Logic Synthesis and
Veritication I

Jie-Hong Roland Jiang
NI

/\\
Department of Electrical Engineering ‘\
National Taiwan University

Fall 2011

Multi-Level Logic
Minimization I

Reading:
Logic Synthesis in a Nutshell
Section 3 (83.3)

most of the following slides are by
courtesy of Andreas Kuehlmann

2

Finite State Machine

X=(Xg,Xgper e X) Y=(Y1.¥o:---.¥n) Finite-State Machine F(Q,Q,,X,Y,8,A)
—_— N f— where:
’ o .. Q: Setof internal states
S=(S1,Sp,---,S) § L° =(S'1S'20-48") Q, Set of initial states
X: Input alphabet
Y: Output alphabet

5 XxQ — Q (next state function)
A XxQ—>Y (output function)

General Logic Structure

0 Combinational
optimization
B keep latches/registers

at current positions,
keep their function

B optimize combinational
logic in between
0 Sequential
optimization
® change latch
position/function

latches

outputs
=

latches

inputs

latches

1

latches

Optimization Criteria for Synthesis

O The optimization criteria for multi-level logic is to

minimize some function of:

1.
(approximated by in technology
independent optimization)

2. of the longest path through the logic

3. of the circuit, measured in terms
of the percentage of faults covered by a specified set of
test vectors for an approximate fault model (e.g. single
or multiple stuck-at faults)

4. consumed by the logic gates

5.

6

while simultaneously satisfying upper or lower bound
constraints placed on these physical quantities

Area-Delay Trade-off

ARFA

D Exam p I e ‘%,/ OFPTIMAL AREA/DELAY TRADEOFF

TARGE DESIGN / TRADEOFF FOR 100% TESTABILITY

DELAY CONSTRAINT
T<T,

LOGIC SYNTHESIS

SMALL DESIGN A g

T, DELAY

FAST DESIGN SLOW DESIGN

Two-Level (PLLA) vs. Multi-Level

PLA
Inputs Outputs

TEIL

O
.)
>

EEEEEEENEC

Control logic

Constrained layout

Highly automatic

Technology independent
Multi-valued logic

Input, output, state encoding
Predictable

E.g. Standard Cell Layout

— l L l
8 N B N B
———————— |
CTIT LT IIIL T 1T
|’l! L |
CT I LT T LT [ITILI0
o1 T

O Multi-level logic

Control logic, data path

General layout

Automatic

Partially technology independent
Some ideas of multi-valued logic
Occasionally involving encoding
Hard to predict

General Approaches to Synthesis

O

B theory well understood

M predictable results in a top-down flow

B optimization criteria very complex
O except special cases, no general theory available
B greedy optimization approach
Oincrementally improve along various dimensions of the

criteria

B works on common design representation (circuit or

network representation)

O attempt a change, accept if criteria improve, reject

otherwise

Transformation-based Synthesis

I
O
B set of transformations that change network representation
O work on uniform network representation
B “script” of “scenario” that can orchestrate various
transformations
O

B the scope they are applied

O Local vs. global restructuring
B the domain they optimize

O combinational vs. sequential

O timing vs. area

O technology independent vs. technology dependent
B the underlying algorithms they use

O BDD based, SAT based, structure based

Network Representation

0 Boolean network 21
QUTPUTS

B Directed acyclic graph Zp
(DAG)

B Node logic function
representation f;(x,y)

® Node variable y;: y,=f,(x,y) y
| Edge_ _(i,j) if f; depends Node] ¥ = (-, -)
explicitly on y;
O Inputs: x = (X, ...y X))
O Outputs: z = (zy, ..., Z,)
O External don'’t cares:
d;(x), ..., d,(x) for outputs

EOOLEAN
NETWORK

INPUTS

10

Typical Synthesis Scenario

RTL to Network Transformation

Technology Independent Optimizations

Technology Mapping

Technology Dependent Optimizations

Test Preparation

- read Verilog
- control/datapath analysis

- basic logic restructuring
- crude measures for goals

- use logic gates from target
cell library

- timing optimization
- physically driven optimization

- improve testability

- test logic insertion "

Local vs. Global Transformation

O

smaller area
faster performance
map to a particular set of cells

merging nodes
splitting nodes

removing/changing connections between nodes

keep size bounded to avoid blow-up of local transformations

O SOP, POS
O BDD
[Factored forms

12

Sum-of-Products (SOP)

0 Example
abc’+a’bd+b’'d'+b’e’f

0 Advantages:
B Easy to manipulate and minimize
B many algorithms available (e.g. AND, OR, TAUTOLOGY)
B two-level theory applies

0 Disadvantages:
B Not representative of logic complexity
OE.g., f=ad+ae+bd+be+cd+ce and f=ab'c’+d'e’
differ in their implementation by an inverter

B Not easy to estimate logic; difficult to estimate progress
during logic manipulation

13

Reduced Ordered BDD

0 Represents both function and its
, like factored forms to be

discussed
O Like network of muxes, but restricted since
controlled by variables

B not really a good estimator for
implementation complexity
0 Given an ordering, reduced BDD is
, hence a good replacement for
truth tables

O For a good , BDDs remain _
reasonably small for complicated functions
(but not multipliers, for instance)

are well defined and efficient

Only support variables (dependency
on primary input variables) are displayed

oo

14

Factor Form

O Example

(ad+b’c)(c+d’'(e+ac’))+(d+e)fg

OO0 Advantages

B good representative of logic complexity

f=ad+ae+bd+be+cd+ce
'=a’b’c+de’ = f=(atb+c)(d+e)

B in many designs (e.g. complex gate CMOS) the
implementation of a function corresponds directly to its
factored form

B good estimator of logic implementation complexity

B doesn’'t blow up easily

OO0 Disadvantages
B not as many algorithms available for manipulation
B usually converted into SOP before manipulation
15
Factor Form
X=(a+b)c + d
Vdd

Note:

literal count =~ transistor
count =~ area

0 however, area also
depends on wiring, gate
size, etc.

O

Gnd

16

Factored Form

O Definition: f is an _ if f is a set of cubes (SOP),
such that no single cube contains another (minimal with respect
to single cube containment)

B Example
a+ab is not an algebraic expression (factoring gives a(1+b))

OO0 Definition: The of two expressions f and g is a set defined
byfg={cd|cef andd eg and cd #0}
B Example

(a+b)(c+d+a’)=ac+ad+bc+bd+a’b

0 Definition: fg is an if f and g are algebraic
expressions and have disjoint support (that is, they have no input
variables in common)

B Example
(a+b)(c+d)=ac+ad+bc+bd is an algebraic product

17

Factored Form

O Definition: A can be defined recursively by
the following rules. A factored form is either a product or
sum where:

M a product is either a single literal or a product of
factored forms

B a sum is either a single literal or a sum of factored forms

O A factored form is a parenthesized algebraic expression

B In effect a factored form is a
or a

O Any logic function can be represented by a factored form,
and any factored form is a representation of some logic

function

18

Factored Form

CDExample

X, Yy, abc’, at+b’c, ((a'+b)cd+e)(a+b’)+e’ are
factored forms

® (a+b)’c is not a factored form since
complement is not allowed, except on literals

OFactored forms are not unique
B Three equivalent factored forms
ab+c(a+b), bc+a(b+c), ac+b(a+c)

19

Factored Form

O Definition: The of an algebraic
factorization F=G,G,+R is defined to be
fact_val(F,G,) = lits(F) - (lits(G;) + lits(G,) + lits(R))
= (1G,]-1) lits(G,) + (IG,]-1) lits(G,)

B Assuming G,, G, and R are algebraic expressions, where |H| is
the number of cubes in the SOP form of H

B Example
F = ae+af+ag+bce+bcf+bcg+bde+bdf+bdg
can be expressed in the form F = (a+b(c+d))(e+f+qg), which
requires 7 literals, rather than 24

B If G,=(a+bc+bd) and G,=(e+f+g), then R=c and
fact_val(F,G,) = 2x3+2x5=16

O The above factored form saves 17 literals, not 16. The extra literal

comes from recursively applying the formula to the factored form
of G;.

20

Factored Form

] Factored forms are more compact
representations of logic functions than the
traditional SOP forms

B Example:
(a+b)(c+d(e+f(g+h+i+])))
when represented as an SOP form is

ac+ade+adfg+adfh+adfi+adfj+bc+bde+bdfg+
bdfh+bdfi+bdfj

0 SOP is a factored form, but it may not be a good
factorization

21

Factored Form

O There are functions whose size is exponential in SOP
representation, but polynomial in factored form

B Example: i—n/2
Achilles’ heel function [(x

i=1

2i-1 + X2i)

n literals in factored form and (n/2)x2"/2 literals in SOP form

Vdd

Factored forms are useful in estimating
area and delay in a multi-level synthesis
and optimization system. In many design
X=+bje+d gtyles (e.g. complex gate CMOS design)
the implementation of a function
corresponds directly to its factored form.

22

Factored Form

0 Factored forms can be graphically represented as labeled
trees, called factoring trees, in which each internal node
including the root is labeled with either + or %, and each
leaf has a label of either a variable or its complement

B Example
factoring tree of ((a’+b)cd+e)(a+b’)+e’

((@’+b)cd+e)(a+b’)+e’

23

Factored Form

O Definition: The of a factored form F (denoted p(F)) is
the number of literals in the factored form

B E.g., p((a+b)ca) = 4, p((a+b+cd)(a’'+b’)) =6

OO0 A factored form of a function is optimal if no other factored
form has less literals

0 A factored form is in X, if X appears in F, but
X' does not. A factored form is in x, if X’
appears in F, but x does not.

O Fis in x if it is either positive or negative unate in X,
otherwise F is in X

B E.g.,, F = (atb)c+a
positive unate in c; negative unate in b; binate in a

24

Factored Form
Cofactor

O The
is the factored form Fxlz

Fxlzl(x) (or Fxl:Fxlzo(x)) obtained by
W replacing all occurrences of x; by 1, and x;’
by O
W simplifying the factored form using the
Boolean algebra identities
ly=y 1+y=1 O0Oy=0 O+y=y
W after constant propagation (all constants are

removed), part of the factored form may
appear as G+G. In general, G is in a factored

form.

25

Factored Form
Cofactor

O The
is a factored form

obtained by successively cofactoring F
with each literal in c

W Example
F = (X+y'+z2)(X'u+z'y'(v+uU’)) and c = vzZ'.
Then
Fp= (x+y)(Xu+y'(v+u))
I:z’ v (X+y1) (X’U+y’)

26

Factored Form
Optimality

1 Definition

Let f be a completely specified Boolean function,
and p(f) is the minimum number of literals in any
factored form of f

B Recall p(F) is the number of literals of a factored form F

1 Definition

Let sup(f) be the true support variable of f, i.e
the set of variables that f depends on. Two
functions f and g are , denoted , If

27

Factored Form
Optimality

O Lemma: Let f = g + h such that g L h, then p(f) = p(g) + p(h)
B Proof:

Let F, G and H be the optimum factored forms of f, g and h. Since G+H
is a factored form,

Let ¢ be a minterm, on sup(g), of g'. Since g and h have disjoint
support, we have f —(g+h) =g.+h.=0+h_=h_=h. Similarly, ifd is a
minterm of h’, f,=qg. Because p(h) o(f) <p(F3 and p(9)=p(fy)<sp(Fy),

Let m (n) be the number of literals in F that are from SUPPORT(g)
(SUPPORT(h)). When computing F. (Fy), we replace all the literals from
SUPPORT(g) (SUPPORT(h)) by the’ appropriate values and simplify the
factored form by eliminating all the constants and possibly some literals
from sup(g) (sup(h)) by using the Boolean identities. Hence p(F.) < n
and p(Fy) < m. Since p(F) = m+n,

We have po(f) < p(9)+p(h) < p(F)+p(Fg) < p(F) = p(f) = p(g) + p(h) since
p(H)=p(F).

28

Factored Form
Optimality

[0 Note, the previous result does not imply that all minimum literal
factored forms of f are sums of the minimum literal factored forms
of gand h

OO0 Corollary: Let f = gh such that g L h, then o(f)=p(g)+,(h)
B Proof:

Let F' denote the factored form obtained using DeMorgan’s law. Then
p(F) = p(F), and therefore p(f)=p(f"). From the above lemma, we have

p(f) = p(f) = p(@'+h) = p(g)+p(h) = p(g)+p(h).

O Theorem: Let f=>T] f; such that f;1f,, Vi or k-, then

i=1 j=1

FUBDSY D

i=1 j=1

B Proof:
Use induction on m and then n, and the above lemma and corollary.

29

Factored Form

0 SOP forms are used as the internal representation of logic
functions in most multi-level logic optimization systems
0 Advantages
B good algorithms for manipulating them are available

OO0 Disadvantages

B performance is unpredictable - may accidentally generate a function
whose SOP form is too large

B factoring algorithms have to be used constantly to provide an estimate
for the size of the Boolean network, and the time spent on factoring
may become significant

0 Possible solution

B avoid SOP representation by using factored forms as the internal
representation

® still not practical unless we know how to perform logic operations
directly on factored forms without converting to SOP forms

B the most common logic operations over factored form have been
partially provided

30

Boolean Network Manipulation

C0Basic techniques

M Structural operations (change topology)
ClAlgebraic
COBoolean

® Node simplification (change node functions)
CONode minimization using don’t cares

31

Structural Operation

0 Restructuring: Given initial network, find best network
B Example
f, = abcd+ab’cd’+acd’e+ab’c’d’+a’c+cdf+abc’d’e’+ab’c’df’
f, = bdg+b’dfg+b’d’'g+bd’eg

cd+b’cd’+cd’e+a’c+cdf+abc’d’e’'+ab’c’df’
dg+dfg+b’d’'g+d’eg

f,=b
f,=b
f, = c(d(b+f)+d'(b+e)+a’)+ac’ (bd’e’+b'df)
f, = g(d(b+f)+d'(b'+e))

f, = c(x+a’)+ac’x’
f, = gx
x = d(b+f)+d'(b'+e)
0 Two problems:
B find good common subfunctions
B effect the division

32

Structural Operation

O Basic Operations:
u
f = abc+abd+a'cd'+b'cd =
f=xy+xy x=ab y=c+d
u
f = (az+bz’)cd+e g = (az+bz)e’ h=cde =
f=xy+e g=xe h=ye x=az+bz y=cd
u
f = act+ad+bc+bd+e =
f = (a+b)(c+d)+e
u
g=at+tb f=atbc =
f = g(a+c)
u
f=ga+gb g=c+d =
f = ac+ad+bc'd g =c+d
“Division” plays a key role in all of these operations
33
Factoring vs. Decomposition
] Tree
B f=(e+g’)(d(a+c)+a’b’c)
+b(a+c) b
. a .
- y(b+dX)+Xb y series—parallel graph
O Similar to merging tree
common nodes and
using negative
pointers in BDD. DAG

However,

canonical, so have no
perfect identification
of common nodes.

non-tree

Structural Operation
Node Elimination

i2
i1 i3
QQp value(')—(> n\l 1)1
¥ P E
)i ieFO(j)
lj
where
n; = number of times literals y; and y;' occur in factored form f;
B can treat y; and y;' the same since p(F;) = p(F')
l; = number of literals in factored f;
L+ > n+c
ieFO(j)
I n+c
ieFO(j)
value = (without factoring) - (with factoring)
35
Structural Operation
Node Elimination
BEFORE
0 Example x(absa'b) aex(y+2)+x'(bd)
W Literals before Q @
5+7+5 = 17 e
W Literals after x n;=2
9+15 =24 a'c+aby I=5
® Difference: value(3) = (14+2-1)(5-1)-1=7
after - before = x
value = 7 AFTER
(a'c+aby)(ab+a’b’) a+(a’c+aby)(y+z)+bd{a+c’)(a'+b’+y’)

value(j) = (> ni) Q j—l} |

icFO(j)
=(n+n)(L,-D-1,
=1+2)(5-1)-5=7 36

Structural Operation
Node Elimination

velue=t n = a(c(d+e)+ f)
1 b(n—+ ag) + h
f> = in+aj)+k

value:ﬂ value=3
@ ® O] ®

Note: Value of a node can change during elimination

value=-1

b

37

Factorization

O Given a SOP, how do we generate a “good” factored form

O
M is central in many operations
B find a good divisor
B apply division
Oresults in quotient and remainder

m factoring

B decomposition
B substitution

B extraction

38

Division

O Definition: An operation op is called division if,
given two SOP expressions F and G, it generates
expressions H and R (<H,R> = op(F,G)) such
that F=GH + R
M G is called the divisor
M H is called the quotient
M R is called the remainder

O Definition: If GH is an algebraic product, then op
Is called an algebraic division (denoted F // G),

otherwise GH is a Boolean product and op is
called a Boolean division (denoted F + G)

39

Division
0 Example:
f =ad + ae + bcd + j
g, = a+ bc
g =a+b
u
Of//a=d+e,r=Dbcd +]
Also, f//a=dorf// a=e,i.e. algebraic division is
not unique
af// (bc) =d,r=ad + ae +j
Oh, =f//g,=d, r, =ae +j
u

Oh,=f+g,=(a+c)d, r, = ae + j.
i.e. f = (a+b)(a+c)d + ae + j

40

Division

O Definition:

G is an algebraic factor of F if there exists an algebraic
expression H such that F = GH (using algebraic
multiplication)

O Definition:

G is an Boolean factor of F if there exists an expression H
such that F = GH (using Boolean multiplication)

O Example
B f=ac+ad + bc + bd
O (a+b) is an algebraic factor of f since f = (a+b)(c+d)
B f=-ab + ac + bc
O (a+b) is a Boolean factor of f since f = (a+b)(—a+c)

41

Why Algebraic Methods?

C1Algebraic methods provide fast algorithms
for various operations
M Treat logic functions as polynomials
M Fast algorithms for polynomials exist
M Lost of optimality but results are still good

M Can iterate and interleave with Boolean
operations

OIn specific instances, slight extensions are available
to include Boolean methods

42

Weak Division

O Weak division is a specific example of algebraic division

O Definition:

Given two algebraic expressions F and G, a division is
called a weak division if

1. itis algebraic and
2. remainder R has as few cubes as possible
B The quotient H resulting from weak division is denoted by F/G

O Theorem:

Given expressions F and G, H and R generated by weak
division are unique

43

Weak Division

ALGORITHM WEAK DIV(F,G) {
// G = {9,,95,---%, F = {f,,F,,...} are sets of cubes
foreach g; {
Vel = &
foreach f; {
1T(f; contains all literals of g;) {

vi; = F; - literals of g;
Vol = VOl U vy
by
>
ke
H = n;Vvoi
R=F - GH

return (H,R);

44

Weak Division

OO0 Example

F = ace + ade + bc + bd + be +a’b + ab

G=ae+Db

vae=c + d

Ve=c+d+e+a +a

H=c+d = F/G H=n VY

R =Dbe + ab + ab R=F\GH

F=(ae + b)(c+d) +be+ab+ab

45

Weak Division
COWe use to prevent trying a division

M G is not an algebraic divisor of F if

G contains a literal not in F,

O0G has more terms than F,
OFor any literal, its count in G exceeds that in F, or

OF is in the transitive fanin of G.

46

Weak Division

COWeak Div provides a method to divide an
expression for a given divisor

COHow do we find a “good” divisor?
M Restrict to algebraic divisors
M Generalize to Boolean divisors

CProblem:

Given a set of functions { F, }, find
weak divisors

47

Divisor Identification
Primary Divisor

O Definition:

An expression is cube-free if no cube divides the expression
evenly (i.e., there is no literal that is common to all the
cubes)

“ab+c” is cube-free
“ab+ac” and “abc” are not cube-free
B Note: A cube-free expression have more than one cube

O Definition:

The primary divisors of an expression F are the set of
expressions
D(F) = {F/c | cis a cube}

Note that F/c is the quotient of a weak division

48

Divisor Identification
Kernel and Co-Kernel

O Definition:

The kernels of an expression F are the set of

expressions

K(F) ={G | G € D(F) and G is cube-free}

® In other words, the kernels of an expression F are the
of F

O Definition:

A cube c used to obtain the kernel K = F/c is
called a co-kernel of K

B C(F) is used to denote the set of co-kernels of F

49

Divisor Identification
Kernel and Co-Kernel

CDExample

X = adf + aef + bdf + bef + cdf + cef + ¢
=(a+b+c)(d+e)f+g

kernels co-kernels
a+b+c df, ef

d+e af, bf, cf
(a+b+c)(d+e)f+g| |1

50

Divisor Identification
Kernel and Kernel Intersection

0 Fundamental Theorem

If two expressions F and G have the property
that

Vke € K(F), Vkg € K(G) » | kg n ke | <1

then F and G have no common algebraic divisors
with more than one cube

If we “kernel” all functions and there are no nontrivial
intersections, then the only common algebraic divisors
left are single cube divisors

51

Divisor Identification
Kernel Level

O Definition:
A kernel is of level 0 (K9) if it contains no kernels except itself

A kernel is of level n or less (K") if it contains at least one kernel

of level (n-1) or less, but no kernels (except itself) of level n or
greater

B K"(F) is the set of kernels of level n or less
B KO(F) c K(F) c K2(F) < ... « K'(F) < K(F)
B level-n kernels = K"(F) \ K"-1(F)

O Example:

F = (a+ b(c+d))(e+9)
k,= a+b(c+d) eK?!

¢ KO ==>
k,=c+d eKO
k;= e+g KO

52

Divisor Identification
Kerneling Algorithm

Algorithm KERNEL(y, G) {

R=0O

1T(CUBE_FREE(G)) R = {G}

for(i=j+1,..., n) {
1T(l; appears only in one term) continue
1Tk < 1, I, € all cubes of G/I,) continue
R = R U KERNEL(1, MAKE_CUBE_FREE(G/I;))

+

return R

}

MAKE_CUBE_FREE(F) removes algebraic cube factor from F

53

Divisor Identification

Kerneling Algorithm
O returns all the kernels of F
] Note:

B The test “(3k < i, I, € all cubes of G/I,)" in the kerneling
algorithm is a major efficiency factor. It also guarantees
that no co-kernel is tried more than once.

B Can be used to generate all co-kernels

54

Divisor Identification
Kerneling Algorithm

0 Example
F = abcd + abce + adfg + aefg + adbe + acdef +
beg

(bc + fg)(d + e) + de(b + cf) ‘

A\ (@)
e

c(d+e) + de= a(d+e)
d(ct+e) + ce =

55

Divisor Identification

Kerneling Algorithm
0 Example
co-kernels kernels
o a((bc + fg)(d + e) + de(b + cf))) + beg
a (bc + fg)(d + e) + de(b + cf)
ab c(d+e) + de
abc d+re
abd £t e
abe L
ac b(d + e) + def
acd b + ef

Note: F/bc = ad + ae = a(d + e)

56

Factor

Algorithm FACTOR(F) {
1T(F has no factor) return F
// e.g. 1f |F]=1, or F 1s an OR of single literals
// or of no literal appears more than once
D = CHOOSE_DIVISOR(F)
(Q,R) = DIVIDE(F,D)
return FACTOR(Q)xFACTOR(D) + FACTOR(R) //recur

}

0 different heuristics can be applied for CHOOSE_DIVISOR

O different DIVIDE routines may be applied (algebraic division,
Boolean division)

57

Factor
0 Example: Notation:
F =abc + abd + ae + af + g F = o_rl_glnal function
_ D = divisor
D=c+d _ -
— ab Q = quotient
Q o a P = partial factored form
P=ab(c+d)+ae+af+g O = final factored form by
O=ab(c+d)+a(e+f)+g FACTOR restricting to

algebraic operations only

B Problem 1:

O is not optimal since not maximally factored and can be
further factored to “a(b(c +d) +e +) + g’

O It occurs when quotient Q is a single cube, and some of the literals
of Q also appear in the remainder R

58

Factor

0To solve Problem 1

B Check if the quotient Q is not a single cube,
then done

B Else, pick a literal I, in Q which occurs most
frequently in cubes of F. Divide F by |; to
obtain a new divisor D,.

Now, F has a new partial factored form
(1)(Dy) + (Ry)
and literal I; does not appear in R;.

ONote: The new divisor D, contains the original D as a
divisor because |, is a literal of Q. When recursively
factoring D,, D can be discovered again.

59

Factor

O Example: Notation:
F=ace+ade+bce +bde +cf+df F = o_riginal function
D=a+Db = d|V|spr
Q = ce + de Q = quotient
P (cerde)atb)+ ()l b hammie o
O =e(c+d)(a+b)+ (c+df FACTOR restricting to

algebraic operations only

B Problem 2:
O is not maximally factored because “(c + d)” is common to
both products “e(c + d)(a + b)” and “(c + d)f”
O The final factored form should have been “(c+d)(e(a + b) + f)”

60

Factor

dTo solve Problem 2

M Essentially, we reverse D and Q!!
COMake Q to get Q,
COODbtain a new divisor D, by dividing F by Q,
OIf D, is cube-free, the partial factored form is

F=(@Q)(D,) + R;, and can recursively factor Q,, D,,

and R,

OIf D, is not cube-free, let D, = cD, and D; = Q,D,.

We have the partial factoring F = cD; + R;. Now
recursively factor D; and R;.

61

Factor

Algorithm GFACTOR(F, DIVISOR, DIVIDE) { // good factor
D = DIVISOR(F)
if(D = 0) return F
Q = DIVIDE(F,D)
if (JQ] = 1) return LF(F, Q, DIVISOR, DIVIDE)
Q = MAKE_CUBE_FREE(Q)
(D, R) = DIVIDE(F,Q)
if (CUBE_FREE(D)) {

Q = GFACTOR(Q, DIVISOR, DIVIDE)
D = GFACTOR(D, DIVISOR, DIVIDE)
R = GFACTOR(R, DIVISOR, DIVIDE)
return Q x D + R
}
else {
C = COMMON_CUBE(D) // common cube factor
return LF(F, C, DIVISOR, DIVIDE)
h

}

62

Factor

Algorithm LF(F, C, DIVISOR, DIVIDE) { // literal
factor

L = BEST _LITERAL(F, C) //L e C most frequent in F
(Q, R) = DIVIDE(F, L)

C = COMMON_CUBE(Q) // largest one

Q = CUBE_FREE(Q)

Q = GFACTOR(Q, DIVISOR, DIVIDE)

R = GFACTOR(R, DIVISOR, DIVIDE)

return LxCxQ+R

63

Factor

0 Various kinds of factoring can be obtained by choosing
different forms of DIVISOR and DIVIDE

O CHOOSE_DIVISOR:
LITERAL - chooses most frequent literal
QUICK DIVISOR - chooses the first level-0 kernel
BEST DIVISOR - chooses the best kernel

O DIVIDE:

Algebraic Division
Boolean Division

64

Factor

O

Example
X =ac + ad + ae + ag + bc + bd +be + bf + ce + cf + df
+ dg

LITERAL _FACTOR:
Xx=alc+d+e+9g)+b(c+d+e+f)+c(e+f)+d(f +

9)

QUICK_FACTOR:
x=g(a+d)+@+b) (c+d+e)+c(e+1)+f(b+d)

GOOD_FACTOR:
(c+d+e)a+b)+f(b+c+d)+g(a+d)+ce

65

Factor

O

O

QUICK_FACTOR uses GFACTOR, first level-0 kernel
DIVISOR, and WEAK_DIV

Example

X = ae + afg + afh + bce + bcfg + bcfh + bde + bdfg +
bcfh

D=c+d ---- level-0 kernel (first found)
Q =x/D =b(e + f(g + h)) ---- weak division

Q=e+ f(g+ h) ---- make cube-free

(D, R) = WEAK _DIV(Xx, Q) ---- second division

D=a+ b(c+d)

x = QD + R, R=0

x = (e +f(g + h)) (a+b(c+d)

66

Decomposition

[0 Decomposition is the same as factoring except:
B divisors are added as nodes in the network

B the new nodes may elsewhere in the network in both
and phases

Algorithm DECOMP(T;) {
k = CHOOSE_KERNEL(T;)
iIT (k == 0) return
fij = K // create new node m + j

i = (F/KYn+(Fi/k*)y’ . tr // change node 1 using
// new node for kernel

DECOMP (F;)
DECOMP ()
+

Similar to factoring, we can define
pick a level O kernel and improve it
pick the best kernel

67

Substitution

O An existing node in a network may be a useful divisor in
another node. If so, no loss in using it (unless delay is a factor).

0 Algebraic substitution consists of the process of algebraically
dividing the function f; at node i in the network by the function f;
(or by) at node j. Durlng substitution, if f; is an algebraic divisor
of f,, then f, is transformed into

f—qy,+r (or fi=ayy; +qoy; + 1)

O In practice, this is tried for each node pair of the network. n nodes
in the network = O(n2) divisions.

N/
fi

68

Extraction

O Extraction operation identifies sub-
expressions and restructures a Boolean network
B Combine and to provide an

effective extraction algorithm

Algorithm EXTRACT

foreach node n {
DECOMP(n) // decompose all network nodes

}

foreach node n {
RESUB(n) // resubstitute using existing nodes

ks
ELIMINATE_NODES WITH_SMALL_VALUE

69

Extraction

O

Find all kernels of all functions

Choose kernel intersection with best “value”
Create new node with this as function
Algebraically substitute new node everywhere
Repeat 1,2,3,4 until best value < threshold

GrNPE

| ' -
1 s -~
rd

-
1 // ’/’
1 4 -
4 ,’
-
-

New Node

70

Extraction

O Example
f,=ab(cd+e)+f+g)+h
f —ai(cd+e)+f+j)+k
(only level-0 kernels used in this example)
— 0 f -
<ot - ko = f4 T &
I =d+e
f, = ab(cl + f h
f = gl(gl: —l_-|_f —:_J?)++k
Ko(f)) = {cl + f + g}; K°(f,) = {cl +f +))
KO(f)) N KO(f,) =cl + f
m=cl +f
f,=ab(m+g) +h
f,=a(m+j) +k
No kernel intersections anymore!!
n =am
f,=b(n+ag) +h
f =i(n +aj) +k
71
Extraction
Rectangle Covering

O Alternative method for extraction

O Build co-kernel cube matrix M = RT C
M rows correspond to co-kernels of individual functions
B columns correspond to individual cubes of kernel
¥ m; = cubes of functions
® m; = 0 if cube not there

B identify sub-matrix M* = R*T C*, where R* c R, C* c C,
and m*;=0

construct divisor d corresponding to M* as new node
extract d from all functions

72

Extraction
Rectangle Covering

0 Example

F = af + bf + ag + cg + ade + bde + cde

G = af + bf + ace + bce

a

C ce de

H = ade + cde

Kernels/Co-kernels:

F: (de+f+Qg)/a
(de + f)/b
(a+b+c)/de
(a + b)/f
(de+qg)/c
(a+c)/g

G: (ce+f)/{a,b}
(a+b)/{f,ce}

H: (a+c)/de

<
I

T OOOGOOTT T T T

S oo o - F oo

Q.
o —

ade
bde

ade bhde cde

af

ag

bf

ace bce

af
ade

bf

cde

cg
ace
bce

cde

af
bf

af
bf

ag

cg

73

Extraction
Rectangle Covering

O Example (cont'd)

F = af + bf + ag + cg + ade + bde + cde

G = af + bf + ace + bce

C ce de

H = ade + cde

T

B Pick sub-matrix M’

B Extract new expression X
F=fx + ag + cg + dex + cde
G = fx + cex
H =ade + cde
X=a+b

B Update M

<
[

IOOOOTTT N

UQJ@O—h%O_QJ

o o
® D

ade
bde

af

ade bde

bf

cde

ag

cde
cg
ace
bce

af

ace bce

bf

ade

cde

af ag
bf

cg

af
bf

74

Extraction
Rectangle Covering

0 Number literals before - Number of literals after
VR'C)= D vy=2 W - W]
ieR, jeC ieR' jeC

v; - Number of literals of cube m;;

w; : (Number of literals of the cube associated with row i) +1

w;: Number of literals of the cube associated with column j

a b c ce de f g

) [= a ade af ag
B For prior example F bde bf
Ov=20-10-2=8 F de||ade bde| cde
F f af bf
M =F c cde cg
F g ag cg
G a ace af
G b bce bf
G ce|lace bce
G f af bf
H de| ade cde

75

Extraction
Rectangle Covering

O Pseudo Boolean Division
B Idea: consider entries in covering matrix that are don't cares
Cloverlap of rectangles (a+a = a)
O product that cancel each other out (a-a’ = 0)
B Example:
F=ab +ac'+ab + ac+ bc’ + b’

a b ¢ a b" ¢

F a * ab ac

F b ab * bc
Result: M=F ¢ aef ape ¢
X=a +b +c¢ F a'| * a'b a'c
F=ax + bx + cx F b'l ab' * b'c

F c¢'| ac' bc' *

76

Fast Kernel Computation

0 Non-robustness of kernel extraction

® Recomputation of kernels after every substitution:
expensive

B Some functions may have many kernels (e.g. symmetric
functions)

OO0 Cannot measure if kernel can be used as complemented
node

O Solution: compute only subset of kernels:
B Two-cube “kernel” extraction [Rajski et al ‘90]
B Objects:
[0 2-cube divisors
O 2-literal cube divisors
B Example: f = abd + a’b’'d + a'cd
Oab + a’b’, b’ + ¢ and ab + a'c are 2-cube divisors.
Oa'd is a 2-literal cube divisor.

7

Fast Kernel Computation

]l Properties of fast divisor (kernel) extraction:

B O(n?%) number of 2-cube divisors in an n-cube Boolean
expression

B Concurrent extraction of 2-cube divisors and 2-literal
cube divisors

B Handle divisor and complemented divisor simultaneously

0 Example:
f =abd + a'b’'d + a'cd
k=ab +ab’, Kk =ab’+ab (both 2-cube divisors)
j=ab +ac, j=ab +ac (both 2-cube divisors)
c = ab (2-literal cube), c’' = a + b’ (2-cube divisor)

78

Fast Kernel Computation

O Generating all two cube divisors
F={c}
D(F) = {d | d = make_cube_free(c; + c;))}
H ¢, ¢; are any pair of cubes in F
O 1.e., take all pairs of cubes in F and makes them cube-free
B Divisor generation is O(n?), where n = number of cubes in F

O Example:
F = axe + ag + bcxe + bcg

make_cube_free(c; + ¢;) = {xe + g, a + bc, axe + bcg, ag
+ bcxe}

B Note: Function F is made into an algebraic expression before
generating double-cube divisors

B Not all 2-cube divisors are kernels (why?)

79

Fast Kernel Computation

O Key results of 2-cube divisors

Theorem: Expressions F and G have a common multiple-
cube divisors if and only if D(F) n D(G) #0

Proof:
If:

If D(F) »n D(G) # 0 then 3d € D(F) n D(G) which is a double-
cube divisor of F and G. d is a multiple-cube divisor of F and of
G.

Only if:
Suppose C = {c,, C,, ..., C,} is a multiple-cube divisor of F and
of G. Take any e = (c; + ¢;). If e is cube-free, then e € D(F) n
D(G). If e is not cube-free, then let d = make_cube_free(c;, +

c.). d has 2 cubes since F and G are algebraic expressions.
Hence d € D(F) n D(G).

80

Fast Kernel Computation

0 Example:
Suppose that iIs a multiple divisor
of Fand G
Ife =ac + f, e is cube-free and e € D(F) n D(G)

Ife=ab +ac,d={{b +c} € D(F) »n D(G)

As a result of the Theorem, all multiple-cube
divisors can be “discovered” by using just double-
cube divisors

81

Fast Kernel Computation

0 Algorithm:

B Generate and store all 2-cube kernels (2-literal cubes)
and recognize complement divisors

B Find the best 2-cube kernel or 2-literal cube divisor at
each stage and extract it

B Update 2-cube divisor (2-literal cubes) set after
extraction

B Iterate extraction of divisors until no more improvement

0 Results:
B Much faster
B Quality as good as that of kernel extraction

82

Boolean Division

COWhat's wrong with algebraic division?
M Divisor and gquotient are orthogonal!
W Better factored form might be:

(91+ Oot ...+Qy) (dy+dy+...+d,)
COg; and d; may share same literals
COredundant product literals

= Example
abe+ace+abd+cd / (ae+d) = I
aabe+ace+abd+cd / (ae+d) = (ab+c)
Og; and d; may share opposite literals
Oproduct terms are non-existing
= Example
a'b+ac+bc/ (a'+c) = I
a’a+a’b+ac+bc / (a'+c) = (a+b)

83

Boolean Division

O Definition:

g is a Boolean divisor of f if h and r exist such

thatf =gh +r,gh =0

g is said to be a factor of f if, in addition, r = 0O,

il.e., f =gh

M h is called the quotient
M r is called the remainder
B h and r may not be unique

84

Boolean Division

O Theorem:

A logic function g is a Boolean factor of a
logic function f if and only if f c g (i.e. fg’
=0,1.e.gcf)

85

Boolean Division

Proof:
(=) g is a Boolean factor of f. Then 3h such that f = gh;
Hence, f < g (as well as h).

(&)fcg=f=gf =g(f +r) =gh. (Here r is any function
rcg’.)

O Note:
B h = f works fine for the proof
B Given f and g, h is not unique

B To get a small h is the same as to get a small f + r. Since rg =
0, this is the same as minimizing (simplifying) f with DC = ¢'.

86

Boolean Division

CTheorem:
g Is a Boolean divisor of f if and only if fg =
0]

87

Boolean Division

Proof:
(=)f=9gh+r,gh=#0= fg=gh+ gr. Since gh #
o, fg = O.

(<) Assume that fg # 0. f = fg + fg’' = g(f + k) +
fg'. (Here k < g'.)

Then f=gh + r, with h =f + k, r = fg'. Since gh
= fg # O, then gh = 0.

] Note:

® f has many divisors. We are looking for some g such
that f = gh+r, where g, h, r are simple functions.

(simplify f with DC = g’)

88

Boolean Division
Incomplete Specified Function

OF = (f,d,r)

O Definition:

A completely specified logic function g is a
if there exist h, e
(completely specified) such that
fcgh+e c f+d
and gh « d.

O Definition:

gis a of F if there exists h such
that
fcgh cf+d

89

Boolean Division
Incomplete Specified Function

O Lemma:
f < g if and only if g is a Boolean factor of F.

Proof:

(=) Assume that f c g. Let h = f + k where kg c d.
Then hg = (f + k) g c (f + d).
Since fc g, fg=fand thusf ¢ (f + k) g = gh.

Thus
fc (f+k)g c f+d

(<) Assume that f = gh.
Suppose 3 minterm m such that f(m) = 1 but g(m) = 0.
Then f(m) = 1 but g(m)h(m) = 0 implying that f « gh.
Thus f(m) = 1 impliesg(m) =1, i.e.fcg

O Note:

B Since kg c d, k ¢ (d + @’). Hence obtain
h =f + k by simplifying f with DC = (d + @’).

90

Boolean Division
Incomplete Specified Function

O Lemma:
fg = 0 if and only if g is a Boolean divisor of F.

Proof:

(=) Assume fg = O.
Letfgchc (f+d+ g)andfg cec (f +d).
Thenf=fg+fggcgh+ecgf+d+g)+f+d=Ff+d
Also, O # fg < gh — ghf = 0.

Now gh « d, since otherwise ghf = 0 (since fd = 0),
verifying the conditions of Boolean division.

(<) Assume that g is a Boolean divisor.

Then 3h such that gh ¢ d and
fcgh+ecf+d
Since gh = (ghf + ghd) ¢ d, then fgh = O implying that fg = O.

91

Boolean Division
Incomplete Specified Function

O

(fcgh+e c f+d)

® Choose g such that fg = O

® Simplify fg with DC = (d + g’) to get h

m Simplify fg’ with DC = (d + fg) to get e (could
use DC =d + gh)

Ofg c h c f+d+g
fgg cecfg+d+fg =f+d

92

Boolean Division

O

Given F = (f,d,r), write a cover for F in the form gh + e
where h and e are minimal in some sense

Create a new variable x to “represent”’ g

Form the don’t care set (d= Xg + X'Qg)

(Since x = g we don’t care if X = Q)

Minimize (fd', d +d, rd') to get f

Return (h = f~/x, e) where e is the remainder of F
(These are simply the terms not containing x)

f/x denote weak algebraic division

93

Boolean Division

O

Note that (fd', d + d, rd"') is a partition. We can use ESPRESSO to
minimize it, but the objective there is to minimize the number of cubes -
not completely appropriate.

Example:
f=a+ bc
g=a+b

~

d = xa’b’ + x’(a+b) where x = g = (a+b)

B Minimize (a + bc) d' = (a + bc) (xa’b’ + x(a+b)) = xa + xbc
with DC = xa'b’ + x (a+Db)

B A minimum cover is a + bc but it does not use x or X !

B Force x in the cover. This yields f = a + xc = a + (a+b) c.

Heuristic:
Find answer with x in it and which also uses the least variables (or literals)

94

Boolean Division

Assume F is a cover for 3 = (f,d,r) and D is a cover for d.
Algorithm Boolean Dividel(F,D,G) {

D, =D + xG” + xX’G // (don’t care)

F, = FD,” // (care on-set)

R, = (F, + D;)” = F,”D;” = F’D,” // (care off-set)

F, = remove x” from F,; // positive substitution only

F; = MIN_LITERAL(F,, R,, X) // Filter for Espresso

// (minimum literal support including x)

F, = ESPRESSO(F;,D,,R,)

H = F,/x // (quotient)

E=F, - {xH} // (remainder)

return (HG+E)
by

95

Boolean Division

Assume F is a cover for 3 = (f,d,r) and D is a cover for d.

Algorithm Boolean Divide2(F,D,G) {

D, =D + xG” + xX’G // (don’t care)
F, = FD;” // (on-set)
R, = (F, + D;)” = F,”D,” = F’D,” // (off-set)

// F, = remove x” from F;, (difference to first alg.)
F; = MIN_LITERAL(F,, R,, X, X”) // Filter for Espresso
// (minimum literal support including x)

F, = ESPRESSO(F;,D,,R;)

H, = F,/x // (Tfirst quotient)
Hy = F /X’ // (Tfirst gquotient)
E=F, - ({xH}+H{X"H}P) // (remainder)

return (GH;+G”Hy+E)

96

Boolean Division
Minimal Literal Support

O Support minimization (MINVAR)

Given:

3 = (f,d,r)

F = {c?, c?, ..., c<} (a cover of J)

R={r% r? ..., '} (a cover of r)

1. Construct blocking matrix B for each ¢ B!

2. Form “super” blocking matrix B B = B,2

3. Find a minimum cover S of B, B:k
S = {1 o - iv -

4. Modify £ «{cl ¢2 ck 1 where

.....

o i e
(CI)J‘:J(c)J if jeS

{ {0,1} = 2 otherwise

97

Boolean Division
Minimal Literal Support

O Given:
3I = (f,d,r)
F={ct c? ..., c<} (a cover of 3)

R={rt, r ..., M} (a cover of r)
Nn: number of variables

Literal Blocking Matrix:

(é') -:{l if v,ec'and v, er? |
aj

0 otherwise J

(éb _Jrifvyectandv,er|

q, jm_lo otherwise J
O Example: ~. abcdeab'c'd'e
c'=ade’, ra = a'ce B' =

91000000001

98

Boolean Division
Minimal Literal Support

O Example (literal blocking matrix)
on-set cube: c¢' = ab'd
off-set: r =ab'd + abd + acd’ + bcd + c'd’
a b C d a b’ c’ a
a’b’d’ |1 0 0 1 0 0 0 0
abd’ |0 0 0 1 0 1 0 0
acd’ |0 0 0 1 0 0 0 0
bcd |0 0 0 0 0 1 0 0
cd |0 0 0 1 0 0 0 0
B Minimum column cover {d,b}
B Thus b’d is the maximum prime covering ab’d
B Note:
For one cube, minimum literal support is the same as
minimum variable support
99
Boolean Division

O Example
F=a+ bc
Algebraic division: F/(a+ b) =0
Boolean division: F+(a+b)=a+c

1.
2.
3.

Letx=a+Db
Generate don't care set: D; = xX'(a + b) + xa'b'.
Generate care on-set:
O F, =FnD, = (a+ bc)(xa + xb +x'a’b’) =ax + bcx.
O Let C = {c! = ax, c2 = bex}

. Generate care off-set:

O R, =FD, = (ab’ + ac)(xa + xb + xa’b) =a'bc’x + ab’x'.

O LetR = {rt = a'bc’x, r2 = a'b’x’}.
Form super-variable blocking matrix using column order (a, b, c, x),
with a’,b’,c’,x’ omitted.

11000]
B! 1001

B: p—
B2 0010
10101

100

Boolean Division

OO0 Example (cont'd)

6. Find minimum column cover = {a, c, x}
7. Eliminate in F; all variables associated with b

So F;, = ax + bex = ax + cx = x(a + ¢)
8. Simplifying (applying expand, irredundant on F;), we get F; = a + Xc
9. Thus quotient = F;/x = ¢, remainder = a
100F=a+bc=a+cx=a+c(a+b)

It is important that x is forced in the cover!

*abcxﬁ
1000
B! 1001

B: f—
B 2 0010
10101 |

101

