Ordered:

 cofactor variables (splitting variables) in the same order along all
paths

xi1
< xi2

< xi3
< … < xin

 Reduced:
 any node with two identical children is removed
 two nodes with isomorphic BDD’s are merged

These two rules make any node in an ROBDD represent a distinct
logic function

a

c c

b

0 1

ordered
(a<c<b)

a

b c

c

0 1

not
ordered

b

a

b

0 1

f

b

0 1

f

reduce

36

Boolean Function Representation
BDD
 Example

Same function with two different variable orders

a

b b

c c

d

0 1

c+bd b

root node

c+d
c

d

f = ab+a’c+bc’d a

c

d

b

0 1

c+bd

db

b

1

0

leaf node

37

Boolean Function Representation
BDD – Canonicity of ROBDD

 Three components make ROBDD canonical
(Bryant 1986):
 unique nodes for constant “0” and “1”
 identical order of case-splitting variables along

each paths
 a hash table that ensures

(node(fv) = node(gv))  (node(fv) = node(gv)) 
node(f) = node(g)

and provides recursive argument that node(f)
is unique when using the unique hash-table

38

Boolean Function Representation
BDD – Onset Counting
F = b’+a’c’ = ab’+a’cb’+a’c’ (all paths to the 1 node)

 By tracing all paths to the 1 node, we get a cover of pairwise
disjoint cubes

 BDD does not explicitly enumerate all paths; rather it represents
paths by a graph whose size is measures by its nodes
 A DAG can represent an exponential number of paths with a linear

number of nodes
 BDDs can be used to efficiently represent sets

 interpret elements of the onset as elements of the set
 f is called the characteristic function of that set

a

c
b

0 1

1
0

1

1
0

0

f

fa= b’
fa = cb’+c’

39

Boolean Function Representation
BDD – ITE Operator
 Each BDD node can be written as a triplet: f =

ite(v,g,h) = vg + v’h, where g = fv and h = fv,
meaning if v then g else h

(v is top variable of f)

v f

0 1

h g

1 0

f

v

g

mux

h

40

Boolean Function Representation
BDD – ITE Operator
 ite(f,g,h) = fg + f’h

 ITE operator can implement any two variable logic function. There are 16 such
functions corresponding to all subsets of vertices of B2:

Table Subset Expression Equivalent Form
0000 0 0 0
0001 AND(f, g) f g ite(f, g, 0)
0010 f > g f g ite(f, g, 0)
0011 f f f
0100 f < g fg ite(f, 0, g)
0101 g g g
0110 XOR(f, g) f  g ite(f, g, g)
0111 OR(f, g) f + g ite(f, 1, g)
1000 NOR(f, g) (f + g) ite(f, 0, g)
1001 XNOR(f, g) f  g ite(f, g, g)
1010 NOT(g) g ite(g, 0, 1)
1011 f  g f + g ite(f, 1, g)
1100 NOT(f) f ite(f, 0, 1)
1101 f  g f + g ite(f, g, 1)
1110 NAND(f, g) (f g) ite(f, g, 1)
1111 1 1 1

41

Boolean Function Representation
BDD – ITE Operator

Recursive operation of ITE

Ite(f,g,h)
= f g + f h
= v (f g + f h)v + v (f g + f h)v
= v (fv gv + fv hv) + v (fv gv +fv hv)
= ite(v, ite(fv,gv,hv), ite(fv,gv,hv))

 Let v be the top-most variable of BDDs f, g, h

42

Boolean Function Representation
BDD – ITE Operator
 Recursive computation of ITE

Algorithm ITE(f, g, h)
if(f == 1) return g
if(f == 0) return h
if(g == h) return g

if((p = HASH_LOOKUP_COMPUTED_TABLE(f,g,h)) return p
v = TOP_VARIABLE(f, g, h) // top variable from f,g,h
fn = ITE(fv,gv,hv) // recursive calls
gn = ITE(fv,gv,hv)if(fn == gn) return gn // reduction
if(!(p = HASH_LOOKUP_UNIQUE_TABLE(v,fn,gn)) {

p = CREATE_NODE(v,fn,gn) // and insert into UNIQUE_TABLE
}
INSERT_COMPUTED_TABLE(p,HASH_KEY{f,g,h})
return p

}

43

Boolean Function Representation
BDD – ITE Operator
 Example

I = ite(F, G, H)
= ite(a, ite(Fa , Ga , Ha), ite(Fa , Ga , Ha))
= ite(a, ite(1, C , H), ite(B, 0, H))
= ite(a, C, ite(b , ite(Bb , 0b , Hb), ite(Bb , 0b , Hb))
= ite(a, C, ite(b , ite(1, 0, 1), ite(0, 0, D)))
= ite(a, C, ite(b , 0, D))
= ite(a, C, J)

Check: F = a + b
G = ac
H = b + d
ite(F, G, H) = (a + b)(ac) + ab(b + d) = ac + abd

F,G,H,I,J,B,C,D
are pointers

b1

1

a

0

1 0

1 0

F

B

1

1

a

0

1 0

0

G

c 0C

1

b

0

1 0

0

H

d D

1
1

0

a
1 0

0

I

b J

1

C

D

44

Boolean Function Representation
BDD – ITE Operator
 Tautology checking using ITE

Algorithm ITE_CONSTANT(f,g,h) { // returns 0,1, or NC
if(TRIVIAL_CASE(f,g,h) return result (0,1, or NC)
if((res = HASH_LOOKUP_COMPUTED_TABLE(f,g,h))) return res
v = TOP_VARIABLE(f,g,h)
i = ITE_CONSTANT(fv,gv,hv)if(i == NC) {

INSERT_COMPUTED_TABLE(NC, HASH_KEY{f,g,h}) // special table!!
return NC

}
e = ITE_CONSTANT(fv,gv,hv)if(e == NC) {

INSERT_COMPUTED_TABLE(NC, HASH_KEY{f,g,h})
return NC

}
if(e != i) {

INSERT_COMPUTED_TABLE(NC, HASH_KEY{f,g,h})
return NC

}
INSERT_COMPUTED_TABLE(e, HASH_KEY{f,g,h})
return i;

}

45

Boolean Function Representation
BDD – ITE Operator
 Composition using ITE

 Compose is an important operation, e.g. for building the BDD of a circuit
backwards, Compose(F, v, G) : F(v, x)  F(G(x), x), means substitute v = G(x)

Algorithm COMPOSE(F,v,G) {
if(TOP_VARIABLE(F) > v) return F // F does not depend on v
if(TOP_VARIABLE(F) == v) return ITE(G,F1,F0)
i = COMPOSE(F1,v,G)
e = COMPOSE(F0,v,G)
return ITE(TOP_VARIABLE(F),i,e)

}

Note:
1. F1 and F0 are the 1-child and 0-child of F, respectively
2. G, i, e are not functions of v
3. If TOP_VARIABLE of F is v, then ITE(G, F1, F0) does the replacement of v by G

46

Boolean Function Representation
BDD – Implementation Issues
Unique table:
 avoids duplication of existing nodes

 Hash-Table: hash-function(key) = value
 identical to the use of a hash-table in AND/INVERTER circuits

Computed table:
 avoids re-computation of existing results

hash value
of key

collision
chain

hash value
of key

No collision chain

47

Boolean Function Representation
BDD – Implementation Issues
 Unique table

 Before a node ite(v, g, h) is added to BDD database, it is looked up in the
“unique-table”. If it is there, then existing pointer to node is used to represent
the logic function. Otherwise, a new node is added to the unique-table and the
new pointer returned.

 Thus a strong canonical form is maintained. The node for f = ite(v, g, h) exists
iff ite(v, g, h) is in the unique-table. There is only one pointer for ite(v, g, h)
and that is the address to the unique-table entry.

 Unique-table allows single multi-rooted DAG to represent all users’ functions

hash index
of key

collision
chain

48

Boolean Function Representation
BDD – Implementation Issues
 Computed table

 Keep a record of (F, G, H) triplets already computed by the ITE
operator
 software cache (“cache” table)
 simply hash-table without collision chain (lossy cache)

49

Boolean Function Representation
BDD – Implementation Issues
 Use of computed table

 BDD packages often use optimized implementations for special
operations
e.g. ITE_Constant (check whether the result would be a

constant) AND_Exist (AND operation with existential
quantification)

 All operations need a cache for decent performance
 local cache

 for one operation only - cache will be thrown away after
operation is finished (e.g. AND_Exist)

special cache for each operation
 does not need to store operation type

shared cache for all operations
 better memory handling
 needs to store operation type

50

Boolean Function Representation
BDD – Implementation Issues
 Complemented edges

 Combine inverted functions by using complemented edge
 similar to AIG
 reduces memory requirements
more importantly, makes operations NOT, ITE more efficient

0 1

G

0 1

G

two different
DAGs

0 1

G G
only one DAG
using complement
pointer

51

Boolean Function Representation
BDD – Implementation Issues
 Complemented edges

 To maintain strong canonical form, need to resolve 4
equivalences:

 Solution: Always choose the ones on left, i.e. the “then” leg
must have no complement edge.

VV VV VV VV

VV VV VV VV

52

Boolean Function Representation
BDD – Implementation Issues
 Complemented edges

Standard triples: ite(F, F, G)  ite(F, 1, G)
ite(F, G, F)  ite(F, G, 0)
ite(F, G, F)  ite(F, G, 1)
ite(F, F, G)  ite(F, 0, G)

To resolve equivalences: ite(F, 1, G)  ite(G, 1, F)
ite(F, 0, G)  ite(G, 1, F)
ite(F, G, 0)  ite(G, F, 0)
ite(F, G, 1)  ite(G, F, 1)
ite(F, G, G)  ite(G, F, F)

To maximize matches on computed table:
1. First argument is chosen with smallest top variable.
2. Break ties with smallest address pointer. (breaks PORTABILITY!)

Triples:
ite(F, G, H)  ite (F, H, G)  ite (F, G, H)  ite (F, H, G)
Choose the one such that the first and second argument of ite should not be
complement edges (i.e. the first one above

53

Boolean Function Representation
BDD – Implementation Issues

 Variable ordering – static
 variable ordering is computed up-front based

on the problem structure
works well for many practical combinational

functions
general scheme: control variables first
DFS order is good for most cases

works bad for unstructured problems
e.g. using BDDs to represent arbitrary sets

 lots of ordering algorithms
simulated annealing, genetic algorithms
give better results but extremely costly

54

Boolean Function Representation
BDD – Implementation Issues

 Variable ordering – dynamic
 Changes the order in the middle of BDD applications

must keep same global order
 Problem: External pointers reference internal nodes!

BDD Implementation:

...

...
...
...

External reference pointers attached

to application data structures

55

Boolean Function Representation
BDD – Implementation Issues
 Variable ordering – dynamic

Theorem (Friedman):
Permuting any top part of the variable order has no effect on the
nodes labeled by variables in the bottom part.
Permuting any bottom part of the variable order has no effect on the
nodes labeled by variables in the top part.

 Trick: Two adjacent variable layers can be exchanged by keeping the
original memory locations for the nodes

a

b b

c c c c

ff0 f1

f00 f01 f10 f11

bb b

c c c c

ff0 f1

f00 f01 f10 f11

aa

mem1

mem2

mem3

mem1

mem2

mem3

56

Boolean Function Representation
BDD – Implementation Issues
 Variable ordering – dynamic

 BDD sifting:
shift each BDD variable to the top and then to the bottom

and see which position had minimal number of BDD nodes
efficient if separate hash-table for each variable
can stop if lower bound on size is worse then the best

found so far
shortcut: two layers can be swapped very cheaply if there

is no interaction between them
expensive operation

 grouping of BDD variables:
 for many applications, grouping variables gives better

ordering
 e.g. current state and next state variables in state traversal

grouping variables for sifting

57

Boolean Function Representation
BDD – Implementation Issues
 Garbage collection

 Important to free and reuse memory of unused BDD nodes
including
those explicitly freed by an external bdd_free operation
those temporary created during BDD operations

 Two mechanisms to check whether a BDD is not referenced:
Reference counter at each node

 increment whenever node gets one more referenced
 decrement when node gets de-referenced
 take care of counter-overflow

Mark and sweep algorithm
 does not need counter
 first pass, mark all BDDs that are referenced
 second pass, free the BDDs that are not marked
 need additional handle layer for external references

58

Boolean Function Representation
BDD – Implementation Issues

Garbage collection
 Timing is crucial because garbage collection is expensive

immediately when node gets freed
 bad because dead nodes get often reincarnated in

subsequent operations
regular garbage collections based on statistics

obtained during BDD operations
 Computed-table must be cleared since not used in

reference mechanism
 Improving memory locality and therefore cache behavior

59

Boolean Function Representation
BDD – Variants
 MDD: Multi-valued DD

 have more then two branches
 can be implemented using a regular BDD package with binary

encoding
 the binary variables for one MV variable do not have to stay together and

thus potentially better ordering

 ADD: (Algebraic BDDs) MTBDD
 multi-terminal BDDs
 decision tree is binary
 multiple leaves, including real numbers, sets or arbitrary objects
 efficient for matrix computations and other non-integer applications

 FDD: Free-order BDD
 variable ordering differs
 not canonical anymore

 …

60

Boolean Function Representation
BDD – Variants
 Zero suppressed BDD (ZDD)

 ZBDDs were invented by Minato to efficiently represent sparse
sets. They have turned out to be useful in implicit methods for
representing primes (which usually are a sparse subset of all
cubes).

 Different reduction rules:
 BDD: eliminate all nodes where then edge and else edge point to

the same node.
 ZBDD: eliminate all nodes where the then node points to 0.

Connect incoming edges to else node.
 For both: share equivalent nodes.

0 1

0 1 0 1
0 1

0
1

0 1

0

BDD:
ZBDD:

61

Boolean Function Representation
BDD – Variants
Theorem: ZBDDs are canonical given a variable

ordering and the support set
x1

x2

01

BDD

x3

1

ZBDD if
support is
x1, x2, x3

1

ZBDD if
support is
x1, x2

Example

x1

x2

01

BDD

x3

1

ZBDD if
support is
x1, x2 , x3

x1

x2

01

x3

62

Boolean Function Representation
Summary

 Sum of products
 Good for circuit synthesis

 Product of sums
 Good for Boolean reasoning

 Boolean network
 Generic network

Good for multi-level circuit synthesis
 And-inverter graph

Good for Boolean reasoning

 Binary decision diagram
 Good for Boolean reasoning

63

Boolean Reasoning

Reading:
Logic Synthesis in a Nutshell

Section 2

most of the following slides are by
courtesy of Andreas Kuehlmann

64

Boolean Reasoning
Satisfiability (SAT)
 Boolean reasoning engines need:

 a data structure to represent problem instances
 a decision procedure to decide about SAT or UNSAT

 Fundamental tradeoff
 canonical data structure (e.g. truth table, ROBDD)

data structure uniquely represents function
decision procedure is trivial (e.g., just pointer comparison)
Problem: size of data structure is in general exponential

 non-canonical data structure (e.g. AIG, CNF)
systematic search for satisfying assignment
size of data structure is linear
Problem: decision may take an exponential amount of time

65

Boolean Reasoning
SAT
 Basic SAT algorithms:

 branch and bound algorithm
 branching on the assignments of primary inputs only or those of

all variables
 E.g. PODEM vs. D-algorithms in ATPG

 Basic data structures:
 circuits or CNF formulas
 SAT on circuits is identical to the justification part in ATPG

 1st half of ATPG: justification
 find an input assignment that forces an internal signal to a

required value
 2nd half of ATPG: propagation

 make a signal change at an internal signal observable at some
outputs (can be easily formulated as SAT over CNF formulas)

66

Boolean Reasoning
SAT vs. Tautology
 SAT:

 find a truth assignment to the inputs making a given
Boolean formula true

 NP-complete

 Tautology:
 find a truth assignment to the inputs making a given

Boolean formula false
 coNP-complete

 SAT and Tautology are dual to each other
 checking SAT on formula  = checking Tautology on

formula , and vice versa

67

Boolean Reasoning
SAT – AIG-based Decision Procedure
 General Davis-Putnam procedure

 search for consistent assignment to entire cone of
requested vertex in AIG by systematically trying all
combinations (may be partial)

 keep a queue of vertices that remain to be justified
pick decision vertex from the queue and case split on

possible assignments
for each case

 propagate as many implications as possible
 generate more vertices to be justified
 if conflicting assignment encountered, undo all

implications and backtrack
 recur to next vertex from queue

68

Boolean Reasoning
SAT – AIG-based Decision Procedure
 General Davis-Putnam procedure

Algorithm SAT(Edge p) {
queue = INIT_QUEUE(p)
if(!IMPLY(p)) return FALSE
return JUSTIFY(queue)

}

Algorithm JUSTIFY(queue) {
if(QUEUE_EMPTY(queue)) return TRUE
mark = ASSIGNMENT_MARK()
v = QUEUE_NEXT(queue) // decision vertex
if(IMPLY(NOT(v)) {

if(JUSTIFY(queue)) return TRUE
} // conflict
UNDO_ASSIGNMENTS(mark)
if(IMPLY(v)) {

if(JUSTIFY(queue)) return TRUE
} // conflict
UNDO_ASSIGNMENTS(mark)
return FALSE

}

69

Boolean Reasoning
SAT – AIG-based Decision Procedure

 Example

1st case for 9:

Queue Assignments

1

6

2 5
8

7

3

4

9

9

0

1

6

2 5
8

7

3

4

9

9

0

9

9
7
4
5
1
2

01
11

10 1

conflict !
- undo all assignments
- backtrack

SAT(NOT(9))??

70

Boolean Reasoning
SAT – AIG-based Decision Procedure

 Example (cont’d)

2nd case for 9:

1st case for 5:

Assignments

1

6

2 5
8

7

3

4

9

5
6

0

9
7
8
5
6

01
0

0
0 1

Queue

1

6

2 5
8

7

3

4

9 0

9
7
8
5
6
2
3

01
0

0
0 1

0

Note:
vertex 7 is justified
by 8->5->7

0

Solution cube: 1 = x, 2 = 0, 3 = 0

71

Boolean Reasoning
SAT – AIG-based Decision Procedure

Implication
 Fast implication procedure is key for efficient

SAT solver!
don’t move into circuit parts that are not sensitized to

current SAT problem
detect conflicts as early as possible

 Table lookup implementation (27 cases):
No-implication cases:

x

x
x

x

1
x

1

x
x

0

x
0

0

1
0

0

0
0

x

0
0

1

0
0

1

1
1

72

Boolean Reasoning
SAT – AIG-based Decision Procedure

Implication (cont’d)
 Table lookup implementation (27 cases):

Implication cases:

Conflict cases:

Split case:

0

x
x

x

0
x

0

0
x

x

x
1

x

1
1

1

x
1

x

1
0

1

x
0

1

1
x

1

0
x

0

1
x

1

1
0

0

x
1

0

0
1

0

1
1

x

0
1

1

0
1

x

x
0

73

Boolean Reasoning
SAT – AIG-based Decision Procedure
 Case split

 Different heuristics work well for particular problem classes
 Often depth-first heuristic is good because it generates

conflicts quickly
 Mixture of depth-first and breadth-first schedule
 Other heuristics:

pick the vertex with the largest fanout
count the polarities of the fanout separately and pick the

vertex with the highest count in either polarity
run a full implication phase on all outstanding case splits

and count the number of implications one would get
pick vertices that are involved in small cut of the circuit

== 0?

“small cut”

74

Boolean Reasoning
SAT – AIG-based Decision Procedure
 Learning

 Learning is the process of adding “shortcuts” to the circuit structure
that avoids case splits
 static learning:

 global implications are learned
 dynamic learning:

 learned implications only hold in current part of the search tree
 Learned implications are stores as additional network

 Example (cont’d)
 1st case for vertex 9 lead to conflict
 If we were to try the same assignment again (e.g. for the next

SAT call), we would get the same conflict => merge vertex 7 with
zero-vertex

1

6

2 5
8

7

3

4

9 0
01

11

10 1

Zero Vertex
- if rehashing is invoked

vertex 9 is simplified and
and merged with vertex 8

75

Boolean Reasoning
SAT – AIG-based Decision Procedure
 Learning – static

 Implications that can be learned structurally from the circuit
Add learned structure as circuit

Use hash table to find structure in circuit:
Algorithm CREATE_AND(p1,p2) {
. . . // create new vertex p
if((p’=HASH_LOOKUP(p1,NOT(p2))) {
LEARN(((p=0)&(p’=0)) (p1=0))

}
if((p’=HASH_LOOKUP(NOT(p1),p2)) {
LEARN(((p=0)&(p’=0)) (p2=0))

}
}

Zero Vertex

p1

p2 p'

p

76

Boolean Reasoning
SAT – AIG-based Decision Procedure

 Example (cont’d)
2nd case for 9 (original):

Assignments

1

6

2 5
8

7

3

4

9

5
6

0

9
7
8
5
6

01
0

0
0 1

Queue

2nd case for 9 (with static learning):

1

6

2 5
8

7

3

4

9 0

9
7
8
5
6
a
3

01
0

0
0 1

Zero Vertex
a

b

1

0

Solution cube: 1 = x, 2 = x, 3 = 0

77

Boolean Reasoning
SAT – AIG-based Decision Procedure
 Learning – static

 Other learning based on contra-positive:
if (P  Q), then (Q  P)

foreach vertex v {
mark = ASSIGNMENT_MARK()
IMPLY(v)
LEARN_IMPLICATIONS(v)
UNDO_ASSIGNMENTS(mark)
IMPLY(NOT(v))
LEARN_IMPLICATIONS(NOT(v))
UNDO_ASSIGNMENTS(mark)

}

 Problem: learned implications are far too
many
 solution: restrict learning to non-

trivial implications and filter
redundant implications

x y 1

0

0
0

((0) (1)) ((0) (1))x y y x      

x y 0
1

Zero Vertex0

0

78

Boolean Reasoning
SAT – AIG-based Decision Procedure
 Learning – static and recursive

 Compute the set of all implications for both case splits on level i
 Static learning of constants, equivalences

 Intersect both split cases to learn for level i–1

 Apply learning recursively until all case splits exhausted
 recursive learning is complete but very expensive in practice for

levels > 2, 3
 restrict learning level to fixed number becomes incomplete

((1) (1) (0) (1)) (1)x y x y y        

x
y 0

x
y 0

x
y 0

1

0

1

1

1

1

x
y 0

1

x

x

assume permanent assignment

79

Boolean Reasoning
SAT – AIG-based Decision Procedure
 Learning – static and recursive

Algorithm RECURSIVE_LEARN(int level) {
if(v = PICK_SPLITTING_VERTEX()) {

mark = ASSIGNMENT_MARK()
IMPLY(v)
IMPL1 = RECURSIVE_LEARN(level+1)
UNDO_ASSIGNMENTS(mark)
IMPLY(NOT(v))
IMPL0 = RECURSIVE_LEARN(level+1)
UNDO_ASSIGNMENTS(mark)
return IMPL1  IMPL0

}
else { // completely justified

return IMPLICATIONS
}

}

80

Boolean Reasoning
SAT – AIG-based Decision Procedure

 Learning – dynamic
 Learn implications in a sub-tree of searching

cannot simply add permanent structure because not
globally valid
 add and remove learned structure (expensive)
 add branching condition to the learned implication

 of no use unless we prune the condition (conflict learning)
 use implication and assignment mechanism to assign and

undo assigns
 e.g., dynamic recursive learning with fixed recursion level

Dynamic learning of equivalence relations (Stalmarck
procedure)
 learn equivalence relations by dynamically rewriting the

formula

81

Boolean Reasoning
SAT – AIG-based Decision Procedure

 Learning – dynamic
 Efficient implementation of dynamic recursive learning

with level 1:
consider both sub-cases in parallel
use 27-valued logic in the IMPLY routine

(level0-value, level1-choice1, level1-choice2)
({0,1,x}, {0,1,x}, {0,1,x})

automatically set learned values for level0 if both level1
choices agree, e.g.,

0 0 0

(x,1,0)

(x,x,1)

(1,1,1) 1

x

x

assume temporary assignment
82

Boolean Reasoning
SAT – AIG-based Decision Procedure
 Learning – conflict-based (c.f. structure-based)

 Idea: Learn the situation under which a particular
conflict occurred and assert it to 0
IMPLY will use this “shortcut” to detect similar conflict

earlier
 Definition: An implication graph is a directed Graph

I(G’,E), G’  G are the gates of C with assigned values vg
 unknown, E  G’G’ are the edges, where each edge
(gi,gj) E reflects an implication for which an assignment
of gate gi leads to the assignment of gate gj.

0 (decision vertex)

0 (decision vertex)
1

2
3

4

0

1

1’
2’

3’

4’

Circuit: Implication graph:

0
0

0

1

83

Boolean Reasoning
SAT – AIG-based Decision Procedure
 Learning – conflict-based

 The roots (w/o fanin-edges) of the implication graph
correspond to the decision vertices, the leaves correspond to
the implication frontier

 There is a strict implication order in the graph from the roots
to the leaves
We can completely cut the graph at any point and identify value

assignments to the cut vertices, we result in identical implications
toward the leaves
C1 C2 Cn-1 Cn (C1: decision vertices)

Cut assignment (Ci)

84

Boolean Reasoning
SAT – AIG-based Decision Procedure
 Learning – conflict-based

 If an implication leads to a conflict, any cut assignment in the
implication graph between the decision vertices and the conflict will
result in the same conflict!

(Ci Conflict) (NOT(Conflict) NOT(Ci))

 We can learn the complement of the cut assignment as circuit
 find minimal cut in the implication graph I (costs less to learn)
 find dominator vertex if exists
 restrict size of cuts to be learned, otherwise exponential blow-up

85

Boolean Reasoning
SAT – AIG-based Decision Procedure
 Non-chronological backtracking

 If we learned only cuts on decision vertices, only the decision
vertices that are in the support of the conflict are needed

 The conflict is fully symmetric with respect to the unrelated
decision vertices!!
 Learning the conflict would prevent checking the symmetric parts

again
BUT: It is too expensive to learn all conflicts (any cut)

Decision levels: 5
4

1
3

6

2

6

5
4

3

2
1Decision Tree:

86

Boolean Reasoning
SAT – AIG-based Decision Procedure
 Non-chronological backtracking

 We can still avoid exploring symmetric parts of the decision
tree by tracking the decision support vertices of a conflict
 If no conflict of the first choice on a decision vertex depends on

that vertex, the other choice will result in symmetric conflicts and
their evaluation can be skipped!

 By tracking the implications of the decision vertices we can
skip decision levels during backtrack

0

1

2

3

4

{2,4} {2,4,0}

{2,3}

{4,3} {4,0}

{2,0}

decision levels that cause a conflict

87

Boolean Reasoning
SAT – CNF-based Decision Procedure

 CNF
 Product-of-Sums (POS) representation of Boolean

function
 Describes solution using a set of constraints

very handy in many applications because new constraints
can be simply added to the list of existing constraints

very common in AI community
 Example

= (a+b+c)(a+b+c)(a+b+c)(a+b+c)

 SAT on CNF (POS)  TAUTOLOGY on DNF (SOP)

88

Boolean Reasoning
SAT – CNF-based Decision Procedure
 Circuit to CNF conversion

 Encountered often in practical applications
 Naive conversion from circuit to CNF:

 multiply out expressions of circuit until two level structure
 Example: y = x1 x2  x2  ...  xn (parity function)

 circuit size is linear in the number of variables



 generated chess-board Karnaugh map
 CNF (or DNF) formula has 2n-1 terms (exponential in the # vars)

 Better approach:
 introduce one variable per circuit vertex
 formulate the circuit as a conjunction of constraints imposed on the vertex

values by the gates
 uses more variables but size of formula is linear in the size of the circuit

89

Boolean Reasoning
SAT – CNF-based Decision Procedure
 Circuit to CNF conversion

 Example
Single gate

Connected gates

b

a
c (a + b + c)(a + c)(b + c)

1

6

2 5
8

7

3

4

9 0

(1 + 2 + 4)(1 + 4)(2 + 4)
(2 + 3 + 5)(2 + 5)(3 + 5)
(2 + 3 + 6)(2 + 6)(3 + 6)
(4 + 5 + 7)(4 + 7)(5 + 7)
(5 + 6 + 8)(5 + 8)(6 + 8)
(7 + 8 + 9)(7 + 9)(8 + 9)
(9)

Justify to “0”

90

Boolean Reasoning
SAT – CNF-based Decision Procedure
 DPLL procedure

Algorithm DPLL() {
while ChooseNextAssignment() {

while Deduce() == CONFLICT {
blevel = AnalyzeConflict();
if (blevel < 0) return UNSATISFIABLE;
else Backtrack(blevel);

}
}
return SATISFIABLE;

}

ChooseNextAssignment picks next decision variable and assignment
Deduce does Boolean Constraint Propagation (implications)
AnalyzeConflict backprocesses from conflict and produces learnt-clause
Backtrack undoes assignments

91

Boolean Reasoning
SAT – CNF-based Decision Procedure

 DPLL (basic case splitting)

Source: Karem A. Sakallah, Univ. of Michigan

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

1
2
3
4
5
6
7
8

a(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)

b

c

d d

b

c

d d

c

d(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)

92

Boolean Reasoning
SAT – CNF-based Decision Procedure

 Implication
 Implications in a CNF formula are caused by unit clauses

A unit clause is a CNF term for which all variables
except one are assigned
 the value of that clause can be implied immediately

Example
clause (a+b+c)
(a=0)(b=1)(c=1)

93

Boolean Reasoning
SAT – CNF-based Decision Procedure

Implication
 Example

x

x
x

x

1
x

1

x
x

0

x
0

0

1
0

0

0
0

x

0
0

1

0
0

1

1
1

(a+b+c)(a+c)(b+c)
a

c
b

Non-implication cases:

All clauses satisfied

Not all clauses satisfied (avoid exploring this part)

x

x
0

AND

94

Boolean Reasoning
SAT – CNF-based Decision Procedure

Implication
 Example (cont’d)

(a + b + c) (a + c) (b + c)

0

x
x

x

0
x

0

0
x

x

x
1

x

1
1

1

x
1x

1
0

1

x
0

1

0
x

0

1
x

1

1
x

Implication cases:

(a+b+c)(a+c)(b+c)
a

c
b

AND

95

Boolean Reasoning
SAT – CNF-based Decision Procedure

 DPLL (w/ implication)

1
2
3
4
5
6
7
8

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

a(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

b

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) d

7
7

b
c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) 8

8

8

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) d

5
5

a
c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) 6

6

6

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) c

3
3

a
b

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) 5

5
d

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

6
6

6

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

b

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) d

4
4

a
c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

Source: Karem A. Sakallah, Univ. of Michigan 96

Boolean Reasoning
SAT – CNF-based Decision Procedure

 Conflict-based learning
 Important detail for cut selection:

During implication processing, record decision level for
each implication

At conflict, select earliest cut such that exactly one node of
the implication graph lies on current decision level
 Either decision variable itself
 Or UIP (“unique implication point”) that represents a

dominator node for current decision level in conflict graph

 By selecting such cut, implication processing will
automatically flip decision variable (or UIP variable) to
its complementary value

97

Boolean Reasoning
SAT – CNF-based Decision Procedure
 Conflict-based learning

 UIP detection
 Store with each implication the decision level, and a time stamp (integer

that is incremented after each decision)
 UIP on decision level l has the property that all following implications towards the

conflict have a larger time stamp
 When back processing from conflict, put all implications that are to be processed

on heap, keeping the one with smallest time stamp on top
 If during processing there is only one variable on current decision level on heap

then that variable must be a UIP

1
2

3
4

5

Decision level Learned clause

UIP on level 5
5

3

3

98

Boolean Reasoning
SAT – CNF-based Decision Procedure

 DPLL (conflict-based learning)
1
2
3
4
5
6
7
8

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

a(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

b

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) d

7
7

b
c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) 8

8

8

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

bc  ¬


 (¬b + ¬c)

9 (¬b + ¬c)(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

9 (¬b + ¬c)

c9b

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

9 (¬b + ¬c)

a

d

5

5

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

9 (¬b + ¬c)

6
6

6

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

9 (¬b + ¬c)

ab  ¬


 (¬a + ¬b)

10 (¬a + ¬b)
(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

b

a

10

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

c3
3

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

d

5

5

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

6
6

6

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

a  ¬


 (¬a)

11 (¬a)11 (¬a)
10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

a11

11 (¬a)
10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

b
11 (¬a)
10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

b 9 c

11 (¬a)
10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

4

4 d

11 (¬a)
10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

Source: Karem A. Sakallah, Univ. of Michigan

99

Boolean Reasoning
SAT – CNF-based Decision Procedure
 Implementation issues

 Clauses are stores in arrays
 Track change-sensitive clauses (two-literal watching)

all literals but one assigned -> implication
all literals but two assigned -> clause is sensitive to a

change of either literal
all other clauses are insensitive and do not need to be

observed
 Learning:

 learned implications are added to the CNF formula as
additional clauses
 limit the size of the clause
 limit the “lifetime” of a clause, will be removed after some

time
 Non-chronological back-tracking

similar to circuit case

100

Boolean Reasoning
SAT – CNF-based Decision Procedure

 Implementation issues (cont’d)
 Random restarts:

stop after a given number of backtracks
 start search again with modified ordering heuristic
 keep learned structures !

very effective for satisfiable formulas, often also effective
for unsat formulas

 Learning of equivalence relations:
 if (a  b)  (b  a), then (a = b)
very powerful for formal equivalence checking

 Incremental SAT solving
solving similar CNF formulas in a row
 share learned clauses

