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Heuristic Two-Level Logic Minimization
ESPRESSO
ESPRESSO()

{

    (F,D,R)  DECODE()

    F  EXPAND(F,R)

    F  IRREDUNDANT(F,D)

    E  ESSENTIAL_PRIMES(F,D)

    F  F-E;  D  D  E

    do{

        do{

            F  REDUCE(F,D)

            F  EXPAND(F,R)

            F  IRREDUNDANT(F,D)

        }while fewer terms in F

 //LASTGASP

        G REDUCE_GASP(F,D)

        G EXPAND(G,R)

        F IRREDUNDANT(F G,D)

        

       

    }while fewer terms in F        

    F F E;  D D-E

    LOWER_OUTPUT(F,D)

//LASTGASP

    RAISE_INPUTS

  



 

old old

(F,R)

    error (F F) or (F F D)

    return (F,error)

}

   
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Heuristic Two-Level Logic Minimization
ESPRESSO

 Illustration

Local minimum

Local minimum

REDUCE

EXPAND

IRREDANDANT
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ESPRESSO
IRREDUNDANT

 Problem:
Given a cover of cubes C for some incompletely specified 
function (f,d,r), find a minimum subset of cubes S  C that 
is also a cover, i.e.

 Idea 1:
We are going to create a function g(y) and a new set of 
variables y = {yi}, one for each cube ci. A minterm in the 
y-space will indicate a subset of the cubes {ci}.

 Example
y = (0,1,1,0,1,0), i.e. y1’y2y3y4’y5y6’, represents {c2,c3,c5}

dfcf
Sc



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ESPRESSO
IRREDUNDANT

 Idea 2:
Create g(y) so that it is the function such that:

g(y*) = 1    is a cover

i.e. g(y*) = 1 if and only if {ci | y*i =1} is a 
cover.

 Note: g(y) can be made positive unate
(monotone increasing) in all its variables.


1*iy

ic
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ESPRESSO
IRREDUNDANT

 Example

Note:
We want a minimum subset of cubes that covers f, that is, 
the largest prime of g (least literals).
Consider g’: it is monotone decreasing in y (i.e. negative 
unate in y) e.g.

3

2
1

4a
b

c

f  bc  a c  a b  b c 

g(y1, y2,y3, y4 )  y1y4 (y2  y3)

g (y1, y2, y3, y4 )  y 1  y 4  y 2y 3
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ESPRESSO
IRREDUNDANT

 Example
 Create a Boolean matrix B for g’:

 Recall a minimal column cover of B is a prime of g = (g’)’

 We want a minimum column cover of B
E.g., {1,2,4}  y1 y2 y4 (cubes 1,2,4)  {bc, a’c, b’c’}

f  bc  a c  a b  b c 

g (y1,y2,y3,y4 )  y 1  y 4  y 2y 3
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ESPRESSO
IRREDUNDANT

 Deriving g’(y)
 Modify tautology 

algorithm:
F = cover of =(f,d,r)
D = cover of d

 Pick a cube ci  F
(Note: ci  F  Fci

 1)
Do the following for 

each cube ci  F :

 

A

B









 

F
Ci

D
Ci












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ESPRESSO
IRREDUNDANT

 Deriving g’(y)
1. All leaves must be tautologies
2. g’ means how can we make it not a 

tautology
 Must exactly delete all rows of all -’s 

that are not part of D
3. Each row came from some row of 

A/B
4. Each row of A is associated with 

some cube of F
5. Each cube of B is associated with 

some cube of D
 Don’t need to know which, and cannot 

delete its rows
6. Rows that must be deleted are 

written as a cube
 E.g. y1y2y7  delete rows 1,3,7 of F
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ESPRESSO
IRREDUNDANT

 Deriving g’(y)
 Example

Suppose unate leaf is in subspace x1x’2x3 :
Thus we write down: y10 y18 (actually, yi must 
be one of y10 , y18). Thus, F is not a cover if 
we leave out cubes c10 , c18.

Unate leaf

Row of all 2’s
in don’t cares

Note:
If a row of all 2’s is in 
don’t cares, then there 
is no way not to have 
tautology at that leaf. 
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ESPRESSO
IRREDUNDANT

 Deriving g’(y)

 )()()( ygygyg ji

ci cj

x1

x2

x3

F

D











gi (y) gj (y)

 1810)( yyygi
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ESPRESSO
IRREDUNDANT

 Summary
1. Convert g’(y) into a Boolean matrix B

 Note that g(y) is unate

2. Find a minimum column cover of B
 E.g., if y1y3y18 is a minimum column cover, then the set 

of cubes {c1 , c3 , c18 } is a minimum sub-cover of { ci | 
i=1,…,k }. (Recall that a minimal column cover of B is a 
prime of g(y), and g(y) gives all possible sub-covers of F).

 Note: We are just doing tautology in constructing g’(y), 
so unate reduction is applicable









 FT

CA
F
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ESPRESSO
IRREDUNDANT

 Summary
 In Q-M, we want a maximum prime of g(y)

Note: A row of B says if we leave out primes {p1 , p3 , p4 , 
p6 }, then we cease to have a cover

 So basically, the only difference between Q-M and 
IRREDUNDANT is that for the latter, we just constructed 
a g’(y) where we did not consider all primes, but only 
those in some cover: F = {c1 , c3 ,…, ck }

 6431)( yyyyygB



























1011010
All primes

B = Minterms 
of f
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ESPRESSO
EXPAND

 F  EXPAND(F,R)
 Problem: Take a cube c and make it prime by removing 

literals
 Greedy way: (uses D and not R)

Remove literal li from c (results in, say c*)
Test if c*  f+d (i.e. test if (f+d)c*  1)
Repeat, removing valid literals in order found

 Better way: (uses R and not D)
Want to see all possible ways to remove maximal subset of 

literals
Idea: Create a function g(y) such that g(y)=1 iff literals {li

| yi = 0} can be removed (or {li | yi = 1} is a subset of 
literals such that if kept in c, will still make c*  f+d, i.e. 
c*  r  0)

16

ESPRESSO
EXPAND

 Main idea
Outline:
1. Expand one cube, ci , at a time
2. Build “blocking” matrix B = Bci

3. See which other cubes cj can be feasibly covered using 
B

4. Choose expansion (literals to be removed) to cover 
most other cj

Note: g(y)  is monotone increasing

B  g(y)  is easily built if we have R, a cover of r.

We do not need all of R. (reduced offset)
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ESPRESSO
EXPAND

 Reduced offset

Make r unate by adding (1,1,1) to offset. Then the new 
offset Rnew = a + b     g’(y). This is simpler and easier to 
deal with.

offoff

onon

dondon’’t caret care

r  ab  ab  ac
a

b
c


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ESPRESSO
EXPAND

 Blocking matrix B (for some cube c)
 Given R = {ri }, a cover of r. [  = (f,d,r) ]

 What does row i of B say?
It says that if literals {j | Bi j = 1} are removed from c, then 

c*  ri  0, i.e., Bi j = 1 is one reason why c is orthogonal to 
offset cube ri

Thus B  g’(y) = y1’y3’y10’ +  gives all ways that literals 
of c can be removed to get c*  f+d (i.e. c*  r  0)











ijj

ijj
ij rlcl

rlcl
B

 and 

 and 
1

B: rows indexed by offset cubes, columns indexed by literals of c
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ESPRESSO
EXPAND

Example

Suppose g(y)=1 
If y1 = 1, we keep literal a in cube c.
Bi means do not keep literals 1 and 3 of c (implies 

that subsequent c* is not an implicant)
 If literals 1, 3 are removed we get c  c* = b. But c* 

ri  0: b  a’bde’ = a’bde’  0. So b is not an implicant.

  

c  abd

r
i
 abde

y
1
y

2
y

3
 a,b,d

1

2

3

1   keep 

1   keep 

1   keep 

y a

y b

y d

 
 
 

  (y)gyyB ii  31101
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ESPRESSO
EXPAND

 Example (cont’d)
 Thus all minimal column covers (  g(y) ) of B are the 

minimal subsets of literals of c that must be kept to 
ensure that c*  f + d (i.e. c*  ri = 0)

 Thus each minimal column cover is a prime p that 
covers c, i.e. p  c

pi  c

p1 p2

p3
c
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ESPRESSO
EXPAND

 Expanding ci
F = { ci },  = (f,d,r)  f  F  f+d

Q: Why do we want to expand ci ?
A: To cover some other cj’s

Q: Can we cover cj ?
A: If and only if (SCC = “smallest cube containing” also 

called “supercube” )

equivalent to:

equivalent to:
literals ”conflicting” between ci, cj can be removed and 
still have an implicant

SCC ci  cj  f  d

  0i jSCC c c r  

ci

p
cj
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EXPAND

 Expanding ci
Can check SCC(ci, cj) with blocking matrix:

ci = 12012
cj = 12120

implies that literals 3 and 4 must be removed for 
ci* to cover cj

Check if columns 3, 4 of B can be removed 
without causing a row of all 0’s

p
ci cj
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ESPRESSO
EXPAND

 Covering function
 The objective of EXPAND is to expand ci to cover as 

many cubes cj as possible. The blocking function g’(y)=1 
whenever the subset of literals {li | yi = 1} yields a cube c* 
 f + d. 
Note: c* = (yj=1) lj

 We now build the covering function h, such that: 
h(y) = 1, whenever the cube c*  ci covers another cube 
cj  F
Note: h(y) is easy to build
Thus a minterm m of g(y)h(y) is such that it gives c*  f 

+ d ( g(m) =1 ) and covers at least one cube (h(m) =1). In 
fact every cube c*m  cl is covered. We seek m which results 
in the most cubes covered.
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ESPRESSO
EXPAND
 Covering function

Define h(y) by a set of cubes where dk = kth cube is:

Every dk indicates the minimal expansion to cover ck, that is, which literals 
that we have to leave out to minimally cover ck. Essentially dk   if cube 
ck can be feasibly covered by expanding cube ci.

Note that h(y) = d1 + d2 ++ d|F|-1 (one for each cube of F, except ci) is 
monotone decreasing.

  

d
k
   if  SCC[c

i
 c

k
] f  d   else

d
k
j 

y j  if c
k
j  c

i
j  i.e. 

2  1

2  0

0  1

1 0











  

2 otherwise            














dk
j: jth literal of kth cube
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ESPRESSO
EXPAND

 Covering function
 We want a minterm m of g(y)h(y) contained in a 

maximum number of dk’s
 In Espresso, we build a Boolean covering matrix C (note 

that h(y) is negative unate) representing h(y) and solve 
this problem with greedy heuristics

Note:

( )h y
































































101001

101010

110110

100101

101011

010110

BC       
)()(

~
)(

yhyhC

ygB




  but

 

is an over-approximation 
of        , e.g., by removing the 
dk= rule in the previous slide

( )h y
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ESPRESSO
EXPAND

 Covering function

 Want a set of columns such that if eliminated from B 
and C results in no empty rows of B and a maximum of 
empty rows in C

 Note: A “1” in C can be interpreted as a reason why c* 
does not cover cj

































































101001

101010

110110

100101

101011

010110

BC       
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ESPRESSO
EXPAND

Endgame
What do we do if h(y)  0 ?

This could be important in many hard problems, since 
it is often the case that h(y)  0

Some things to try:
Generate largest prime covering ci

Generate largest prime covering cover most care 
points of another cube ck

Coordinate two or more cube expansions, i.e. try to 
cover another cube by a combination of several other 
cube expansions

28

ESPRESSO
REDUCE

 Problem:
Given a cover F and c  F, find the smallest cube 
c  c such that F\{ c } + { c } is still a cover
 c is called the maximally reduced cube of c

offoff

onon

dondon’’t caret care

REDUCE is
order dependent

BAD GOOD
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ESPRESSO
REDUCE

 Example

Two orders:

 REDUCE is order dependent !

F  ac  bc  bc  ac

1. REDUCE  F  ac,bc,bc,ac    abc  bc  abc  ac

2. REDUCE  F  bc,bc,ac,ac    abc  ac  abc  ac

BAD GOOD

a
b

c
ac

bc

b’c’

a’c’
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ESPRESSO
REDUCE

Algorithm REDUCE(F,D){
F  ORDER(F)

for(1  j  |F|){

cj  MAX_REDUCE(c,F,D)

F  (F{cj})\{cj}
}

return F

}
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ESPRESSO
REDUCE

Main Idea: Make a prime not a prime but still 
maintain cover: 
{c1 ,…, ci,…, ck}  {c1 ,…,ci,ci+1 ,…,ck }
But

 To get out of a local minimum (prime and irredundant is 
local minimum)

 After reduce, have non-primes and can expand again in 
different directions
Since EXPAND is “smart”, it may know best direction

  
f  c

j
j 0

i1

  ci  c
j

j  i1

k

  f  d
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ESPRESSO
REDUCE

F = {c1 ,c2, …,ck}
F(i) = (F + D) \ { ci } = {c1 ,c2,…,ci-1,ci+1,…, ck}

 Reduced cube:
c i = smallest cube containing (ci F(i) )

 Note that ci F(i) is the set of points uniquely covered 
by ci (and not by any other cj or D).

 Thus, ci is the smallest cube containing the minterms of 
ci which are not in F(i).
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ESPRESSO
REDUCE

 SCC: “smallest cube containing”, i.e., supercube
 SCCC: “smallest cube containing complement”

 
 
 
 











i

i

i

i i

i c

i c

i c

c SCC c F i

SCC c F i

c SCC F i

c SCCC F i

( )

( )

( )

( )

offoff

onon

dondon’’t caret care

C1

C2
C2

C1
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 SCCC computation
 Unate recursive paradigm

Select most binate variable
Cofactor until unate leaf

What is SCCC (unate cover) ?
 Note that for a cube c with at least 2 literals, SCCC(c) is 

the universe:

 Implies only need to look at 1-literal cubes

unate

x1 x1

x2

x3

x2

x3

Hence, SCCC(cube) = 22222cube   
12222

20222 cube   01222
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ESPRESSO
REDUCE

SCCC computation
SCCC(U) =  for a unate cover U
Claim

If unate cover has row of all 2’s except one 0, then 
complement is in xi , i.e. i = 1

If unate cover has row of all 2’s except one 1, then 
complement is in xi’, i.e. i = 0

Otherwise, in both subspaces, i.e. i = 2

Finally

   
   

1 2 1 2

1

k k

k

SCCC c c c SCC c c c

SCC c SCC c

   



 


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 SCCC computation
Example 1:

 Note: 0101 and 0001 are both inf . So SCCC could not have 
literal b orb.

Example 2:

 Note that columns 1 and 5 are essential: they must be in 
every minimal cover. So U = x1x5(...). Hence SCCC(U) = x1x5

f  a  bc  d  f  a(b  c )d  ad

  

U(unate) 

2 2 2 2 0

0 2 2 2 2

2 1 1 2 2

2 1 2 1 0

 
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ESPRESSO
REDUCE

 SCCC computation
Example 2 (cont’d):

The marked columns contain both 0’s and 1’s. But every 
prime ofU contains literals x1 , x5

1 5 2 3 4

1 5 2 3 4

( )

( )

1 0 2 2 1

( ) 1 2 0 0 1 12221

U x x x x x

U x x x x x

U unate

  

   

 

 
minterms of U 

1 0 1 1 1

1 0 0 1 1

1 0 1 0 1

1 0 0 0 1

1 0 0 0 1

1 1 0 0 1
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SCCC computation
At unate leaves

Hence unate leaf is easy !

  

n  SCCC(unate)    if row of all 2's

n
j


x
j
  if column j  has a row singleton with a 0 in it

x j   if column j  has a row singleton with a 1 in it

2                 otherwise                                     









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ESPRESSO
REDUCE

 SCCC computation
 Merging

We need to produce

If c1  c2  , then i =2 
 because minterms with xi and xi literals both exist, and thus 

( SCC(xic1 +xic2) )i = 2
If ljc1 or ljc2 , then j =2 (where lj = xj or xj)

 because minterms with xj and xj literals both exist 
If ljc1 and ljc2 , then j =2. 

  
SCCC f  SCC x

i
c

1
 x

i
c

2  







   

   

    

1 2

2

1

1 2( ) ( )

k

i

i

j i j j

l l l

x c

x c

l l c l c
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ESPRESSO

 

ESPRESSO()

{

    (F,D,R)  DECODE()

    F  EXPAND(F,R)

    F  IRREDUNDANT(F,D)

    E  ESSENTIAL_PRIMES(F,D)

    F  F-E;  D  D  E

    do{

        do{

            F  REDUCE(F,D)

            F  EXPAND(F,R)

            F  IRREDUNDANT(F,D)

        }while fewer terms in F

 //LASTGASP

        G REDUCE_GASP(F,D)

        G EXPAND(G,R)

        F IRREDUNDANT(F G,D)

        

       

    }while fewer terms in F        

    F F E;  D D-E

    LOWER_OUTPUT(F,D)

//LASTGASP

    RAISE_INPUTS

  



 

old old

(F,R)

    error (F F) or (F F D)

    return (F,error)

}

   
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ESPRESSO
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 Reduce is order dependent:
E.g., expand can’t do 
anything with that 
produced by REDUCE 2.

 Maximal Reduce:

i.e., we reduce all cubes as 
if each were the first one.
Note:
{c1

M ,c2
M ,...} is not a cover

      ( ) ( )
i

M
i i i cc SCC c F i c SCCC F i i

BAD GOOD

REDUCE

2
REDUCE

1
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ESPRESSO
LASTGASP

 Now EXPAND, but try to cover only cj
M’s. 

 We call EXPAND(G,R), where G = {c1
M ,c2

M ,…, ck
M}

 If a covering is possible, take the resulting prime:

and add to F:

Since F is a cover, so is     . Now apply IRREDUNDANT on    .

f  d  pi  ci
M Uc j

M

F  F U{pi}

F
~

What about “supergasp” ?
Main Idea: Generally, think of ways to 

throw in a few more primes and then 
use IRREDUNDANT. If all primes 
generated, then just Quine-McCluskey

F
~


